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Two possible initial paths of transition to turbulence in simple wall-bounded shear flows are
examined by looking at the development in space of infinitesimal disturbances. The first is the—
by-now-classical—transient growth scenario which may have an important role in the bypass
transition of flows for which traditional eigenmode analysis predicts asymptotic stability. It is
studied by means of a simplified parabolic model justified by the underlying physics of the problem;
results for optimal disturbances and maximum transient growth are found in excellent agreement
with computations based on the full Orr–Sommerfeld/Squire equations. The second path starts with
the exponential amplification, in nominally subcritical conditions, of modal disturbances superposed
to base flows mildly distorted compared to their idealized counterparts. Such mean flow distortions
might arise from the presence of unwanted external forcing related, for example, to the experimental
environment. A technique is described that is capable of providing the worst case distortion of fixed
norm for any ideal base flow, i.e., that base flow modification capable of maximizing the
amplification rate of a given instability mode. Both initial paths considered here provide feasible
initial conditions for the transition process, and it is likely that in most practical situations algebraic
and exponential growth mechanisms are concurrently at play in destabilizing plane shear flows.
© 2004 American Institute of Physics. [DOI: 10.1063/1.1775194]

I. INTRODUCTION

Transition to turbulence is still an elusive phenomenon,
even in simple shear flows bounded by solid walls such as
plane Couette or Poiseuille flows. At reasonably low values
of the Reynolds number a phenomenological picture has
been emerging whereby transition is initiated by the break-
down of low-speed, elongated streaks, the persistent pres-
ence of which, in the near-wall region, is tied to an autono-
mous wall cycle by the dynamics still not completely
elucidated. Experimental evidence for these streaks dates
back to early work by Taylor1 and Klebanoffet al.2 One of
the major outcomes of a recent paper by Luchini3 has been to
show that any inlet disturbance condition in a spatially de-
veloping boundary layer is transformed downstream into
streaks of spanwise alternating high and low streamwise ve-
locity. The shape of these streaks is remarkably reproducible,
as first noted by Taylor1 and, in recent times, by Matsubara
and Alfredsson.4

Research on the topic of transition in shear flows in the
last ten years has been concerned particularly with identify-
ing worst case scenarios, i.e., those initial(or inlet) condi-
tions responsible for the largest transient growth of the
streaks, in a linearized setting. The conventional argument
goes that if the streaks’ amplitude attains a sufficiently large
value, some nonlinear boot-strapping effect will bring the
system to transition. This seductive scenario has led many
scientists studying transition in shear flows to almost aban-

don the traditional single-mode growth of the linear stability
approach which captures the asymptotic behavior of the sys-
tem, to pursue studies of nonmodal transient growth, optimal
perturbations, and pseudospectra. The concept of “optimal
disturbances” has been introduced by Farrell5 and further
pursued by Butler and Farrell,6 Reddy and Henningson,7

Schmid and Henningson,8 and Corbett and Bottaro,9,10

among others. The work of all these authors has been con-
ducted in the temporal framework, which is simpler but not
as physically relevant as the spatial framework for the kind
of open flows examined here. Recently, a spatial approach
has been pursued both in the parallel(Reshotko and Tumin,11

Tumin and Reshokto12) and weakly nonparallel cases(Lu-
chini and Bottaro,13 Luchini,3,14 Anderssonet al.15), even
including nonlinear effects(Zuccher16). All of these studies
on optimals(whether temporal or spatial) have shown that
streamwise vortices transform into streaks downstream(in
time or space) and that the disturbance energy, mostly carried
by the streaks, can grow by orders of magnitudes over its
initial value, because of a physical mechanism termed the
lift-up effectby Landahl.17 The recent book by Schmid and
Henningson18 provides a complete account of the “modern”
view of transition that has emerged over the years, as well as
a thorough description of the mathematical tools needed to
uncover it.

The present paper adds a further brick to the building of
transition by pursuing a double objective.

On the one hand, it shows that the optimal, spatial
growth of streaks in channel flow is adequately described by
a spatially parabolic model. The initial growth mechanism is
inviscid and algebraic as demonstrated by Landahl17 in the
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temporal case. Maximum energy gains(ratio of outlet to inlet
perturbation energy) are given, as well as the corresponding
positions in space for which optimal gains are attained, thus
completing literature data. Moreover a comparison is pro-
posed with the results for the case of plane Couette flow
slightly modified by introducing a wire in the spanwise di-
rection. This configuration was investigated experimentally
by Dauchot and Daviaud19 and numerically by Barkley and
Tuckerman.20

The second objective stems from the realization that the
exponential growth of one(or more) mode(s) can still exist
in nominally subcritical conditions when the mean flow is
mildly distorted with respect to the canonical Couette or Poi-
seuille profile. Such modifications in base flow can arise in
laboratory experiments when operating in less-than-perfect
conditions, i.e., under the influence of forcing terms of vari-
ous nature such as wall roughness, inflow disturbances, pres-
sure gradient fluctuations, vibrations, etc. For example,
Lerner and Knobloch21 studied the influence of a small de-
fect on the onset of inviscid instability in unbounded Couette
flow. The base flow that they analyzed takes the form of
piecewise linear velocity profiles, and the excess shear is
measured by a small parametere. They found a long wave
mode with a growth rate which scaled withe. The same line
of approach was then generalized to the viscous case by Du-
brulle and Zahn.22 The latter authors formulated necessary
instability conditions for the growth rate of the perturbation
to be larger than the decay rate of the defect. A recent tem-
poral stability study by Bottaroet al.23 has described a tech-
nique to identify optimally configured defects of the base
flow capable of rendering Couette flow linearly unstable. The
work has been extended to the spatial frame by Gavariniet
al.24,25 for the case of pipe Poiseuille flow. Here, the same
technique is used for plane Couette and Poiseuille flows in
subcritical conditions, by considering disturbances develop-
ing in space. The most sensitive eigenmodes, i.e., those that
provide the largest response to small modifications of the
base flow, are first found. Then, the optimal base flow distor-
tions capable of destabilizing a nominally stable flow are
sought iteratively, by employing a variational approach.

The main point of this paper is to argue that both expo-
nential and algebraic scenarios of transition should be con-
sidered when trying to describe experimental observations of
transition in shear flows; it is likely that both mechanisms
described here play some role in the transition process, the
ultimate fate of the flow being eventually decided by the
receptivity environment.

