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Transient growth and minimal defects: Two possible initial paths
of transition to turbulence in plane shear flows
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Two possible initial paths of transition to turbulence in simple wall-bounded shear flows are
examined by looking at the development in space of infinitesimal disturbances. The first is the—
by-now-classical—transient growth scenario which may have an important role in the bypass
transition of flows for which traditional eigenmode analysis predicts asymptotic stability. It is
studied by means of a simplified parabolic model justified by the underlying physics of the problem;
results for optimal disturbances and maximum transient growth are found in excellent agreement
with computations based on the full Orr—Sommerfeld/Squire equations. The second path starts with
the exponential amplification, in nominally subcritical conditions, of modal disturbances superposed
to base flows mildly distorted compared to their idealized counterparts. Such mean flow distortions
might arise from the presence of unwanted external forcing related, for example, to the experimental
environment. A technique is described that is capable of providing the worst case distortion of fixed
norm for any ideal base flow, i.e., that base flow modification capable of maximizing the
amplification rate of a given instability mode. Both initial paths considered here provide feasible
initial conditions for the transition process, and it is likely that in most practical situations algebraic
and exponential growth mechanisms are concurrently at play in destabilizing plane shear flows.
© 2004 American Institute of PhysiddOl: 10.1063/1.1775194

I. INTRODUCTION don the traditional single-mode growth of the linear stability

Transition to turbulence is still an elusive phenomenon,""ppro""ch which captures the asymptotic behavior of the sys-

even in simple shear flows bounded by solid walls such a‘g,em, to pursue studies of nonmodal transient growth, optimal

plane Couette or Poiseuille flows. At reasonably low valuederturbations, and pseudospectra. The concept of “optimal
of the Reynolds number a phenomenological picture hadisturbances” has been introduced by Faitrelhd _furthsr
been emerging whereby transition is initiated by the breakPursuéd by Butler and FarréllReddy and Hennlngsg)g,
down of low-speed, elongated streaks, the persistent pre§chmid and Henningsdh,and Corbett and Bottard;
ence of which, in the near-wall region, is tied to an autono-2mong others. The work of all these authors has been con-
mous wall cycle by the dynamics still not completely ducted in the temporal framework, which is simpler but not
elucidated. Experimental evidence for these streaks datés physically relevant as the spatial framework for the kind
back to early work by Tayldrand Klebanoffet al> One of ~ of open flows examined here. Recently, a spatial approach
the major outcomes of a recent paper by Luchitsis been to  has been pursued both in the paralRéshotko and Tumi,
show that any inlet disturbance condition in a spatially de-Tumin and Reshokfd) and weakly nonparallel casgku-
veloping boundary layer is transformed downstream intochini and Bottard? Luchini*'* Anderssonet al’®), even
streaks of spanwise alternating high and low streamwise vencluding nonlinear effectsZucchet®). All of these studies
locity. The shape of these streaks is remarkably reproduciblen optimals(whether temporal or spatjahave shown that
as first noted by Tayldrand, in recent times, by Matsubara streamwise vortices transform into streaks downstremm
and Alfredssort. time or spacgand that the disturbance energy, mostly carried
Research on the topic of transition in shear flows in theby the streaks, can grow by orders of magnitudes over its
last ten years has been concerned particularly with identifymitial value, because of a physical mechanism termed the
ing worst case scenarios, i.e., those initiat inlet) condi- |ift-up effectby Landahl*’ The recent book by Schmid and
tions responsible for the largest transient growth of theHenningsoﬁs provides a complete account of the “modern”
streaks, in a linearized setting. The conventional argumenfie of transition that has emerged over the years, as well as
goes that if the streaks’ amplitude attains a sufficiently large, thorough description of the mathematical tools needed to
value, some nonlinear boot-strapping effect will bring the ,cover it.

system to transition. This seductive scenario has led many Tpe present paper adds a further brick to the building of
scientists studying transition in shear flows to almost aba”fransition by pursuing a double objective.

On the one hand, it shows that the optimal, spatial

a), . . . .
Errziggt address: ONERA Centre de Toulouse, BP 4025, 31055 Toulousgrowth of streaks in channel flow is adequately described by

Ppresent address: DIAM, Universita di Genova, Via Montallegro 1, 16145_a s_payally parabolic _mOdeI' The initial growth mec_hamsm IS
Genova, ltaly. inviscid and algebraic as demonstrated by Lantfainl the
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temporal case. Maximum energy gainatio of outlet to inlet U+t vy +W,=0,
perturbation energyare given, as well as the corresponding
posmon_s in space for which optimal gains are aFtalne_d, thus U+ Ut + U'v = — p~p, + 1(Uy, + Uy + Uy,
completing literature data. Moreover a comparison is pro- 1)
posed with the results for the case of plane Couette flow
slightly modified by introducing a wire in the spanwise di-
rection. This configuration was investigated experimentally
by Dauchot and Daviadd and numerically by Barkley and
Tuckermarf? with (u,v,w) the disturbance velocity componengsthe dis-
The second objective stems from the realization that theyrbance pressurgy the fluid density, ands the kinematic
exponential growth of onéor morg modes) can still exist  viscosity. The base flow about which small disturbances are
in nominally subcritical conditions when the mean flow is superimposed is U(y)=Uq[1-(y/h)?] or U(y)=Uy1
mildly distorted with respect to the canonical Couette or Poi-+y/h)/2, for Poiseuille and Couette flow, respectively.
seuille profile. Such modifications in base flow can arise in  Upon consideration of sinusoidal disturbances alang
laboratory experiments when operating in less-than-perfe@ndt, and with the classical normalization, the operator de-
conditions, i.e., under the influence of forcing terms of vari-scribing the spatial dynamics of the system is given by the
ous nature such as wall roughness, inflow disturbances, preiT-Sommerfeld and Squire equations for the normal veloc-
sure gradient fluctuations, vibrations, etc. For exampleity (v) and the normal vorticity = d,u—dw):
Lerner and Knoblocﬁ §tudi§d the.i'anL'Jence of a small de- [(~iw+Ud - REWAV2- g v =0,
fect on the onset of inviscid instability in unbounded Couette @
flpw. The b_ase flow that they analyzed takes the form o_f (= iw+Ud, - REW2) p+ipU'y =0,
piecewise linear velocity profiles, and the excess shear is

measured by a small parameterThey found a long wave ith Re=Uh/» the Reynolds number and, 3 the circular
mode with a growth rate which scaled withThe same line  frequency and the spanwise wave number, respectively. In
of approach was then generalized to the viscous case by Dthe spatial analysis conducted here b@tand » are real
brulle and Zahrf? The latter authors formulated necessaryparameters, an¥i?=d,,+d,,~ 3% The system in2) will be
instability conditions for the growth rate of the perturbation denoted, in the following, the full or the elliptic model.

