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Low level of pollutants can be achieved by lean and pre-

mixed burning. Unfortunately, these are the conditions at

which the undesirable phenomenon of self-excited thermo-

acoustic oscillations occurs. These are responsible for in-

efficient burning and structural stresses so intense that they

can lead to engine and combustor failure. Understanding

these phenomena is an important goal of designers and the-

oreticians. Large Eddy Simulations of the complete gov-

erning equations and finite elements solutions of the acous-

tic equations in realistic domains are useful to describe the

phenomenon and have enjoyed much popularity in recent

years; such techniques are however not flexible enough to

allow extensive parametric studies during a preliminary de-

sign phase. A lumped, linear model is developed and im-

plemented here, and computations are carried out to high-

light the effect of the most important parameters of the prob-

lem. To validate the results a calibration is conducted on the

basis of reference three-dimensional finite elements simula-

tions. Guidelines on the choice of geometrical parameters

for the lumped model are given. Additionally, a new model

describing the flame interactions with the acoustic field is

developed and tested.

Nomenclature

A j Cross sectional area of duct j

A+
n Amplitude of the clockwise (downstream travelling if

n = 0) acoustic perturbation of the nth azimuthal mode

A−
n Amplitude of the counter-clockwise (upstream travel-

ling if n= 0) acoustic perturbation of the nth azimuthal

mode
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Ae
n Amplitude of the entropy wave of the nth azimuthal

mode

cs Speed of sound

d j Thickness of duct j

f Frequency [Hz]
GR Growth Rate [1/s]
H Total enthalpy [m2/s2]
i Imaginary unit

Jn Bessel function of the first kind of order n

L j Length of duct j

ṁ Mass flow rate

M Mach number

PM Molecular Mass [Kg/mol]
Nb Number of burners

p Pressure

q Volumetric heat release rate [W/m3]
Q Rate of heat release per unit of area [W/m2]
R Perfect Gas constant: R = R(T ) [J/Kg ·K]
R j Radius of duct j

S Entropy density [J/Kg ·K]
t Time

T Temperature

v Velocity vector

u Axial velocity

v Radial velocity

w Azimuthal velocity

Yn Bessel function of the second kind of order n

γ Ratio of specific heats: γ = γ(T )
ρ Mass density

τ Time delay

ω Angular frequency [rad/s]

(..)1 Plenum



(..)2 Premixer

(..)2b CBO’s

(..)3 Combustion Chamber

¯ mean quantity
′ fluctuating quantity

1 Introduction

Thermo-acoustic instabilities may occur whenever com-

bustion takes place inside a resonator. The phase difference

between heat release oscillations and pressure waves arriv-

ing at the fuel injection points is responsible for the phe-

nomenon, as described by Lord Rayleigh [1]. Strong vi-

brations at low frequencies may occur inside the resonator

causing the humming phenomenon that irremediably affects

the functioning and the efficiency of the system. Integral

principles are useful to understand the nature of humming

and could be implemented in three-dimensional simulations.

Unfortunately, parametric studies carried out on the basis

of these simulations for geometries characterizing, e.g., the

combustion chambers of gas turbines, are very expensive and

there is no straightforward way to modify the resonator’s ge-

ometry in order to mitigate or eliminate thermo-acoustic os-

cillations. In this paper, a lumped model of a real gas turbine

combustor is proposed. The present approach represents a

very fast way to analyze the stability of the system under

consideration; it constitutes a very light tool which can be

quickly adapted to study several operating conditions and ge-

ometries. This tool, a low-order-model, hereinafter referred

to as LOM, finds the complex eigenvalues of the linear sta-

bility operator of the system. Because of the linear approx-

imation, no information on the amplitude of the resulting

eigenfunctions is available: a LOM is thus only able to pre-

dict whether a mode might evolve towards a limit cycle. In

the past, low order thermo-acoustic linear models have been

described by Dowling & Stow [2], Schuermans [3], Sattel-

mayer [4], Evesque & Polifke [5], Rumsey et al. [6], Mor-

gan & Stow [7] and Bellucci et al. [8]. Our model builds

upon their contributions; although we could omit mathemat-

ical details of the approach followed, we prefer, for the sake

of completeness, to provide a reasonably complete account

of the LOM developed.