II. THE MODELS

We consider the flow of an incompressible, Newtonian
fluid in a plane channel bounded by two solid walls iny
= ±h. The linearized Navier–Stokes equations for a parallel

shear flowUW =fUsyd ,0 ,0gT are

ux + vy + wz = 0,

ut + Uux + U8v = − r−1px + nsuxx + uyy + uzzd,

s1d
ut + Uvx = − r−1py + nsvxx + vyy + vzzd,

wt + Uwx = − r−1pz + nswxx + wyy + wzzd,

with su,v ,wd the disturbance velocity components,p the dis-
turbance pressure,r the fluid density, andn the kinematic
viscosity. The base flow about which small disturbances are
superimposed is Usyd=U0f1−sy/hd2g or Usyd=U0s1
+y/hd /2, for Poiseuille and Couette flow, respectively.

Upon consideration of sinusoidal disturbances alongz
and t, and with the classical normalization, the operator de-
scribing the spatial dynamics of the system is given by the
Orr–Sommerfeld and Squire equations for the normal veloc-
ity svd and the normal vorticitysh=]zu−]xwd:

fs− iv + U]x − Re−1¹2d¹2 − U9]xgv = 0,

s2d
s− iv + U]x − Re−1¹2dh + ibU8v = 0,

with Re=U0h/n the Reynolds number andv, b the circular
frequency and the spanwise wave number, respectively. In
the spatial analysis conducted here bothb and v are real
parameters, and¹2=]xx+]yy−b2. The system in(2) will be
denoted, in the following, the full or the elliptic model.

A different set of scales can be chosen when treating the
spatial stability problem. By scaling the cross-stream coordi-
natessy,zd with h, and the streamwise coordinatex with
h/Re, it follows thatU0, maximum velocity in the channel,
should be used as the scale for the streamwise perturbation
velocity u, together withU0/Re for the cross-stream compo-
nentssv ,wd. The pressure is normalized byrsU0/Red2, with
r the density of the fluid. If we apply these new scales to the
linearized Navier–Stokes equations(1) it follows that the
system of equations at first order is independent of the Rey-
nolds number and parabolic in the streamwise direction. It is
simple to reduce the leading order equations to a set of two
spatially parabolic disturbance equations(also called the re-
duced or the parabolic model):

fs− ivL + U]xL
− ¹2

2d¹2
2 − U9]xL

gv = 0,

s3d
s− ivL + U]xL

− ¹2
2dh + ibU8v = 0,

where the subscript “L” has been employed to denote long
scales.¹2

2=]yy−b2 and vL is the circular frequency of the
reduced model, related to the frequency of the full model by
vL=v Re. The normal vorticityshd is given at leading order
by the streamwise velocitysibud, so that the coupling be-
tween the normal and streamwise velocity components is
immediate.

The same parabolic approximation(before Fourier trans-
forming in time and in a temporally growing perspective)
was recently employed by Chapman26 in the derivation of
amplitude bounds for transition to turbulence in plane Cou-
ette and Poiseuille flows.
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The dimensionless system of equations can be reduced
to a form that mimics the space-state form commonly em-
ployed in control theory, communications and signal process-
ing, i.e.,

]xq = Lq or ]xL
qL = LLqL. s4d

For the parabolic model the transformation is straightfor-
ward: the vectorqL is simply fv ,hgT andLL is a 232 matrix
easily recoverable from(3). For the elliptic model, the partial
derivative with respect tox appears to the fourth power in the
Orr–Sommefeld and to the second power in the Squire equa-
tion. To reduce it to the form(4) it is then necessary to
introduce the vectorfav ,v ,hgT expsayd. This standard re-
duction technique18 transforms the equations to a 333 sys-
tem, cast in the form of a space-state problem. Writing the
full system as in(4) does not imply that it has been rendered
parabolic in space. A similar form of the system of linearized
equations has also been found convenient by Tumin27 and
Gavariniet al.24,25who employed it in their studies of recep-
tivity and transition in pipe Poiseuille flow. The advantage of
looking at the equations in space-state form(4) will become
apparent in Secs. III and IV.

III. TRANSIENT GROWTH IN SPACE, OPTIMAL
DISTURBANCES, AND STREAKS

A. The mechanism

The initial phase of algebraic growth of streaky struc-
tures elongated in the streamwise direction and superposed
onto a parallel base flowUsyd can be adequately described
by the use of inviscid, linearized, spatially parabolic equa-
tions, employing the same scales that led to(3).

Following arguments proposed by Libby and Fox28 and
Luchini14 for boundary layers we search for solutions of the
form

usxL,y,zd = xL
lũsydeibz,

vsxL,y,zd = xL
l−1ṽsydeibz,

s5d
wsxL,y,zd = xL

l−1w̃sydeibz,

psxL,y,zd = xL
l−2p̃sydeibz.

We consider only steady perturbations, in accordance with
the result by Luchini3 that stationary streamwise vortices at
the inflow produce the largest transient growth. Moreover the
low frequency behavior of streaks is also reported by several
experimental observations, e.g., Matsubara and Alfredsson.4

By substituting(5) into the inviscid equivalent of(3) it is
easy to find thatl=1 is a solution to the system and that at
all points of the domain interior the unknowns have the form

usxL,y,zd = − xL
U8

U
ṽeibz,

vsxL,y,zd = ṽeibz,

s6d

wsxL,y,zd =
i

b
S]y −

U8

U
Dṽeibz,

psxL,y,zd = 0,

so that any functionṽsyd satisfying homogeneous Dirichlet
conditions at the walls is an acceptable solution. The impor-
tant point is that the streamwise disturbance velocityu grows
linearly with xL, extracting energy from the mean flow,29

whereas the vertical and spanwise velocity components do
not vary with streamwise distance.

We now introduce an energy gain, denoted byG, defined
as the ratio between the output disturbance energy(where the
“output” is any given value ofxL.0) to the inlet energy.
Given the different scalings employed for the velocity com-
ponents, the cross-stream velocities must be weighted withe
(the ratio of the velocity scales) in the definition of the en-
ergy E, i.e.,

GsxLd =
EsxLd
Es0d

=

E
−1

+1

xL
2ũ*ũ + e2sṽ* ṽ + w̃*w̃ddy

E
−1

+1

e2sṽ* ṽ + w̃*w̃ddy

,

with * denoting complex conjugate. Two terms of different
order appear inG; the formally dominant term, of ordere−2,
can be interpreted as the ratio between the energy of the
output streak to the energy of the input vortex:

GsxLd =
xL

2

e2

E
−1

+1

ũ*ũdy

E
−1

+1

sṽ* ṽ + w̃*w̃ddy

+ 1. s7d

We will come back to this inviscid estimate later on.