to be larger than the decay rate of the defect. A recent tem- A different set of scales can be chosen when treating the
poral stability study by Bottaret al>> has described a tech- spatial stability problem. By scaling the cross-stream coordi-
nique to identify optimally configured defects of the basenates(y,z) with h, and the streamwise coordinatewith

flow capable of rendering Couette flow linearly unstable. Theh/Re, it follows thatU,, maximum velocity in the channel,
work has been extended to the spatial frame by Gavatini should be used as the scale for the streamwise perturbation
al.**? for the case of pipe Poiseuille flow. Here, the samevelocity u, together withUo/Re for the cross-stream compo-
technique is used for plane Couette and Poiseuille flows if€Nts(v,w). The pressure is normalized IpyUo/Re)?, with
subcritical conditions, by considering disturbances develop? the density of the fluid. If we apply these new scales to the
ing in space. The most sensitive eigenmodes, i.e., those thifgearized Navier-Stokes equatiofs) it follows that the

provide the largest response to small modifications of the&YStem of equations at first order is independent of the Rey-

base flow, are first found. Then, the optimal base flow distornolds number and parabolic in the streamwise direction. Itis

tions capable of destabilizing a nominally stable flow areSImple to reduce the leading order equations to a set of two

sought iteratively, by employing a variational approach, spatially parabolic disturbance equatiqasso called the re-

The main point of this paper is to argue that both expo-duced or the parabolic mogel

nential and algebraic scenarios of transition should be con-  [(-jw + Ud, - vg)vg— U"ﬁxL]v =0,
sidered when trying to describe experimental observations of
transition in shear flows; it is likely that both mechanisms

described here play some role in the transition process, the

ultimate fate of the flow being eventually decided by the\,here the subscriptl” has been employed to denote long
receptivity environment. scales.V3=4d,,~ 8 and w_is the circular frequency of the
reduced model, related to the frequency of the full model by
o =w Re. The normal vorticity z) is given at leading order
by the streamwise velocit{iBu), so that the coupling be-
tween the normal and streamwise velocity components is
immediate.
) . ) . The same parabolic approximatidmefore Fourier trans-
We consider the flow of an incompressible, Newtomanforming in time and in a temporally growing perspeciive
fluid in a plane channel bounded by two solid wallsyin a5 recently employed by Chapn‘?ﬁrinn the derivation of
=+h. The linearized Navier—Stokes equations for a parallebmplitude bounds for transition to turbulence in plane Cou-

shear flowlj:[U(y),O,O]T are ette and Poiseuille flows.

— -1
U+ Uvy=-p py + V(Uxx + Uyyt+ Uz,

— -1
W+ Uw, ==p™p, + V(Wxx+Wyy+sz)i

(€
(—iwL+U&XL—V§)7]+iBU’v =0,

Il. THE MODELS
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The dimensionless system of equations can be reduced u'_ .
to a form that mimics the space-state form commonly em-  U(XLY.2) = ‘XLUUe'ﬁZ'
ployed in control theory, communications and signal process-
ing, i.e., A
v(x,Y,2) =ve’?,
HA=Lg or &g =L.q. 0 6)

W(X,,Y,2) = '—(ay— %)'ﬁei'gz,
For the parabolic model the transformation is straightfor- B
ward: the vecton, is simply[v, 7]" andL, is a 2x 2 matrix
easily recoverable fror(8). For the elliptic model, the partial p(x.,y,2) =0,

derivative with respect tg appears to the fourth power in the

Orr—Sommefeld and to the second power in the Squire equao that any functiorv(y) satisfying homogeneous Dirichlet
tion. To reduce it to the form4) it is then necessary to conditions at the walls is an acceptable solution. The impor-
introduce the vectofav,v,7]" explay). This standard re- tant point is that the streamwise disturbance velogigyows
duction techniqujé‘ transforms the equations to a<3 sys- linearly with x_, extracting energy from the mean flGW,
tem, cast in the form of a space-state problem. Writing thevhereas the vertical and spanwise velocity components do
full system as in4) does not imply that it has been rendered not vary with streamwise distance.

parabolic in space. A similar form of the system of linearized =~ We now introduce an energy gain, denoteddyydefined
equations has also been found convenient by Tafvamd  as the ratio between the output disturbance enestpere the
Gavariniet al**?who employed it in their studies of recep- “output” is any given value of_>0) to the inlet energy.
tivity and transition in pipe Poiseuille flow. The advantage of Given the different scalings employed for the velocity com-
looking at the equations in space-state fa@nwill become  ponents, the cross-stream velocities must be weightedewith
apparent in Secs. lll and IV. (the ratio of the velocity scalgsn the definition of the en-
ergyE, i.e.,

+1
j XEE*G + E(0*D + WW)dy
_E(x)  Ja1

IIl. TRANSIENT GROWTH IN SPACE, OPTIMAL G(x) = = ~
DISTURBANCES, AND STREAKS E(0) f 265 + T dy
-1

A. The mechanism

The initial phase of algebraic growth of streaky struc-wjth * denoting complex conjugate. Two terms of different
tures elongated in the streamwise direction and superposefider appear itG; the formally dominant term, of ordes?,
onto a parallel base flow(y) can be adequately described can pe interpreted as the ratio between the energy of the

by the use of inviscid, linearized, spatially parabolic equa-gutput streak to the energy of the input vortex:
tions, employing the same scales that led3p