LOM’s are generally based on conservation principles

to be enforced at the junction of neighbouring duct, together

with boundary conditions and constitutive relations. Any

lumped model inevitably requires a calibration against simu-

lations or experiments obtained in more realistic geometries:

this is one of the objective of the present paper and it is de-

scribed in section 3. A brief analysis of the effect of a non-

zero mean flow is addressed in section 4. In order to close the

problem a model representing the heat release mechanism of

the unsteady flame is required: a so-called Flame Transfer

Function (FTF) is often used to describe the flame dynam-

ics. Unfortunately, it is very easy to negatively affect the re-

sponse of the system by the choice of a wrong or incomplete

FTF, possibly modifying the stability characteristics. Typical

transfer functions [9] contain at least two unknown parame-

ters, on whose choice the phenomena predicted by the model

strongly depend. In section 5, a new model for the flame

dynamics is proposed.

2 The physical model and the equations

The basic idea is to analyse the combustor of a gas tur-

bine through a set of equations suited to represent the state of

the system. The internal variables are the smallest possible

subset of system variables that can represent the entire state

of the system at any given time; they are expressed as vec-

tors. The differential and algebraic equations that describe

the linear system are written in matrix form. The number of

unknown variables (i.e. the length of the associated vector)

must be equal to the number of equations (i.e. to the rank of

the relative matrix) in order to have a well-posed problem.

Sometimes, and this is the case here, the equations available

are less than the number required so that transfer functions,

coupling two or more variables, become necessary. It is im-

portant to stress the fact that using a transfer function may

cause the loss of internal information of the system, affect-

ing its stable/unstable nature.

Variables for an annular gas turbine are the perturbations

thermodynamic and mechanical quantities such as pressure,

velocity or heat release. The whole system is modelled as a

network of different ducts: an annular diffuser at the com-

pressor’s exit, Nb axial premixers, and an annular combus-

tion chamber, before the inlet of the turbine. At the end of

the cylindrical premixers, NCBO Cylindrical Burner Outlets

(CBO′s) might be positioned; their function is that of dis-

rupting the axisymmetry of the system to modify both the

shape of the flame and the time a disturbance released at the

injector takes to reach the flame front.

2.1 Mean flow

Every variable G(x,r,θ, t) is decomposed into a mean

value Ḡ, constant in each duct, and a fluctuating value

G′(x,r,θ, t), with G′ << Ḡ. The LOM requires a prelimi-

nary computation of the mean flow parameters. Since it is

based on a lumped approach, only a mean pressure p̄, ax-

ial velocity ū, temperature T̄ and density ρ̄ are to be com-

puted in each duct, together with the rate of heat release per

unit area Q supplied by the flame. Since all the premixers

and the CBO’s are alike, the number of unknowns is always

Nmean = 17 (4 unknowns for the compressor diffuser, usu-

ally called plenum, the premixing ducts, the CBO’s and the

combustion chamber together with the heat release).

The conservation principles used to calculate both the

mean and perturbed variables are applied locally for each

burner. For this purpose, plenum and combustion chamber

need to be divided into Nb sectors. Since the premixers are

equally spaced, the sectors are centred around each premixer,

i.e. around the angle

θi =
2π

Nb

(i− 1), 1 ≤ i ≤ Nb,

respectively, and with identical sections βA1 in the plenum



Fig. 1. (Top) A quarter of the real geometry. (Bottom) LOM’s outline.

The plenum, is colored in green, premixers (not visible in the real

geometry) in blue and the combustion chamber in red. CBO’s are

not shown here.

and βA3 in the chamber, where

β = 1/Nb.

As clearly noticeable from figure 1, only a part of the plenum

can be modelled since the LOM is able to represent only the

segment between the compressor outlet and the premixers in-

let, disregarding the volumes where film cooling takes place

(colored in grey).

A perfect gas equation is written in each duct provid-

ing 4 equations, one each for plenum, premixers, CBO’s and

combustion chamber:

p̄ = ρ̄RT̄ .

The mass flux conservation, written locally at each pre-

mixer inlet, imposes:

β ¯̇m1 = ¯̇m2.

At the interface of the premixers with the CBO’s it becomes:

¯̇m2 = ¯̇m2b,

and at the combustion chamber inlet it reads:

¯̇m3 = ¯̇m1.

The energy conservation between the plenum and the pre-

mixers yields:

β ¯̇m1H̄1 = ¯̇m2H̄2,

with H the total enthalpy defined as H̄ = cPT̄ + ū2/2. Be-

tween a premixer and the corresponding CBO it is:

¯̇m2H̄2 = ¯̇m2bH̄2b.

and at the combustion chamber inlet the following expression

holds:

¯̇m3H̄3 = ¯̇m1H̄1 +A3Q.