B. The procedure to find optimals

Equation (4) should be supplemented with no-slip
boundary conditions iny, initial conditions att=0, inlet and
outlet conditions at the open boundaries inx, and periodic
conditions alongz. In the parabolic problem the unknown
qL=sv ,hdT is the so-called vector of state variables and the
inflow condition q0 is the optimal input to be determined
when the largest gain is sought. We first Fourier-transform in
x, and callaL the (complex) streamwise wavenumber. The
same procedure for the full problem yields a wavenumbera
related toaL by the relationaL=a Re. For later use we also
define an output vectorf=su,v ,wdT, related to the state by
the relationf=AqL, with A the 332 matrix whose entries
are
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1

ib1
0 1

ib

Re
0

−
]y

Re
−

aL

b Re
2 ,

with the Reynolds number included for asymptotic consis-
tency. It is simple to find a corresponding matrixA also for
the case of the full equations.

Among the techniques employed to find optimal distur-
bances, that based on eigenmode expansion, described, e.g.,
by Butler and Farrell,6 is the most popular. Since the Orr–
Sommerfeld and Squire modes for a bounded flow form a
complete set, the generic disturbance vectorqL (or q) can be
written as a linear combination of the eigenmodes of system
(4), such as

qLsx,y,z,td = o
n=1

`

knsxdq̃nsydeisbz−vtd s8d

with

dkn

dx
= iankn, kns0d = k0.

Given the nature of the problem considered, it has been
shown by Reshokto and Tumin11 that only downstream
propagating modes should be kept in the expansions forq
andqL. This is necessarily the case in the spatially parabolic
equations since upstream propagating waves are excludeda
priori , whereas in the full problem the existence of eigenval-
ues with arbitraryai ,0 (an example of this situation is dis-
played in Fig. 1) is related to the fact that the initial value
problem for spatial disturbances is ill-posed.

In the numerical application the upper bound of the sum-
mation in (8) must be truncated to a finite number,N. We
have, however, always ensured that the results obtained were
accurately resolved, by successively increasingN until the

optimal solutions ceased to change. To optimize the weight
coefficient kn we start by defining an energy-based inner
product, i.e.,

sqL,qLdE =
1

2
E

−1

+1

sAqLd†AqL dy= kn
†Mnmkm,

where † denotes the complex conjugate transpose andMnm is
given by

Mnm=
1

2
E

−1

+1

q̃n
†sydA†Aq̃msyd dy.

It is important to include the Reynolds number in the defini-
tion of A (and hence in the energy), as shown by Luchini3

and as done in Sec. III A wheree2 was employed. The matrix
M is both positive definite and Hermitian and thus it admits a
Choleski decomposition of the formM=F†F. Thus, the en-
ergy norm can be expressed with the more practical two-
norm in the space spanned by theN eigenmodes of the sys-
tem:

sqL,qLdE = sFk,Fkd2 = iFki2
2.

The coefficientsk are optimized to achieve the maximum
gain defined as follows:

Gsx;v,b,Red = max
iq0iÞ0

iqLsxdiE
2

iq0iE
2 = s1

2sFLsxdF−1d, s9d

with Lsxd the diagonal matrix whose elements areeianx, and
s1 the principal singular value(cf. Reddy and Henningson7).

The equations, both those corresponding to the elliptic
and to the parabolic system, are solved with a Chebyshev
collocation method, with nodes and differentiation matrices
obtained from theDMSUITE routines by Weideman and
Reddy.30 Eigenvalues and eigenvectors are computed with
the QZ algorithm, implemented inMATLAB . Grid sensitivity
studies show that 60 collocation points are adequate for our
purposes; it is further found via numerical tests thatN=30
eigenmodes are sufficient to yield accurate optimal distur-

FIG. 1. Spectrum of Orr–Sommerfeld eigenvalues for Poiseuille flow,v=0.5, b=2, Re=2000.sPd Elliptic model, ssd parabolic model. The figure on the
right provides a close-up view of the spectrum for downstream propagating modes, i.e., those captured by both models.
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bances, determined, for each value ofx, with singular value
decomposition.

C. Parametric study

The contours of the maximum gain,

Gmax= max
∀x

Gsx;v,b,Red,

are traced in Fig. 2 as function of the circular frequencyv
and the spanwise wavenumberb, for a given value of Re.

They have been obtained with the full system of equa-
tions, and are given for both Poiseuille and Couette flows. It
is found in both cases that the global optimum is steady(the
numerical value of the optimal gain is 962 for Poiseuille flow
at Re=2000, and 338 for Couette flow at Re=1000), and that
the optimal disturbance atx=0 is given by a pair of vortices
in the cross-stream plane(cf. Figs. 3 and 4). By employing
the parabolic model, exactly the same global optimal results

are found; the limitation of the parabolic estimate is that it
holds only for smallv’s (how “small” is quantified in Fig. 5)
and Re “large,” i.e., larger than about one hundred. Below
this value the deviation between the full and the parabolic
models becomes appreciable. Since the experimentally ob-
served values of the transitional Reynolds number range
from about four hundred to several thousand for the flows
examined here, we can conclude that the parabolic model
satisfies our purposes, i.e., it produces reliable bounds for the
growth of the disturbance energy at Reynolds numbers typi-
cal of transition.

Summarizing results of optimal gains(for both the first
and the second singular values) are given in Table I, and
compared to corresponding results for the temporal case
(Table II). There are no qualitative differences between tem-
poral and spatial results. The spatial results in Table I are
new; the same global optimals are found with either the para-
bolic or the full model, just as in the case of pipe Poiseuille

FIG. 2. Maximum gainGmax as a function of the frequencyv and the spanwise wavenumberb, for Couette flow at Re=1000(left), and Poiseuille at Re
=2000(right).