Following arguments proposed by Libby and Foand o
Luchini** for boundary layers we search for solutions of the 2 J u*tdy
form G(x) = 6—; — +1. (7)
. f (©*D + WW)dy
u(x,y,2) = xT(y)e”, -1

_ We will come back to this inviscid estimate later on.
v(X,Y,2) =X T (y)e”,
(5) B. The procedure to find optimals

WX, Y,2) =X w(y)es?, Equation (4) should be supplemented with no-slip
boundary conditions iy, initial conditions att=0, inlet and
_ outlet conditions at the open boundariesxinand periodic
(XY, 2) =X 2p(y)e?. conditions alongz. In the parabolic problem the unknown
q.=(v,n) " is the so-called vector of state variables and the
We consider only steady perturbations, in accordance witinflow condition q, is the optimal input to be determined
the result by Luchirii that stationary streamwise vortices at when the largest gain is sought. We first Fourier-transform in
the inflow produce the largest transient growth. Moreover th, and call ¢, the (comple® streamwise wavenumber. The
low frequency behavior of streaks is also reported by severadame procedure for the full problem yields a wavenumber
experimental observations, e.g., Matsubara and Alfredssonrelated toa, by the relationey =« Re. For later use we also
By substituting(5) into the inviscid equivalent a8) itis  define an output vectap=(u,v,w)", related to the state by
easy to find thah =1 is a solution to the system and that at the relation$=Aq,, with A the 3X 2 matrix whose entries
all points of the domain interior the unknowns have the formare
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FIG. 1. Spectrum of Orr—Sommerfeld eigenvalues for Poiseuille flon0.5, 3=2, Re=2000(®) Elliptic model, (O) parabolic model. The figure on the
right provides a close-up view of the spectrum for downstream propagating modes, i.e., those captured by both models.

optimal solutions ceased to change. To optimize the weight

0 1
iB coefficient x,, we start by defining an energy-based inner
1| — 0 product, i.e.,
—| Re ,
1B J 1 [
-2 _ o (qL’qL)E = Ef (AQL)TAqL dy: KgManmv
Re BRe -1

with the Reynolds number included for asymptotic consis-Where T denotes the complex conjugate transpose/igpds

tency. It is simple to find a corresponding matfxalso for ~ 9iven by
the case of the full equations. 1+

Among the techniques employed to find optimal distur- M= Ef Gl (y)ATAGH(y) dy.
bances, that based on eigenmode expansion, described, e.g., -1

by Butler and FarrelT,_is the most popular. Since the Orr— is important to include the Reynolds number in the defini-
Sommerfeld and Squwe_ mpdes for a bounded flow form g, of A (and hence in the energyas shown by Luchifii
complete set, the generic disturbance vegio(or q) can be 54 a5 done in Sec. Il A whewd was employed. The matrix
written as a linear combination of the eigenmodes of Systemy; js ot positive definite and Hermitian and thus it admits a

(4), such as Choleski decomposition of the fordd=FTl. Thus, the en-
w ergy norm can be expressed with the more practical two-
qL(xy,zt) = > K (X)) BT (8) :leor;m in the space spanned by tRecigenmodes of the sys-
n=1 .
Wlth (qL!qL)E = (JFKrJFK)Z = ||FK||§
The coefficientsk are optimized to achieve the maximum
den _, = in defined as follows:
&—Iankn, kn(0) = Kq. gain defined as follows:
cocw sz mad O o
Given the nature of the problem considered, it has been G @B, e)—m% ladZ 1(FAGOF™), 9)
0

shown by Reshokto and Tunin that only downstream
propagating modes should be kept in the expansionsjfor with A(x) the diagonal matrix whose elements at&*, and
andq, . This is necessarily the case in the spatially paraboliar; the principal singular valugf. Reddy and Hennings&h
equations since upstream propagating waves are excluded  The equations, both those corresponding to the elliptic
priori, whereas in the full problem the existence of eigenval-and to the parabolic system, are solved with a Chebyshev
ues with arbitrarye; <0 (an example of this situation is dis- collocation method, with nodes and differentiation matrices
played in Fig. 1 is related to the fact that the initial value obtained from theDMsSuUITE routines by Weideman and
problem for spatial disturbances is ill-posed. Reddy?0 Eigenvalues and eigenvectors are computed with
In the numerical application the upper bound of the sum-+the Qz algorithm, implemented iMATLAB . Grid sensitivity
mation in (8) must be truncated to a finite numb&, We  studies show that 60 collocation points are adequate for our
have, however, always ensured that the results obtained wepairposes; it is further found via numerical tests tNat30
accurately resolved, by successively increadihgintil the  eigenmodes are sufficient to yield accurate optimal distur-
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FIG. 2. Maximum gainG,,,, as a function of the frequenay and the spanwise wavenumbegrfor Couette flow at Re=1000Qeft), and Poiseuille at Re
=2000(right).

bances, determined, for each valuexpfvith singular value are found; the limitation of the parabolic estimate is that it

decomposition. holds only for smalkw'’s (how “small” is quantified in Fig. 5
and Re “large,” i.e., larger than about one hundred. Below
C. Parametric study this value the deviation between the full and the parabolic

models becomes appreciable. Since the experimentally ob-
served values of the transitional Reynolds number range
Gmax= rg?@(x;w,ﬁ, Re), from about four hundred to several thousand for the flows
examined here, we can conclude that the parabolic model
are traced in Fig. 2 as function of the circular frequency satisfies our purposes, i.e., it produces reliable bounds for the
and the spanwise wavenumb@yfor a given value of Re.  growth of the disturbance energy at Reynolds numbers typi-
They have been obtained with the full system of equa-al of transition.
tions, and are given for both Poiseuille and Couette flows. It  Summarizing results of optimal gairi®r both the first
is found in both cases that the global optimum is ste@dy and the second singular valyesre given in Table I, and
numerical value of the optimal gain is 962 for Poiseuille flow compared to corresponding results for the temporal case
at Re=2000, and 338 for Couette flow at Re=10@0d that (Table Il). There are no qualitative differences between tem-
the optimal disturbance at=0 is given by a pair of vortices poral and spatial results. The spatial results in Table | are
in the cross-stream plar(ef. Figs. 3 and 4 By employing  new; the same global optimals are found with either the para-
the parabolic model, exactly the same global optimal resultolic or the full model, just as in the case of pipe Poiseuille

The contours of the maximum gain,
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FIG. 3. Optimal inflow vortex paitleft) and resulting streaks a&t=x, (right) for Couette flow, Re=100Qy=0, andB=1.58. The inflow streamwise vortex
pair is represented through vectors of the cross-stream vel@biystreamwise disturbance velocity is negligible at the inflohe outflow streaks are

displayed with contours ofi in the cross section; positive disturbance velocity is drawn with continuous line, whereas dotted lines are used for negative

disturbance velocities.

