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We study the effect of buoyancy on shear flow stability. The vertical body force is induced by a
vertical, constant, and positive thermal gradient. A linear stability analysis is carried out, in the
spatial framework, focusing on both exponential and transient growth. In both cases, positive
thermal stratification is found to stabilize the disturbances. ©2004 American Institute of Physics.
[DOI: 10.1063/1.1810751]

The disturbance growth mechanism in parallel and qua-
siparallel flows is of great interest to understand transition to
turbulence and has been the object of several theoretical and
experimental studies. In a low turbulence environment, the
disturbance growth mechanism is linear and the main theo-
retical tool is the eigenvalue analysis of equations linearized
around the laminar solution. Two kinds of transition pro-
cesses can be distinguished in wall-bounded shear flows. For
small turbulence levelss,0.5%d, the disturbances take the
form of two-dimensional exponentially growing Tollmien–
Schlichting waves. They are amplified up to the point where
nonlinear breakdown occurs. In boundary layers this process
is called natural transition. For high turbulence levels(above
1%), the classical(modal) path of laminar-turbulent transi-
tion is often unable to predict transitional Reynolds numbers
and observed flow structures. The natural transition is by-
passed and transition can be interpreted via the strong tran-
sient, algebraic growth of streamwise streaks, as observed by
Klebanoff et al.1

Here, Poiseuille flow between two horizontal planes is
considered; the buoyancy force is induced by upper wall
heatingTh and/or lower wall coolingTc. For weak thermal
gradients all fluid properties are assumed to be constant. The
mean velocity and temperature distributions, made dimen-
sionless using the maximum velocityU0, the half channel
height h, and a characteristic temperaturesDT=Th−Tcd as
scales, have the simple forms

Usyd = 1 −y2, Usyd =
1 + y

2
.

The linear stability analysis to follow may be applicable to a
more general class of nearly parallel shear flows and tem-
perature or density distributions.

The behavior of infinitesimal three-dimensional distur-
bances is described by the linearized Navier–Stokes equa-
tions with the Boussinesq approximation. These can be writ-
ten in Fourier-transformed form as a system of three ordinary
differential equations: the Orr–Sommerfeld equation for the
normal velocityṽsyd, the Squire equation for the normal vor-
ticity h̃syd, and the energy equation for the thermal fluctua-
tion t̃syd. The dimensionless system reads

fs− iv + iaU − Re−1DdD − iaU9gṽ = − sa2 + b2dRi t̃,

f− iv + iaU − Re−1Dgh̃ = − ibU8ṽ,

f− iv + iaU − sPr Red−1Dgt̃ = − U8ṽ, s1d

where D=]yy−a2−b2 is the Fourier-transformed Laplacian
operator.v ,a, andb are, respectively, the frequency, stream-
wise, and spanwise wave numbers, andU8=dU /dy=1/2.
The boundary conditions areṽ=]ṽ /]y=h̃= t̃=0 at both
walls. The independent parameters are the Reynolds, the
Richardson, and the Prandtl numbers, defined as

Re =
U0h

n
, Ri =

ggDT h

U0
2 , Pr =

n

k
,

whereg is the coefficient of thermal expansion. The equa-
tions are discretized using a Chebyshev collocation method2

with the softwareMATLAB .
The stability analysis adopts a spatial approach implying

that the eigenvalue problem is solved foraPC with v andb
real. In compact form this system can be noted asLq̃n

=anq̃n. The temporal modal stability was studied earlier by
Gage and Reid.3 Although the neutral curve is independent
of a spatial or temporal viewpoint, these two problems are
quite different. Because the problem is parabolic in time, a
temporal study simply proceeds forward in time. On the
other hand, the spatial problem is ill posed as an initial value
problem. In fact, with the possible exception of the unstable
mode, the upper half of the complexa plane contains down-
stream decaying modes while the lower half corresponds to
upstream decaying modes. In the following, only down-
stream evolving modes are considered.