FIG. 3. Optimal inflow vortex pair(left) and resulting streaks atx=xopt (right) for Couette flow, Re=1000,v=0, andb=1.58. The inflow streamwise vortex
pair is represented through vectors of the cross-stream velocity(the streamwise disturbance velocity is negligible at the inflow). The outflow streaks are
displayed with contours ofu in the cross section; positive disturbance velocity is drawn with continuous line, whereas dotted lines are used for negative
disturbance velocities.
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flow (Gavarini, 2002, personal communication). The tempo-
ral results for plane Poiseuille flow are in excellent agree-
ment with those by Butler and Farrell.6 For the case of Cou-
ette flow, the largest temporal gain is different from that
reported by Butler and Farrel because of a different dimen-
sionless base flow[they work withUsyd=y]. There is hence
a factor of 2 difference in the Reynolds number definition,
which justifies their findingaopt=35/Re as first singular
value, whereas the time at which the optimum is reached and
bopt are the same. In our case we have chosen to employ a
spatial framework with downstream propagating distur-
bances, and we have thus employed a set of axes which
differs from that of Butler and Farrell by a simple Galilean
transformation.

Some spatial results of optimal disturbances in plane
Poiseuille flow can be found in Schmid, Lundbladh, and
Henningson.31 Unfortunately, they do not coincide with

those given here: for example, for the case of Poiseuille flow
at Re=2000, withb=2 andv=0, Schmidet al. find a maxi-
mum gain close to 105 at a positionx<17. The antisymmet-
ric v disturbance for the same parameters peaks atx<28
with Gmax around 90(the data are taken from their Fig. 2). In
our case, at Re=2000 the largest gain is 964 atxopt=114 and
the second singular value peaks atxopt=72, with a gain equal
to 480. We have no explanation for such large discrepancies,
which cannot be justified simply by the small difference inb
between the two cases.

A comparison with the experimental results from Dau-
chot and Daviaud19 shows similarities with optimal perturba-
tions. They perturbed a plane Couette flow by introducing a
wire in its central plane parallel to the spanwise direction;
the cylinder wake is negligible because of the low value of
the Reynolds number based on the wire radiusr sr /h=1.43
310−2d. They observed subcritical transition(starting from
Re<160) from the basic state to a state characterized by
longitudinal organized structures—present only in a situation
of permanent external excitation—preceding the self-
sustained transitional state(at Re<340). The defect induced
by the presence of the wire generates, sufficiently down-
stream, spanwise periodic pairs of counter-rotating stream-
wise vortices, evolving into streamwise streaks under the
lift-up effect. The spanwise wavelength observed wasl
<6h, so that the aspect ratio of one vortex was approxi-
mately equal to 3/2, a bit more slender than the quasi-
circular optimal vortex. By repeating the experiments chang-
ing the parameters it was shown that the aspect ratio of the

TABLE I. Spatial optimal disturbances. The numbers 1 and 2 denote, re-
spectively, the first and the second singular value.

Flow Gmax/Re2 xopt/Re bopt vopt

Poiseuille 1 2.41310−4 0.057 1.91 0

Poiseuille 2 1.20310−4 0.036 2.63 0

Couette 1 3.39310−4 0.0728 1.58 0

Couette 2 2.67310−5 0.0236 2.65 0

FIG. 4. Antisymmetric optimal disturbance atx=0 (left) and ensuing streaks atx=xopt (right) for Poiseuille flow, Re=2000,v=0, andb=1.91.

FIG. 5. Contours ofusGmaxelliptic
−Gmaxparabolic

d /Gmaxelliptic
u3100, in thesv ,bd

plane for Poiseuille flow at Re=2000, demonstrating the slow degradation
of the parabolic model with the increase ofv. As long asv is less than 0.1
the error in the gain evaluated from the parabolic approximation is less than
2%, and this provides added confidence in the ability of the parabolic model
to capture the low frequency streaks observed in experiments(Ref. 4).
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vortex decreased with decreasing wire radius, independent of
the Reynolds number, in qualitative agreement with optimal
perturbation results. A similar trend for the vortex aspect
ratio was reported by Barkley and Tuckerman,20 who inves-
tigated the same configuration by a numerical simulation
technique. They obtained critical spanwise wavenumbers of
bc=1.3 for r /h=0.086 andbc=1.5 for r /h=0.043, quite
close to the optimal valuebopt=1.58 reported in Table I.
Both the experiments and the simulations demonstrate that
an initial perturbation forv which is initially antisymmetric
about thex–z plane evolves into symmetric pairs of counter-
rotating vortex pairs. The rapid downstream emergence of
symmetric disturbances is consistent with the results of op-
timal perturbation analysis which indicate that the selectivity
of the first singular mode—which is symmetric about
y=0—is very sharp(cf. the factor of 10 difference between
the first and the second singular values in the case of Couette
flow in Table I). For the case of Poiseuille flow the first two
singular values differ by only a factor of 2, and it would thus
be interesting to perform the same kind of experiments real-
ized in Refs. 19 and 20 to study the downstream develop-
ment of the perturbation. In Fig. 6 the results corresponding
to the second singular value for plane Poiseuille flow atx
=0 (right singular vector) and the ensuing streaks atx=xopt

(left singular vector) are displayed.
To conclude this section on transient growth it is inter-

esting to compare the streamwise evolution of the gain for
the viscous case against the inviscid result given by Eq.(7),
which can be rewritten as

G/Re2 = a0sx/Red2 + 1/Re2,

with a0 chosen to match the initial amplitude level. A repre-
sentative case is reported in Fig. 7, for Poiseuille flow. We
start by noting that the curves from the full and the parabolic
model are perfectly superposed for all values ofx. The graph
is given in log–log scale to enhance the behavior at smallx’s,
and it demonstrates that the energy grows likexL

2 after the
initial transient. The agreement between the exact(numeri-
cal) result and the estimate provided by Eq.(7) is even better
than expected. The curves are superposed untilxL<5
310−3, from which point on diffusion picks up and causes a
reduction of the disturbance energy in the viscous case.

IV. EXOGENEOUS DISTURBANCES

So far attention has been paid only to the largest re-
sponse of the system given by Eq.(4) to inflow disturbance
conditions. It is however important to be able to characterize

TABLE II. Temporal optimal disturbances. The numbers 1 and 2 denote,
respectively, the first and the second singular value.