Downloaded 03 Sep 2004 to 203.197.98.2. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



3520 Phys. Fluids, Vol. 16, No. 10, October 2004 D. Biau and A. Bottaro
11— T
SN AP
05L;;;:::‘\\\H///(‘—t:‘{ _
RO A NI I I NN
A RN N AN
b M b
REREE REERE
> Of 1‘ lll ll ITT
SRR bt
Phava o h VLot
Pasa o2 NN
05\ N~ 22 NN
Co~STTTTO YT
_1 i M Z;iv.'|ff,|.
-1.5 -1 -0.5 0 0.5 1

z

FIG. 4. Antisymmetric optimal disturbance &t 0 (left) and ensuing streaks &t X, (right) for Poiseuille flow, Re=2000p=0, andg=1.91.

flow (Gavarini, 2002, personal communicatjohe tempo- those given here: for example, for the case of Poiseuille flow
ral results for plane Poiseuille flow are in excellent agree-at Re=2000, with3=2 andw=0, Schmidet al. find a maxi-
ment with those by Butler and FarrélFor the case of Cou- mum gain close to 105 at a positiar=17. The antisymmet-
ette flow, the largest temporal gain is different from thatric v disturbance for the same parameters peaks=ag8
reported by Butler and Farrel because of a different dimenwith G, around 9Qthe data are taken from their Fig). 2n
sionless base flofthey work withU(y)=y]. There is hence our case, at Re=2000 the largest gain is 96%,at 114 and
a factor of 2 difference in the Reynolds number definition,the second singular value peaksgg="72, with a gain equal
which justifies their findinge,,=35/Re as first singular to 480. We have no explanation for such large discrepancies,
value, whereas the time at which the optimum is reached angthich cannot be justified simply by the small differencegin
Bopt are the same. In our case we have chosen to employ lzetween the two cases.
spatial framework with downstream propagating distur- A comparison with the experimental results from Dau-
bances, and we have thus employed a set of axes whiathot and Daviautf! shows similarities with optimal perturba-
differs from that of Butler and Farrell by a simple Galilean tions. They perturbed a plane Couette flow by introducing a
transformation. wire in its central plane parallel to the spanwise direction;
Some spatial results of optimal disturbances in planghe cylinder wake is negligible because of the low value of
Poiseuille flow can be found in Schmid, Lundbladh, andthe Reynolds number based on the wire radiys/h=1.43
Henningsort® Unfortunately, they do not coincide with X 1072). They observed subcritical transitigstarting from
Re~=160) from the basic state to a state characterized by
longitudinal organized structures—present only in a situation
of permanent external excitation—preceding the self-
7 & sustained transitional statat Re~=340). The defect induced
by the presence of the wire generates, sufficiently down-
stream, spanwise periodic pairs of counter-rotating stream-
wise vortices, evolving into streamwise streaks under the
lift-up effect. The spanwise wavelength observed was
~6h, so that the aspect ratio of one vortex was approxi-
mately equal to 3/2, a bit more slender than the quasi-
circular optimal vortex. By repeating the experiments chang-
ing the parameters it was shown that the aspect ratio of the

2.5

N
3 o = TABLE |. Spatial optimal disturbances. The numbers 1 and 2 denote, re-
/ / / spectively, the first and the second singular value.

N
;
L eo——
o—_
1o 0.01
o

1.5

0 002 004 006 008 01 Fow G /RE wolRe B oo
Fl'G- 5% C‘;”t_ours_nof(f?maxem{nﬁ‘G%%@bo&c)/ Gm%{npu%! X 1{?]0' "I‘ theéw'ﬂ)d o Poiseuille 1 2.4K 104 0.057 1.91 0
plane for Poiseuille flow at Re= , demonstrating the slow degradation . .
of the parabolic model with the increase®fAs long asw is less than 0.1 Poiseile 2 126107 0.036 263 0
the error in the gain evaluated from the parabolic approximation is less thafouette 1 3.3%10* 0.0728 1.58 0
2%, and this provides added confidence in the ability of the parabolic modetouette 2 2.6¥%10° 0.0236 2.65 0

to capture the low frequen
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FIG. 6. Second singular vector &0 (left) and streaks at=x,, for Poiseuille flow, Re=2000»=0, and5=2.63.

vortex decreased with decreasing wire radius, independent of G/Ré = ay(x/Re)? + 1/R€,

the Reynolds number, in qualitative agreement with optimal o .
perturbation results. A similar trend for the vortex aspectVith @ chosen to match the initial amplitude level. A repre-

ratio was reported by Barkley and Tuckernf8nyho inves- sentative case is reported in Fig. 7, for Poiseuille flow. We
tigated the same configuration by a numerical simulatiorstart by noting that the curves from the full and the parabolic
technique. They obtained critical spanwise wavenumbers dfiodel are perfectly superposed for all valuescorhe graph
B.=1.3 for r/h=0.086 andB.=1.5 for r/h=0.043, quite is given in log—log scale to enhance the behaylor at skl
close to the optimal valug,,=1.58 reported in Table I. and it demonstrates that the energy grows ieafter the
Both the experiments and the simulations demonstrate thdfitial transient. The agreement between the exaameri-

an initial perturbation fow which is initially antisymmetric cal) result and the estimate provided by E@) is even bgtter
about thex—z plane evolves into symmetric pairs of counter- than sexpected.l The. curve; arc_e superposed uqti+5
rotating vortex pairs. The rapid downstream emergence of< 10+ from which point on diffusion picks up and causes a
symmetric disturbances is consistent with the results of optéduction of the disturbance energy in the viscous case.
timal perturbation analysis which indicate that the selectivity

of the first singular mode—which is symmetric about IV. EXOGENEOUS DISTURBANCES

y=0—is very sharpcf. the factor of 10 difference between So far attention has been paid only to the largest re-
the first and the second singular values in the case of Couetionse of the system given by Hé) to inflow disturbance

flow in Table I). For the case of Poiseuille flow the first two conditions. It is however important to be able to characterize
singular values differ by only a factor of 2, and it would thus

be interesting to perform the same kind of experiments real-

ized in Refs. 19 and 20 to study the downstream develop- 10
ment of the perturbation. In Fig. 6 the results corresponding

to the second singular value for plane Poiseuille flowk at 1072
=0 (right singular vectorand the ensuing streaks et X,y

(left singular vector are displayed.