First, we study the evolution of disturbances with a
modal analysis providing the asymptotic behavior for large
values ofx. This classical stability analysis is focused on the
sign of the least stable mode, labeled as Tollmien–
Schlichting mode. A generalization of Squire’s theorem3

states that “the three-dimensional problem is equivalent to a
two-dimensional problem at smaller Reynolds number and
larger Richardson number.” Hence, for positive Richardson
numbers, the modal analysis can be reduced to the Orr–
Sommerfeld and energy equations withb=0. The growth
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rate and correspondingv contours, in the(Re, Ri) and (Re,
Pr) planes, are displayed in Fig. 1. First, we observe the
decreasing value of the growth rate for increasing Richard-
son numbers; Gage and Reid3 had already shown such a
trend, and demonstrated that the flow becomes completely
stabilized for Ri.0.443. Some critical parameters are re-
ported in Table I and compare acceptably well to some of the
old results in Ref. 3. As can be seen, buoyancy strongly
influences the critical value of the Reynolds number. At the
same time, the Tollmien–Schlichting wave structure shows a
weak sensitivity to heat transfer: the streamwise wave num-
ber ar, wave speedcr, and the eigenfunctions are but mildly
affected. Second, we observe a weak influence of the Prandtl
number on the results[cf. Fig. 1(b)].

As a next step, we investigate an amplification mecha-
nism that cannot be attributed to single-mode exponential
growth. Small perturbations in shear flow might experience
transient growth before their eventual downstream
asymptotic decay. Mathematically this is the consequence of
the non-normal nature of the operatorL. Since eigenvectors
are nonorthogonal, constructive or destructive interference
amongst the various modes is possible before the asymptotic
behavior sets in. The combination of this algebraic, basically
inviscid, growth and the viscous damping effect lead to a
phenomenon known as transient growth. If the transiently
growing energy attains a sufficient amplitude, nonlinear in-
teractions may ultimately give rise to transition. In this sense,
algebraic growth could be a first stage of bypass transition.
The search for transiently growing perturbations can be con-
sidered by determining the worst case scenario, i.e., search-
ing for the inlet condition that provides the largest energy
growth. Consequently, we define the maximum energy am-
plification Gmax as

Gmax= max
∀xPf0;`f

iqsxdiE,

with the normalizationiqs0diE=1. The subscriptE denotes
an energetic norm defined in the following. The disturbances
corresponding to this maximum take the form of streamwise
elongated and quasistationary structures, so that a new set of
scales, analogous to Prandtl approximations for boundary
layer, can be employed.4 By scaling the cross-stream coordi-
natessy,zd with h, and the streamwise coordinatex with
h/Re, it follows thatU0 should be used as the scale for the
streamwise perturbation velocityu, together withU0/Re for
the cross-stream componentssv ,wd. The pressure is normal-
ized by rsU0/Red2, with r the density of the fluid. If we
apply these new scales to the linearized Navier–Stokes equa-
tions it follows that the system of equations at first order is
independent of the Reynolds number and parabolic in the
streamwise direction. It is simple to reduce the leading order
equations to a set of three spatially parabolic disturbance
equations:

fs− ivL + iaLU − DndDn − iaLU9gṽ = − b2Gr t̃,

f− ivL + iaLU − Dngũ = − U8ṽ,

f− ivL + iaLU − Pr−1Dngt̃ = − U8ṽ, s2d

with Dn=]yy−b2 and Gr the Grashof number, Gr=Re2Ri.
The subscript “L” has been employed to denote long scales,
vL andaL are related to the frequency and streamwise wave

FIG. 1. Contours of growth rateai (continuous lines), and corresponding
angular frequency of largest growthv (dotted lines) in the(Re, Ri) plane for
Pr=0.7 (a) and in the(Re, Pr) plane for Ri=10−2 (b). The shaded areas
indicate the linearly stable regions.

TABLE I. Neutral stability results for various Ri values.

Gage and Reid Present results

Ri Rec ac crcrit
Rec ac crcrit

0 5396 1.022 0.2672 5772.2 1.020 0.2639

0.0304 7133 1.005 0.2482 7600.6 1.0031 0.2452

0.0616 9718 0.998 0.2285 10 246 0.9845 0.2261

0.0952 13 755 0.964 0.2075 14 451.5 0.9637 0.2057
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number of the full model(1) by vL=v Re andaL=a Re.
A first result obtained is that there are no differences

between the steady results(i.e., v=0) obtained using the
parabolic(2) or the full model(1). In particular, the simpli-
fied model adequately describes the linear spatial evolution
of instability in the Rayleigh–Bénard–Poiseuille problem
sRe=Gr Pr,0d for which the first amplified mode takes the
form of stationary longitudinal rolls oriented in the main
flow direction. The corresponding critical valuessRac,bd are
independent of the Prandtl number and(obviously) of the
Reynolds number and correspond to those obtained for the
natural Rayleigh–Bénard convection.