Flow Gmax/Re2 topt/Re bopt aoptRe

Poiseuille 1 1.96310−4 0.0759 2.04 0

Poiseuille 2 1.13310−4 0.0541 2.64 0

Couette 1 2.96310−4 0.117 1.60 70

Couette 2 3.52310−5 0.0329 2.08 700

FIG. 6. Second singular vector atx=0 (left) and streaks atx=xopt for Poiseuille flow, Re=2000,v=0, andb=2.63.

FIG. 7. Growth of the disturbance energy with streamwise distance for
Poiseuille flow, Re=2000,v=0, andb=1.91. The bullets correspond to the
simple inviscid estimate of Eq.(1) with e=Re−1, and the continuous line
corresponds to either the parabolic or the full model.
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the behavior of the system to exogeneous disturbances, such
as body forces of deterministic or stochastic nature, or sim-
ply background noise such as free-stream disturburbances
and wall roughness. Progress in this direction was made by
Farrell and Ioannou,32 who studied first the strong sensitivity
of the linearized system to external forcing terms. They dem-
onstrated that a continuous stochastic excitation produced
high levels of variance at sufficiently large Re, and that this
variance arose primarily from a well-configured set of forc-
ing functions. Further work along the same lines was con-
ducted by Bamieh and Dahleh,33 who showed analytically
that the energy of three-dimensional streamwise-invariant
disturbances achievedOsRe3d amplification.

The system can be written as

]xq = Lq + Bd, s10d

with B an appropriate matrix that transforms the sources of
momentum in the linearized Navier–Stokes equations, noted
as d=sdx,dy,dzdT, to corresponding terms for the state equa-
tion that governs the behavior of the vector of state variables
q. For example, in the parabolic model the 233 matrixB is
simply

B = S− iaL]y − b2 − ib]y

ib 0 0
D .

A similar form holds for the full model. We limit ourselves to
the case of spatially harmonic forcing terms and write the
system as

]xq = Lq + q fe
iafx.

Assuming that the eigenmodes ofL are all damped and that
a f is real, the solution forx@1 is

q = sia fI − Ld−1q fe
iafx.

The largest energy response to spatially periodic external
forcing is then given by

Rsa fd = max
iqfiÞ0

isia fI − Ld−1q fiE

iq fiE
,

where the quantitysia fI −Ld−1 is the spatial resolvent ofL
which transforms inputsq f at wavenumbersa f into corre-
sponding outputs. As in the case of optimal disturbances[cf.
Sec. III B, Eq. (9)], singular value decomposition can be
used to determine the optimal external forcing and, just as in
the previous section, the right singular vector which charac-
terizes the largest response of the system takes the form of
streamwise-aligned vortices, periodic along the span; the
vortices are transformed downstream into streaks of alternat-
ing high and low streamwise velocity. These streaks, the re-
sponse of the system to the forcing, are given by the left
singular vector of the resolvent. In Table III the optimal pa-
rameters are reported, for Couette and Poiseuille flows. As
we could have anticipated, the results are identical whether
we employ the full Orr–Sommerfeld/Squire system of equa-
tions or its parabolic counterpart. The optimal values ofb are
slightly lower than the corresponding values for the case of
optimal inflow perturbations, whereas the corresponding
maximum gainsRsa fd are about one order of magnitude su-

perior. Using the parabolic model it is straightforward to
show the Reynolds number dependence of the forced prob-
lems: the dimensionless streamwise forcingdx scales with
1/Re anddy, dz scale with 1/Re2. Using the same arguments
as in Sec. III for the maximum gain we find thatRsa f =0d
varies in proportion to the Reynolds number squared. Fur-
ther, the response is given at leading order by the streamwise
velocity alone. Figures of optimal forcing profiles and ensu-
ing streaks are not given since they are very similar to cor-
responding figures for the case of optimal initial distur-
bances.

We further note that the optimal value of the forcing
wavenumber isa f =0, i.e., the system is more sensitive to
exogeneous disturbances which are elongated in the stream-
wise direction, rather than to rapidly varying(in x) forcing
terms.

For comparison purposes, the most energetic response of
the linearized system to stochastic excitations, uniform along
the streamwise direction, is found forb<1.5 in the case of
Couette flow33 and forb<2.8 in Poiseuille flow.32

V. DYNAMICAL UNCERTAINTIES, PSEUDOSPECTRA,
AND THE SENSITIVITY OF EIGENVALUES TO
SMALL DISTORTIONS OF THE BASE FLOW

The dynamical uncertainty of the linear system is now
investigated and represented with a perturbation matrixD, as
follows:

]xq = sL + Ddq. s11d

When full generality is admitted forD, thus allowing distur-
bances of all possible physical origins, the classical
e-pseudospectrum is recovered, defined as

LesLd = ha P C:a P LsL + Dd for someD with iDi

ø ej,

whereLsLd is the spectrum ofL. The e-pseudospectrum is
usually displayed graphically with level curves of the norm
of the resolventsiaI −Ld−1 for various values ofe; this con-
stitutes, in fact, the original definition of the concept.34

It is well known that thee-pseudospectrum of a given
operator can significantly differ from its spectrum when the
operator is non-normal, indicating the strong sensitivity of
non-normal operators to external excitations, and the conse-
quences of this fact in hydrodynamic stability theory have
been explored in details in a seminal paper by Trefethenet
al.34 In particular, it has been shown that the
e-pseudospectrum can protrude far into the unstable half
plane beyond a critical value ofe for nominally subcritical
conditions, and that the modes that can be destabilized the
most by perturbing the operator are not those closer to criti-

TABLE III. Optimal response to spatially periodic source terms in the equa-
tions.

Flow maxafPRRsa fd /Re2 bopt vopt a fopt

Poiseuille 2.57310−3 1.71 0 0

Couette 4.26310−3 1.15 0 0
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cality. Further, a connection between thee-pseudospectrum
and the largest possible transient growth that a system can
sustain has also been put forward in the paper by Trefethen
and collaborators[see the estimate of growth provided in the
discussion that follows their Eq.(12)].

Although the concept of pseudospectrum is very useful it
must be recognized that its definition above could place too
much importance on a single, possibly ill-conditioned eigen-
value, and that it might be unrealistic to assume equal per-
turbations for all the entries ofD. For instance, by perturbing
all matrix entries it may happen that the vertical vorticityh
feeds back onto the Orr–Sommerfeld equation forv, a fact
which does not necessarily represent the physics of a given
problem[cf. Eq. (2)].