To conclude this section on transient growth it is inter-
esting to compare the streamwise evolution of the gain for“'&,
the viscous case against the inviscid result given by(Bgy. & 1°
which can be rewritten as

-2

-5

107

TABLE II. Temporal optimal disturbances. The numbers 1 and 2 denote, 10'7,
respectively, the first and the second singular value.

-8

Flow Gax! Ré topt/ Re Bopt aolee 1 01 0_4 1 6_3 1 (‘)_2 1 (‘)_1 1 Oo
Poiseuille 1 1.96¢10°4 0.0759 2.04 0 x/Re

o 4
Poiseuille 2 1ix100 0.0541 2.64 0 FIG. 7. Growth of the disturbance energy with streamwise distance for
Couette 1 29610 0.117 1.60 70 Poiseuille flow, Re=2000p=0, andB=1.91. The bullets correspond to the

Couette 2 3.5x10° 0.0329 2.08 700 simple inviscid estimate of Eql) with e=Re™?, and the continuous line
corresponds to either the parabolic or the full model.
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the behavior of the system to exogeneous disturbances, su¢hBLE Ill. Optimal response to spatially periodic source terms in the equa-

as body forces of deterministic or stochastic nature, or sim‘°"s:

ply background noise such as free-stream disturburbanc%%w

. C . max, zR(a;)/RE
and wall roughness. Progress in this direction was made by e nRla) Popt opt Hopt
Farrell and loannot? who studied first the strong sensitivity Poiseuille 25K 103 1.71 0 0
of the linearized system to external forcing terms. They demcouette 426107 1.15 0 0

onstrated that a continuous stochastic excitation produced
high levels of variance at sufficiently large Re, and that this
variance arose primarily from a well-configured set of forc-

ing functions. Further work along the same lines was Congy, .y the Reynolds number dependence of the forced prob-
ducted by Bamieh and Dahléﬁ,w_ho showed analytically |omg: the dimensionless streamwise forcigscales with
that the energy .of three-dlmen§|pngl streamwise-invarian} ;g andd,, d, scale with 1/R& Using the same arguments
disturbances achieved(Re’) amplification. as in Sec. Il for the maximum gain we find thRte;=0)
The system can be written as varies in proportion to the Reynolds number squared. Fur-
4q=Lq+Bd, (10) ther, the response is given at leading order by the streamwise

. ) ] velocity alone. Figures of optimal forcing profiles and ensu-
with B an appropriate matrix that transforms the sources ofng streaks are not given since they are very similar to cor-

momentum in the linearized Navier-Stokes equations, notegbsponding figures for the case of optimal initial distur-
as d<(d,,d,,d,)", to corresponding terms for the state equa-pances.

g. For example, in the parabolic model th&3 matrixBis  avenumber isx=0, i.e., the system is more sensitive to

perior. Using the parabolic model it is straightforward to

simply exogeneous disturbances which are elongated in the stream-
) (_ i d, -8 - iBl?y) \t/vise direction, rather than to rapidly varyirign Xx) forcing
=\ g 0 0o ) erms.

For comparison purposes, the most energetic response of
A similar form holds for the full model. We limit ourselves to the linearized system to stochastic excitations, uniform along

the case of spatially harmonic forcing terms and write thethe streamwise direction, is found f@r=1.5 in the case of
system as Couette flow® and for 8~ 2.8 in Poiseuille flow?

9q =Lq +qgee“r. V. DYNAMICAL UNCERTAINTIES, PSEUDOSPECTRA,
AND THE SENSITIVITY OF EIGENVALUES TO

Assuming that the eigenmodes lofare all damped and that SMALL DISTORTIONS OF THE BASE FLOW

a; is real, the solution fox>1 is

The dynamical uncertainty of the linear system is now
investigated and represented with a perturbation matyias
The largest energy response to spatially periodic externdbllows:

q = (iagl = L) qee .

forcing is then given by aq=(L+A)q. (11)
P -1
R(a) = maxM, When full generality is admitted fak, thus allowing distur-
llagll0 laille bances of all possible physical origins, the classical

where the quantityiasl L) is the spatial resolvent df e-pseudospectrum is recovered, defined as

which transforms inputs|; at wavenumbersy into corre- AJL)={a € C:a € A(L+A) for someA with ||A|
sponding outputs. As in the case of optimal disturbaricés
Sec. Il B, EQ.(9)], singular value decomposition can be
used to determine the optimal external forcing and, just as imvhere A(L) is the spectrum of.. The e-pseudospectrum is
the previous section, the right singular vector which characusually displayed graphically with level curves of the norm
terizes the largest response of the system takes the form of the resolvential —L)™* for various values of; this con-
streamwise-aligned vortices, periodic along the span; thetitutes, in fact, the original definition of the concépt.
vortices are transformed downstream into streaks of alternat- It is well known that thee-pseudospectrum of a given
ing high and low streamwise velocity. These streaks, the reeperator can significantly differ from its spectrum when the
sponse of the system to the forcing, are given by the lefoperator is non-normal, indicating the strong sensitivity of
singular vector of the resolvent. In Table Ill the optimal pa-non-normal operators to external excitations, and the conse-
rameters are reported, for Couette and Poiseuille flows. Aguences of this fact in hydrodynamic stability theory have
we could have anticipated, the results are identical whethdoeen explored in details in a seminal paper by Trefetsten
we employ the full Orr—Sommerfeld/Squire system of equaal.34 In particular, it has been shown that the
tions or its parabolic counterpart. The optimal valuegaire  e-pseudospectrum can protrude far into the unstable half
slightly lower than the corresponding values for the case oplane beyond a critical value a@f for nominally subcritical
optimal inflow perturbations, whereas the correspondingonditions, and that the modes that can be destabilized the
maximum gainR(a;) are about one order of magnitude su- most by perturbing the operator are not those closer to criti-