We now investigate the transient growth of streaks. A
dimensionless disturbance energy is defined as

Esxd = eee uuu2 +
1

Re2Suvu2 + uwu2 +
Gr

U8
utu2Ddy dz dt, s3d

with perturbations expressed in the set of downstream devel-
oping eigenmodes,

q = o
n=1

`

knq̃nsydeisanx+bz−vtd,

whereq is the generic disturbance variable. The coefficients
kn are optimized to achieve the maximum energy amplifica-
tion factor, and they are obtained using singular value
decomposition.5 The parametersvopt, bopt, and xopt, corre-
sponding to the largest possible gain at fixed parameters val-
ues, are obtained using a shooting method. Notice that Squire
theorem is only valid for computing the least stable mode,
and earlier studies of transient growth have shown that dis-
turbances which experience the maximum gain are three di-
mensional. Also in this case the optimal perturbations take
the form of stationarysvopt=0d, counterrotating streamwise
vortices and thermal streakssv ,w,td aligned with the mean
flow at inception and evolve into streamwise velocity streaks
sud (cf. Fig. 2). The optimal spanwise distribution is nearly
constant and close tobopt=2, corresponding to quasicircular
structures. The maximum value for the gain varies is propor-
tion to Re2 and this can be easily justified6 since, for large
Re, the optimal gain becomes

Gmax

Re2 =
ueeeuuu2dy dz dtuxopt

ueeeuvu2 + uwu2 +
Gr

U8
utu2dy dz dtux=0

. s4d

Figure 2 shows the stabilizing interaction of vortices and
thermal streaks at the input. Such a stabilization is the con-
sequence of vertical thermal gradients which induce restor-
ing forces to counteract the vertical displacement of fluid
particles within a streamwise vortex. This effect can also be
interpreted by the streamwise oscillating behavior of the per-
turbations(cf. Fig. 3). As stated by Luchini,6 oscillations of
changing signs are unfavorable to streamwise streaks devel-
opment.

The contours of the maximum gainGmax/Re2 are traced
in Fig. 4 as function of the Grashof and Prandtl numbers. We
observe, in particular, the decreasing value of the gain for
increasing Grashof numbers. Also, for Pr!1 or Pr@1, buoy-

ancy is less effective as a consequence of the dissipation of,
respectively, thermal streaks and vortices which hampers
their interaction. The streamwise location for which the
maximum gain is achievedsxopt/Red decreases with the gain

FIG. 2. Optimal inflow disturbances(a) at x=0 and resulting streaks(b) at
x=xopt for Pr=1, Gr=104, b=1.95, andv=0. The inflow perturbation is
represented through the cross-stream velocity(vectors) and thermal streaks
(isolines). The outflow is displayed with isolines of the streamwise velocity.
The continuous and dotted lines denote, respectively, positive and negative
values of the isolines.

FIG. 3. Energy growth vsx. Continuous line, Gr=0(with bopt=1.91,xopt

=0.057); dotted line, Gr=104 and Pr=1(with bopt=1.95,xopt=0.030).
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because the development of the velocity streaks is opposed
by the rapid dissipation of the vortex. Finally, notice that for
increasing values of Gr, the gain becomes less sensitive to
spanwise wave number variations, in other words, for high
Grashof numbers an increasingly large band of wave num-
bers can equally well excite transient amplification of distur-

bances. The optimalb value arises out of a balance between
the energy transfer with the mean shear flow term and the
viscous dissipation term. For high Grashof numbers, dissipa-
tion is ruled by buoyancy.

In this study, spatial linear stability theory is used to
examine the stability of shear flows subject to positive ther-
mal stratification. Stable stratification is an efficient mean to
hamper the growth of modal and nonmodal disturbances;
thus, the present results indicate a viable strategy to effi-
ciently control transitional flows. Moreover, a simplified
parabolic model was developed and validated in order to
describe the evolution of streamwise elongated disturbances
in shear flows with thermal effects.
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FIG. 4. Contours of maximal gainGmax/Re2 in the (Gr, Pr) plane(continu-
ous lines) together with the corresponding streamwise positionxopt/Re (dot-
ted lines).
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