We take a somewhat different stance here, and focus on
structuredoperator perturbations, i.e., the entries in the dis-
turbance matrixD are not free anymore, but must obey a
given law. More specifically we choose to relate the struc-
tured perturbations to distortionsDU of the reference base
flow Uref. It seems appropriate to focus on this particular
kind of perturbation since, in real physical situations, the
base flow can be incorrectly modeled or measured, and it is
thus important to be able to assess how sensitive eigenvalues
are to such(typically mild) base flow uncertainties. The
spectrum ofL+D, with D structured, is but a subset of the
e-pseudospectrum studied by Trefethen and many others. In
a recent paper, Bottaro et al.23 introduced the
DU-pseudospectrum, defined as

LDUsLd = ha P C:a P LfLsUref

+ DUdg for someDU with iDUi ø ej,

with DU a possibly finite(but typically small) distortion of
the idealized base flow. In Sec. V C a structured pseudospec-
trum LDUsLd is computed and compared with the classical,
unstructuredLesLd.

It is clear that other types of uncertainties in the model
can (and should) be considered, such as uncertain body
forces, unmodeled terms in the equations, uncertainties in the
geometry and roughness, uncertain inflow conditions, etc.
The sum of all possible uncertainties leads to the conven-
tional, unstructured, definition of pseudospectrum. It is, how-
ever, deemed important here to try and assess the importance
of a single, well identified, cause of mismatch between the
idealized situation and its practical realization.

A. The sensitivity functions

Operators resulting from perturbations of the base flow
only, unlike general perturbations, are subject to Squire’s
theorem and transformation. Hence, we limit ourselves here
to considering only the Orr–Sommerfeld equation withb
=0. By perturbing the Orr–Sommerfeld equation, symboli-
cally written asLosv=0, with an infinitesimal, locally parallel
variationdU in the base flow, we find

Losdv + dLosv = 0, s12d

which can be rewritten as

Losdv + dU ]ULosv + da ]aLosv = 0. s13d

We now project onto the adjoint subspace, with the function
asyd solution of the adjoint Orr–Sommerfeld equation:

Los
† a = HF− iv + ia*U +

1

Re
¹2G¹2 + 2ia*U8]yJa = 0,

s14d

with homogeneous Dirichlet and Neumann boundary condi-
tions, and use the fact that

sa,Losdvd = sLosa,dvd = 0,

with the scalar products· , ·d defined by

sp,qd =E
−1

+1

p*q dy.

From Eq.(13) we find

sa,dU ]ULosvd + sa,da ]aLosvd = 0, s15d

i.e.,

da = −
sa,dU ]ULosvd

sa,]aLosvd
. s16d

Expanding the terms of Eq.(16), it is easy to find that
the variation in a given eigenvalue arising from an arbitrary
variationdU is

da =E
−1

+1

GUdU dy, s17d

where the sensitivity functionGU is an appropriate combina-
tion of direct and adjoint eigenfunctions of the given mode:

GU = aa*¹2v − asa*vd9, s18d

with the direct-adjoint normalization:

E
−1

1

a*FU9 + 2asaU − vd + S4ia

Re
− UD¹2Gv dy= 1.

We take as a representative case the motion of fluid in a
channel with Re=3000 andv=0.5. Corresponding spectra
are shown in Fig. 8. For each mode we have computed the
sensitivity function to base flow modifications according to
(18). The graph in Fig. 9 shows that some modes are more
sensitive than others and, for example, the so-called
Tollmienn–Schlichting mode(labeled TS in Figs. 8 and 9) is
only mildly affected by base flow modifications. One impor-
tant conclusion is that there is no apparent relation between
the proximity to the real axis of a given eigenvalue and the
system response to infinitesimal variations in the base flow.
A similar conclusion was drawn also from the study of the
receptivity to periodic blowing and suction at the wall in
pipe Poiseuille flow.27

The shape of the sensitivity functions of two selected
modes is displayed in Fig. 10. For Poiseuille flow the figure
confirms the intuitive result that the TS mode is mostly sen-
sitive to near-wall forcing of the mean flow. For the Couette
case, base flow modifications near the walls have no effect
on the most sensitive eigenvalue(numbered 29). On the
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other hand, there are rapid and large amplitude oscillations of
GU near the center of the channel. In the temporal problem23

it was also found that the center of the channel was the most
sensitive place for forcing inU, but the frequency of the
oscillations ofGU was not as high as here. The experiments
on Couette flow by Dauchot and Daviaud19,35 confirm the
strong sensitivity of plane Couette flow to small perturba-
tions near the axis of the channel.

B. Distortions in the base flow: The minimal defects

It is interesting at this point to identify the base flow
distortion of fixed norm that maximizes the growth rate of a
mode, for a flow which would normally be linearly stable.
Alternatively, the problem can be stated as that of the search
for the minimal norm of the deviation of a flow from its
idealized counterpart in such a way that neutral conditions
are achieved. We call such a deviation theminimal defect.
This problem has been very recently addressed in the tem-

poral setting by Bottaroet al.23 for Couette flow, and in the
spatial setting by Gavariniet al.25 and Gavarini24 for pipe
Poiseuille flow. Incidentally, we note that in the course of
reproducing the results by Bottaro and colleagues for the
purpose of validating the code we have found that in their
Fig. 3 the value of the norm of the distortionr is erroneously
reported to be equal to 0.05. The correct value isr =0.0158.

The technique to find optimal distortions relies on calcu-
lus of variations. We first define the desired amplitudee of
the deviation between the actual flowUsyd and its idealized,
reference counterpartUrefsyd by using an energy-like norm:

e =E
−1

+1

sU − Urefd2 dy;

e is typically small but finite.
For any given value ofe, the objective is to minimize

Imsand, the imaginary part of the eigenvaluen, also denoted

FIG. 8. Orr–Sommerfeld spectrum for Poiseuille(left) and Couette(right) flows at Re=3000 andv=0.5. Some modes are numbered for later reference. The
eigenmodes of the Poiseuille flow case are drawn with open circles or squares, to denote the two different families(s: symmetric,h: antisymmetric).