< €},
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cality. Further, a connection between tag@seudospectrum Losdv + U dylo + Sa d,Lop =0. (13
and the largest possible transient growth that a system can ) o ) )
sustain has also been put forward in the paper by Trefethef€ NOW project onto the adjoint subspace, with the function
and collaboratorsee the estimate of growth provided in the &(Y) solution of the adjoint Orr—Sommerfeld equation:
discussion that follows their Eq12)]. . o, L olan o e,

Although the concept of pseudospectrum is very useful it~ Lo = | “lw+ia U+ o V21 Vo+2ia U'dy ra=0,
must be recognized that its definition above could place too
much importance on a single, possibly ill-conditioned eigen- (14)
value, and that it might be unrealistic to assume equal pefith homogeneous Dirichlet and Neumann boundary condi-
turbations for all the entries df. For instance, by perturbing tions and use the fact that
all matrix entries it may happen that the vertical vorticity
feeds back onto the Orr—Sommerfeld equationdpa fact (&, Losdv) = (Losd, 60) =0,
which does not necessarily represent the physics of a giveRith the scalar product:, ) defined by
problem[cf. Eq. (2)]. "

We take a somewhat different stance here, and focus on (0.0) :J p*q dy
structuredoperator perturbations, i.e., the entries in the dis- ' -1 '
turbance matrixA are not free anymore, but must obey a
given law. More specifically we choose to relate the strucFrom Eq.(13) we find
tured perturbations to distortiorISU of the refergnce b_ase (a,8U dyLow) + (8, da d,Low) =0, (15)
flow U, It seems appropriate to focus on this particular
kind of perturbation since, in real physical situations, thei-€.,

base flow can be incorrectly modeled or measured, and it is (a,6U dyLow)
thus important to be able to assess how sensitive eigenvalues da = - ( L °) (16)
are to such(typically mild) base flow uncertainties. The &, dal-od!

spectrum ofL+A, with A structured, is but a subset of the Expanding the terms of Eq16), it is easy to find that
e-pseudospectrum studied by Trefethen and many others. lthe variation in a given eigenvalue arising from an arbitrary
a recent paper, Bottaroet al? introduced the variation U is

AU-pseudospectrum, defined as

+1
da= f GydU dy, (17
Aau(L) ={a e Cia € A[L(Ug -1
+AU)] for someAU with ||[AU|| < €}, where the sensitivity functiofs, is an appropriate combina-
tion of direct and adjoint eigenfunctions of the given mode:

with AU a possibly finite(but typically smal) distortion of
the idealized base flow. In Sec. V C a structured pseudospec-
trum A, (L) is computed and compared with the classical,with the direct-adjoint normalization:
unstructuredA (L). 1 4i

It is clear that other types of uncertainties in the model f a*{u" +2a(aU - w) + (_a - U)Vz}v dy=1.
can (and shoulgl be considered, such as uncertain body -1 Re

forces, unmodeled terms in the equations, uncertainties in tt‘% . . L
o - e take as a representative case the motion of fluid in a
geometry and roughness, uncertain inflow conditions, etc.

. - channel with Re=3000 ana=0.5. Corresponding spectra
The sum of all possible uncertainties leads to the conven- -
. o . are shown in Fig. 8. For each mode we have computed the
tional, unstructured, definition of pseudospectrum. It is, how-

ever, deemed important here to try and assess the importansens't'v'ty function to base flow modifications according to

of a single, well identified, cause of mismatch between thgsjzsr?.si:[li—\r/]: %sznh 'Qtr']:e'?é 9aif50w?o:ha;xzc;;n?em(?[ﬂ§s g(rfcg:gg
idealized situation and its practical realization. ' P,

Tollmienn—Schlichting modé@abeled TS in Figs. 8 and)9s
only mildly affected by base flow modifications. One impor-
tant conclusion is that there is no apparent relation between
Operators resulting from perturbations of the base flowthe proximity to the real axis of a given eigenvalue and the
only, unlike general perturbations, are subject to Squire’system response to infinitesimal variations in the base flow.
theorem and transformation. Hence, we limit ourselves her@ similar conclusion was drawn also from the study of the
to considering only the Orr—Sommerfeld equation wgh receptivity to periodic blowing and suction at the wall in
=0. By perturbing the Orr—Sommerfeld equation, symboli-pipe Poiseuille flovi’

Gy = aa*V - ala*v)”, (18

A. The sensitivity functions

cally written asl_,@ =0, with an infinitesimal, locally parallel The shape of the sensitivity functions of two selected
variation U in the base flow, we find modes is displayed in Fig. 10. For Poiseuille flow the figure
confirms the intuitive result that the TS mode is mostly sen-
Losov + oL =0, (12 sitive to near-wall forcing of the mean flow. For the Couette
case, base flow modifications near the walls have no effect
which can be rewritten as on the most sensitive eigenvalyaumbered 22 On the
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FIG. 8. Orr—Sommerfeld spectrum for Poiseuilleft) and Couettgright) flows at Re=3000 an@=0.5. Some modes are numbered for later reference. The
eigenmodes of the Poiseuille flow case are drawn with open circles or squares, to denote the two different @ansliesmetric,[1: antisymmetrig.

other hand, there are rapid and large amplitude oscillations gdoral setting by Bottaret al® for Couette flow, and in the

Gy near the center of the channel. In the temporal problem spatial setting by Gavarinét a

25
I

and Gavarirfi* for pipe

it was also found that the center of the channel was the mofRoiseuille flow. Incidentally, we note that in the course of
reproducing the results by Bottaro and colleagues for the

sensitive place for forcing iJ, but the frequency of the

oscillations ofG; was not as high as here. The experimentspurpose of validating the code we have found that in their
Fig. 3 the value of the norm of the distortioris erroneously

on Couette flow by Dauchot and Daviddd® confirm the
strong sensitivity of plane Couette flow to small perturba-reported to be equal to 0.05. The correct value=§€.0158.
The technique to find optimal distortions relies on calcu-
lus of variations. We first define the desired amplitudef
the deviation between the actual flawy) and its idealized,

tions near the axis of the channel.