FIG. 9. Infinity norm of the first 80 sensitivity functionsGU for Poiseuille(left) and Couette(right) flows. The modes are those displayed in Fig. 8, and are
arranged in order of increasing imaginary part.
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asai, i.e., to maximize the amplification factor of the chosen
instability mode. An unconstrained optimization problem can
be set up by introducing the functionalL, defined by

L = ai + lFe −E
−1

+1

sU − Urefd2 dyG , s19d

with l Lagrange multiplier. An extremum is obtained when
dL=0, which results in the following optimality condition:

dai = 2lE
−1

+1

sU − UrefddU dy.

By employing Eq.(17), the minimal defect satisfies the fol-
lowing relation:

ImsGUd = 2lsU − Urefd,

which can be solved iteratively with a simple gradient
method:

Usn+1d = Usnd − gsndFUsnd − Uref −
ImsGUdsnd

2lsnd G ,

with

lsnd = ±Î 1

4e
E

−1

+1

ImsGU
sndd2 dy,

andn the iteration index. The relaxation parameterg is cho-
sen in anad hocmanner; typically we take it very small at
the beginning of the iterations and can progressively increase
it as convergence is approached. The iterations are stopped
when the imaginary part ofa is converged to machine
(double-)precision. The plus and minus signs for the
Lagrange multiplierl correspond, respectively, to minimiza-
tion or maximization of the growth rate of the instability. In
the present context we focus on the maximization of the
growth rate(minus sign forl), since our interest is in the
possible destabilization of an otherwise stable flow by
minute modifications in the mean flow. In a flow control
context it might be interesting to explore the opposite
prob1em, i.e., the stabilization of an unstable mode via an
action on the base flow.

For Poiseuille flow we target mode 19, which is very
sensitive(cf. Fig. 9), and try to drive the eigenvalue to the
unstable half-plane by using a base flow distortion of norme
equal to 10−4. The iterative procedure outlined above is suc-
cessful, as shown in Fig. 11. In the course of bringing mode
19 to the unstable half-plane, we have substantially displaced
the TS mode; this was not unexpected since the sensitivity
function of mode 19(not shown) is large near the walls, just
like GU for the TS mode(Fig. 10). As shown in Fig. 11, the
minimal defect is also found to be concentrated near the
wall.

From Fig. 11(right) the reason for the destabilization
becomes clear. By perturbing the mean flow we have created
inflection points in the velocity profile, with relative maxima
in mean vorticity. Such inflection points are potentially un-
stable through an inviscid mechanism by Fjørtoft theorem.

FIG. 10. Real and imaginary part of the sensitivity function for the TS mode
(Poiseuille flow case) and for mode 29(Couette flow).

FIG. 11. Left: eigenvalue spectrum of the reference Poiseuille flowsPd and of the optimally distorted flow that minimizesai of mode 19ssd; Re=3000,
v=0.5, ande=10−4. The two dotted curves show the paths of mode 19 and of the TS mode in the course of the iterative procedure. On the right, the optimal
base flow deviation obtained at the end of the iterations is shown, together with its first and second derivatives.
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It has been objected that the new base flow produced is
no longer a solution of the Navier–Stokes equations(M. J.
Floryan, 2001, private communication). It is, however, an
exact solution of the forced equations, with a source term in
the x-momentum equation equal to −]yysDUd /Re which
mimics the effect of the environment. We are not arguing
that any given base flow will look as displayed in the figure
under the action of external forcing, we simply stress the fact
that a very small steady deformation of the base flow—such
as the presence of a hot wire system in the wind tunnel—can
render the motion unstable to infinitesimal disturbances, in a
parallel flow context. Even the parallel flow approximation
could be questioned, since an initial distortion of the mean
flow (generated by whatever external cause) will, eventually,
diffuse under the action of viscosity, rendering the mean flow
stable again. Bottaroet al.23 argued that the viscous damping
in x of the base flow defect will be overcome by the quasi-
exponential amplification of the mode—thus triggering
transition—provided that the initial distortion and/or the ini-
tial mode atx=0 are of sufficiently large amplitude. This has
been confirmed by direct numerical simulations of transition
in pipe Poiseuille flow.24

An example of optimal base flow modification for Cou-
ette flow is shown in Fig. 12. By targeting mode 29 we
observe that the mode moves to the left of the spectrum in
thea plane in the course of the iterative procedure(unlike in
the case of Fig. 11), to eventually deviate toward the right
and settle, at convergence, in the positions6.104−0.855id,
i.e., the new, deformed base state is strongly unstable to a
short wave instability of inviscid nature. Oddly enough, de-
spite the fact that the sensitivity function of mode 29 dis-
plays high frequency oscillations near the center of the chan-
nel, the optimal distortion is confined to the lower wall and is
reasonably smooth(cf. Fig. 12, right). This is due to the fact
that several hundred iterations are necessary to reach conver-
gence whene is not infinitesimal; in the course of the itera-
tions, as the base flow gets modified, so does the sensitivity
functionGU. Additionally, it is found that the minimal defect
shape and position are functions of the Reynolds number and
of the mode that is targeted(at any given value ofv ande).

The dependence on Re is illustrated by Fig. 13, which pre-
sents the results for two Reynolds numbers: 500 and 3000.
The targeted modes are, respectively, modes 10 and 29. The
shape of the minimal defect at Re=500 is almost identical to
that obtained by Bottaroet al.23 in the temporal framework
for an antisymmetric base flow(cf. their Fig. 3b) and it also
bears a resemblance to the Couette flow profile modified by
the presence of streaks induced by a fixed ribbon in the simu-
lations by Barkley and Tuckerman.20

It should be noted that the technique of minimizing
Imsad is not limited a single mode. Given a norme we can
easily target more than one mode, i.e., minimizeoImsand,
for whatever number of modesn. In this case the condition
to be satisfied is simply

o
n

ImsGUn
d = 2lsU − Urefd,

and the algorithm follows the lines of the single mode case.
As an example, we show such a minimization for Poiseuille
flow, using the same parameters of Fig. 11 and targeting

FIG. 12. Same as Fig. 11 for Couette flow.

FIG. 13. The Reynolds number effect on the minimal defect(e=10−4, v
=0.5).
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three modes: the mode TS, the mode numbered 13, and that
numbered 19. The result is displayed in Fig. 14: two eigen-
modes(13 and TS) have been rendered simultaneously un-
stable, and mode 19 has been moved significantly closer to
the real axis. The deviation inU is different from that of Fig.
11, for which uniquely mode 19 was taken as target, and is
spread over a thicker region.

C. The structured pseudospectrum

We now turn attention to the concept of
DU-pseudospectrum, an alternative to thee-pseudospectrum
of significance for hydrodynamic stability problems, when
the base flow profile is determined by measurements or com-
putations which are biased by errors of various nature. As
clarified in the previous section, a small distortion inU is
capable of destabilizing a nominally stable base flow. It is
important at this point to determine, for each given norm of
such a distortion, what is the admissible range of unstable
wavenumbers. This could be achieved by employing a tech-
nique known as structured perturbation analysis36 which,
however, provides bounds which are not sharp.

We have devised a simpler approach which produces
exact curves of the lower envelope of the
DU-pseudospectrum, with reasonable computational effort.
For each given value of the streamwise wavenumber, say
ar =a1, we maximize the growth rate of every eigenmode,
−ai, with a constraint on the norm of the distortion. This can
be expressed as the minimization of the functional:

L = ai + l1Fe −E
−1

+1

sU − Urefd2 dyG + l2sar − a1d,

with l1 and l2 Lagrange multipliers. The curve joining the
minima for all values ofar represents the desired pseu-
dospectrum or, at least, the lower envelope ofLDU. A differ-
ent approach must be envisaged to trace that part of the iso-
line of fixed iDUi which is either multivalued(more than
oneai for onear) or vertical, as is the case whenar is close
to 0.5, cf. Fig. 15. Fortunately this occurs only in the upper-

half plane, so that conclusions concerning unstable modes
can still be drawn on the basis of the approach pursued here.

The iterative procedure is similar to that of the previous
section, except that now two iterative loops embedded one
into the other are normally required: the outer loop is a de-
scent iteration forai, and an inner loop is needed to satisfy
the constraint onar, with l2 updated accordingly. We can,
however, do it even more simply and, rather than proceeding
with the approach just briefly outlined, we choose to itera-
tively satisfy the optimality condition

U = Uref +
1

2l1
fImsGUd + l2ResGUdg

by fixing l2 a priori. This means thatar is free to float and
its value at convergence is not knowna priori. However, if

FIG. 14. Left: originalsPd and modifiedssd spectrum for Poiseuille flow(Re=3000,v=0.5, ande=10−4). The modified spectrum targets modes 3(mode
TS), 13, and 19. On the right, the optimal deviation of the base flow at the end of the iterative process is shown, together with its derivatives. Only the range
yP f0,1g is shown, because of the symmetry of the deviation.

FIG. 15. Spectrum and pseudospectra for Poiseuille flow, the same param-
eters as Fig. 11. The dotted lines are contours of the norm of the resolvent
for e equal to 10−2 and 10−3. Each dotted contour represents the outer en-
velope of all the unstructured two-dimensional pseudospectra for the corre-
sponding value ofe. The continuous line is the lower envelope of the
DU-pseudospectrum for a norm of the mean flow distortion equal to 10−4.
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sufficiently many values ofl2 are selected, we are able to
span a sufficiently large range ofar and draw a smooth
curve. Such a lower bound of theDU-pseudospectrum for
iDUi=10−4 is shown in Fig. 15, demonstrating that there is a
large band of possibly unstable wavenumbers(ranging from
0.75 to 2.3). This is not an irrelevant fact: if an experimen-
talist can put an error bar on measurements of a steady base
flow and can evaluate—even locally—the norm of the dis-
tortion from the idealized velocity profile, the
DU-pseudospectrum can determine whether an exponential
instability of the flow should be excluded or not.

Pastar equal to about 2.4, theDU-pseudospectrum and
the 0.01 contour of thee-pseudospectrum cross, reflecting
the fact that the two pseudospectra are different objects.

VI. CONCLUSIONS

Two destabilization mechanisms which can possibly
play an important role in the process of transition in plane
shear flows have been studied. The first is transient, and is
relevant a short distance away from the initial excitation,
whereas the second can prevail asymptotically far from it.

The process of transient amplification of disturbances
has been studied with the full linear equations and with a
simpler, spatially parabolic model, yielding identical results
for the optimal energy gain and corresponding position
where such a gain is attained. In the short-space limit the
initial algebraic growth is well predicted by an inviscid esti-
mate. Although a few spatial results for Poiseuille flow have
been reported previously in the literature,31 they do not co-
incide with those given here. Thus, the results contained in
the present paper are new, although the technique employed
to find them dates back to 1988,5 and confirm the fact that
the initial algebraic amplification of perturbations is an im-
portant factor for transition also for disturbances developing
in the—physically relevant—spatial framework.

Nonetheless, we think that transient growth alone is not
always sufficient to explain the wealth of experimental ob-
servations that exist for transitional shear flows. In particular,
in the case of jets and wakes it is an inviscid mechanism,
related to the presence of inflection points in the mean flow,
which drives the destabilization of the motion. Furthermore,
it is conceivable that under very controlled(and quiet) envi-
ronmental conditions the transient amplification of distur-
bances provided by the algebraic mechanism in sub-critical
wall-bounded shear flows is not always sufficient to bypass
the exponential decay predicted by modal analysis.

We have thus studied the specific set of operator pertur-
bations arising from base flow modifications. After having
demonstrated that some eigenmodes are extremely sensitive
to mild modifications of the base flow, we have successfully
managed to destabilize nominally stable flows(such as Cou-
ette flow) with minimal base flow defects. The instability
found is driven by the presence of an inflection point of
maximum vorticity in the base flow profile. By distorting the
base flow we can define and compute the
DU-pseudospectrum, the relevant subset of the
e-pseudospectrum for the problem at hand.

The importance of looking at these kinds of problems in

transition is far from marginal. Transition to turbulence is a
process initiated by environmental forcing, and we need to
assess the sensitivity of the flow to a variety of factors(exo-
geneous disturbances, inflow conditions, base flow varia-
tions, etc.) to be able to decide on the “most dangerous”
conditions, and draw a catalogue of plausible scenarios. Re-
cent direct numerical simulations by Gavarini24 have demon-
strated that both paths examined here can trigger transition to
turbulence in pipe Poiseuille flow.

Work in progress focuses on the sensitivity of eigen-
modes to base flow distortions which depend ony and z,
with a periodic variation along the span, to try and capture
the parallel, spanwise-periodic defect of minimal norm
which could cause transition in subcritical Poiseuille and
Couette flows. The final goal will be to compare and link
such steady, finite amplitude structures to experimental ob-
servations of streaks.
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