B. Distortions in the base flow: The minimal defects

It is interesting at this point to identify the base flow
distortion of fixed norm that maximizes the growth rate of a
mode, for a flow which would normally be linearly stable.
Alternatively, the problem can be stated as that of the search

for the minimal norm of the deviation of a flow from its
idealized counterpart in such a way that neutral conditiong is typically small but finite.
are achieved. We call such a deviation théimal defect
This problem has been very recently addressed in the tenim(¢,), the imaginary part of the eigenvalnealso denoted
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(U- Uref)2 dy,

reference counterpatd,.(y) by using an energy-like norm:

+1
-1

For any given value ok, the objective is to minimize

7x10 ' . '
O29

6_ 4
028

5_ 4

40
mode number

FIG. 9. Infinity norm of the first 80 sensitivity functiors;, for Poiseuille(left) and Couettdright) flows. The modes are those displayed in Fig. 8, and are

arranged in order of increasing imaginary part.
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Im(Gy)™
2\ (n)

— ™G

Re(GU) umh = ym - ,y(n){u(n) — U=

IJ) ’

with

1 +1
A=+ \/—f Im(G{")? dy,
46 -1

andn the iteration index. The relaxation paramejeis cho-
sen in anad hocmanner; typically we take it very small at
the beginning of the iterations and can progressively increase
it as convergence is approached. The iterations are stopped
when the imaginary part ok is converged to machine
(doublejprecision. The plus and minus signs for the
Lagrange multipliei correspond, respectively, to minimiza-
1 tion or maximization of the growth rate of the instability. In
x 10'"° the present context we focus on the maximization of the
o o _ growth rate(minus sign for\), since our interest is in the
FIG_. 10._ Real and imaginary part of the sensitivity function for the TS mOdepOSSible destabilization of an otherwise stable flow by
(Poiseuille flow caseand for mode 29Couette flow. . e . .
minute modifications in the mean flow. In a flow control
context it might be interesting to explore the opposite

asa, i.e., to maximize the amplification factor of the chosenproblem, i.e., the stabilization of an unstable mode via an
instability mode. An unconstrained optimization problem canaction on the base flow.

0.5f 0.5

— Gy

... RE(@)) | =pl

>0_

~doo

be set up by introducing the functionél defined by For Poiseuille flow we target mode 19, which is very
‘" sensitive(cf. Fig. 9), and try to drive the eigenvalue to the
L=a+ )\le_j (U= U,o)? dy} ' (19) unstable half-plane by using a base flow distortion of nerm

-1 equal to 10*. The iterative procedure outlined above is suc-

. - . , cessful, as shown in Fig. 11. In the course of bringing mode
with A Lagrange mult_|pl|er. An ex_tremun_w IS pbta|neq .when 19 to the unstable half-plane, we have substantially displaced
8L£=0, which results in the following optimality condition: the TS mode; this was not unexpected since the sensitivity

1 function of mode 19not shown is large near the walls, just
Sa; = 27‘[ (U= Upep)éU dy. like Gy for the TS modgFig. 10. As shown in Fig. 11, the
- minimal defect is also found to be concentrated near the
By employing Eq.(17), the minimal defect satisfies the fol- wall.
lowing relation: From Fig. 11(right) the reason for the destabilization
IM(Gy) = 2M(U = U, becomes clear. By perturbing the mean flow we have created
v ref/ inflection points in the velocity profile, with relative maxima
which can be solved iteratively with a simple gradientin mean vorticity. Such inflection points are potentially un-

method: stable through an inviscid mechanism by Fjgrtoft theorem.
0.8 . . 1 : ,
o ® — AU
o* S e 0.02AU'
o ® ---0.001AU""
0.6f o ® 19 1
. Ll 0.5f
O o 7
© [
0.4} O e
O.. °
3" e > 0
02f o
@
. !
o T -1 T e .
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o, AU &y derivatives

FIG. 11. Left: eigenvalue spectrum of the reference Poiseuille {@yand of the optimally distorted flow that minimizes of mode 19(O); Re=3000,
»=0.5, ande=10"* The two dotted curves show the paths of mode 19 and of the TS mode in the course of the iterative procedure. On the right, the optimal
base flow deviation obtained at the end of the iterations is shown, together with its first and second derivatives.
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FIG. 12. Same as Fig. 11 for Couette flow.

It has been objected that the new base flow produced i¥he dependence on Re is illustrated by Fig. 13, which pre-
no longer a solution of the Navier—Stokes equatigvs J.  sents the results for two Reynolds numbers: 500 and 3000.
Floryan, 2001, private communicatipnt is, however, an The targeted modes are, respectively, modes 10 and 29. The
exact solution of the forced equations, with a source term irshape of the minimal defect at Re=500 is almost identical to
the x-momentum equation equal todg(AU)/Re which  that obtained by Bottaret al®in the temporal framework
mimics the effect of the environment. We are not arguingfor an antisymmetric base flogef. their Fig. 3) and it also
that any given base flow will look as displayed in the figurebears a resemblance to the Couette flow profile modified by
under the action of external forcing, we simply stress the facthe presence of streaks induced by a fixed ribbon in the simu-
that a very small steady deformation of the base flow—suchations by Barkley and Tuckermaf.
as the presence of a hot wire system in the wind tunnel—can It should be noted that the technique of minimizing
render the motion unstable to infinitesimal disturbances, in am(«) is not limited a single mode. Given a norenve can
parallel flow context. Even the parallel flow approximation easily target more than one mode, i.e., minimken(«,,),
could be questioned, since an initial distortion of the mearfor whatever number of modeas In this case the condition
flow (generated by whatever external cgusél, eventually, to be satisfied is simply
diffuse under the action of viscosity, rendering the mean flow
stable again. Bottaret al*® argued that the viscous damping 21m(Gy,) = 2\ (U = Urey),
in x of the base flow defect will be overcome by the quasi- "
exponential amplification of the mode—thus triggering and the algorithm follows the lines of the single mode case.
transition—provided that the initial distortion and/or the ini- As an example, we show such a minimization for Poiseuille
tial mode atx=0 are of sufficiently large amplitude. This has flow, using the same parameters of Fig. 11 and targeting
been confirmed by direct numerical simulations of transition
in pipe Poiseuille flovi*

An example of optimal base flow modification for Cou- 1
ette flow is shown in Fig. 12. By targeting mode 29 we
observe that the mode moves to the left of the spectrum ir
the a plane in the course of the iterative proced(relike in o5t
the case of Fig. 1] to eventually deviate toward the right
and settle, at convergence, in the positi@104-0.85b,

i.e., the new, deformed base state is strongly unstable to
short wave instability of inviscid nature. Oddly enough, de- > Of
spite the fact that the sensitivity function of mode 29 dis-
plays high frequency oscillations near the center of the chan-
nel, the optimal distortion is confined to the lower wall and is  _g 5}
reasonably smootfcf. Fig. 12, righj. This is due to the fact
that several hundred iterations are necessary to reach conve
gence where is not infinitesimal; in the course of the itera- ] . ; : g ) )
tions, as the base flow gets modified, so does the sensitivit  -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03
function Gy,. Additionally, it is found that the minimal defect AU

shape and position are functions of the Reynolds number an€lg. 13, The Reynolds number effect on the minimal defest10, o
of the mode that is targetddt any given value of ande). =0.5).
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FIG. 14. Left: original(®) and modified(O) spectrum for Poiseuille flowRe=3000,0=0.5, ande=10"%). The modified spectrum targets modegn®de
TS), 13, and 19. On the right, the optimal deviation of the base flow at the end of the iterative process is shown, together with its derivatives. Orly the rang

y €[0,1] is shown, because of the symmetry of the deviation.

three modes: the mode TS, the mode numbered 13, and thlaalf plane, so that conclusions concerning unstable modes
numbered 19. The result is displayed in Fig. 14: two eigen<an still be drawn on the basis of the approach pursued here.

modes(13 and TS have been rendered simultaneously un-

The iterative procedure is similar to that of the previous

stable, and mode 19 has been moved significantly closer teection, except that now two iterative loops embedded one

the real axis. The deviation d is different from that of Fig.

into the other are normally required: the outer loop is a de-

11, for which uniquely mode 19 was taken as target, and iscent iteration fory;, and an inner loop is needed to satisfy

spread over a thicker region.

the constraint ony,, with \, updated accordingly. We can,

however, do it even more simply and, rather than proceeding

C. The structured pseudospectrum

We now turn attention to the concept
AU-pseudospectrum, an alternative to tapseudospectrum
of significance for hydrodynamic stability problems, when
the base flow profile is determined by measurements or com-

1
U=Upt 2_[|m(GU) + M Re(Gy)]
A

with the approach just briefly outlined, we choose to itera-
of tively satisfy the optimality condition

putations which are biased by errors of various nature. A®Y fixing A, a priori. This means tha is free to float and

clarified in the previous section, a small distortionUnis
capable of destabilizing a nominally stable base flow. It is
important at this point to determine, for each given norm of

its value at convergence is not knownpriori. However, if

such a distortion, what is the admissible range of unstable
wavenumbers. This could be achieved by employing a tech-
nigue known as structured perturbation anaﬁ?s'which,
however, provides bounds which are not sharp.

We have devised a simpler approach which produces sl

exact curves of the lower envelope of the
AU-pseudospectrum, with reasonable computational effort. _
For each given value of the streamwise wavenumber, sayts
a,=ay, We maximize the growth rate of every eigenmode,

0.001 --

—q;, with a constraint on the norm of the distortion. This can 0

be expressed as the minimization of the functional:

+1
EZai+)\1|:E—J
-1

(U- Uref)2 dyi| + )\Z(ar - ay),

%0;.

S
.Qp

03

with A; and \, Lagrange multipliers. The curve joining the
minima for all values ofa, represents the desired pseu-
dospectrum or, at least, the lower envelope\gf,. A differ-

25

FIG. 15. Spectrum and pseudospectra for Poiseuille flow, the same param-

ent approach must be envisaged to trace that part of the iséters as Fig. 11. The dotted lines are contours of the norm of the resolvent

line of fixed |[AU|| which is either multivaluedmore than
oneq; for oneq,) or vertical, as is the case when is close

for € equal to 102 and 10°. Each dotted contour represents the outer en-
velope of all the unstructured two-dimensional pseudospectra for the corre-
sponding value ofe. The continuous line is the lower envelope of the

to 0.5, cf. Fig. 15. Fortunately this occurs only in the upper-Au-pseudospectrum for a norm of the mean flow distortion equal t6. 10
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sufficiently many values ok, are selected, we are able to transition is far from marginal. Transition to turbulence is a
span a sufficiently large range ef, and draw a smooth process initiated by environmental forcing, and we need to
curve. Such a lower bound of th&U-pseudospectrum for assess the sensitivity of the flow to a variety of faci@nso-
|AU||=10"*is shown in Fig. 15, demonstrating that there is ageneous disturbances, inflow conditions, base flow varia-
large band of possibly unstable wavenumbeamging from  tions, etc) to be able to decide on the “most dangerous”
0.75 to 2.3. This is not an irrelevant fact: if an experimen- conditions, and draw a catalogue of plausible scenarios. Re-
talist can put an error bar on measurements of a steady basent direct numerical simulations by Gavafirfiave demon-
flow and can evaluate—even locally—the norm of the dis-strated that both paths examined here can trigger transition to
tortion from the idealized velocity profile, the turbulence in pipe Poiseuille flow.
AU-pseudospectrum can determine whether an exponential Work in progress focuses on the sensitivity of eigen-
instability of the flow should be excluded or not. modes to base flow distortions which dependyoand z,
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