2.1.1 Isentropic/grid conditions

The turbine configuration generally includes a grid at

each premixer inlet. Its influence is neglected in the present

computation, so that an isentropic condition [2], might be

applied:

p̄1/ p̄2 = (ρ̄1/ρ̄2)
γ
;

if the grid had been considered, the following grid-type equa-

tion could have been employed:

p̄1 − p̄2 =
1

2
k12 ρ̄2ū2

2,

with k12 an empirical loss parameter [10]. For the purposes

of the present paper the grid condition is irrelevant: it is how-

ever interesting to observe that its application has a remark-

able influence on stability when dealing with simplified con-

figurations where axial waves, established downstream of the

grid, assume major relevance. This is the case of test rigs

with a single burner where the typical azimuthal waves of

the annular combustion chamber are not present [11].

2.1.2 ”Borda” equations

At each CBO inlet (where there is a sudden area in-

crease) a Borda-like equation [12] should be implemented:

¯̇m2ū2 − ¯̇m2bū2b = A2b (p̄2b − p̄2) ,

and a similar equation holds for the set of premixers/CBO’s

reaching the combustion chamber:

¯̇m3 ū3 −
Ncbo

∑
k=1

¯̇mk
2b ūk

2b −∑
l

¯̇ml
2 ūl

2 =

βA3

(

Ncbo

∑
k=1

p̄k
2b +∑

l

p̄l
2

)

−A3 p̄3,



where l ≤ Nb is the index of the burners which do not termi-

nate with CBO’s.

The total number of equations is then 13, and to close

the system it is sufficient to have 4 input data, for instance

pressure, temperature and mass flux in the plenum along with

the flame temperature.

2.2 Disturbance flow

The convective inhomogeneous wave equation for dis-

turbances is, for speed of sound cs assumed constant,

D2 p′

Dt2
− c2

s ∇2 p′ = (γ− 1)
Dq′

Dt
, (1)

where D/Dt = ∂/∂t + v̄ · ∇. Equation (1) is solved with

the right hand side evaluated in a thin sheet at or near the

combustion chamber inlet. Separating each perturbation in

acoustic and entropy contributions, general expressions in

cylindrical coordinates can be deduced, obtaining a superpo-

sition of axial, azimuthal and radial waves. Since the premix-

ers have small radii, only axial waves are assumed to propa-

gate through them. The contribution of entropy is accounted

for, so that the LOM is coherent with the integral principles

proposed in [13]:

∫
Ω
(

T ′q′

T̄
−

p̄

Rcp

S′v′ ·∇S̄)dV >
✟
✟
✟
✟
✟

∫
Σ

p′v′ ·dA,

where the net flux of acoustic energy lost through the bound-

ary Σ of the system can be neglected. This hypothesis is con-

firmed by experience and it is conservative since it assumes

the worst possible condition. Furthermore, numerical results

confirm that the entropy-related term in the equation above is

not negligible and potentially much larger than the acoustic

contribution [13].

The final form of axially-propagating disturbances in the

premixers is [5]:

p′ =
(

A+ eik+x +A− eik−x
)

eiωt ,

ρ′ =
1

c2

(

A+ eik+x +A− eik−x −Ae eik0x
)

eiωt ,

u′ = −
1

ρ

(

k+

α+
A+ eik+x +

k−

α−
A− eik−x

)

eiωt ,

T ′ =
1

cpρ

[

(

A+ eik+x +A− eik−x
)

+
1

γ− 1
Ae eik0x

]

eiωt ,

(2)

with



















k± =
Mω∓|ω2|

c(1−M2)
,

k0 =−
ω

u
,

α± = ω+ uk±.

In the plenum and combustion chamber, to account for the

possible asymmetry of the geometry (for example when a

few CBO’s are present), the perturbation is a combination of

Nn = Nb (even) azimuthal modes:

p′ =
Nn/2

∑
n=−Nn/2+1

(

A±
n eik±x

)

Bn,m(r)Ω,

ρ′ =
Nn/2

∑
n=−Nn/2+1

1

c2

[(

A±
n eik±x

)

Bn,m(r) −Ae
n eik0x E(r)

]

Ω,

u′ =
Nn/2

∑
n=−Nn/2+1

−
1

ρ

(

k±

α±
A±

n eik±x

)

Bn,m(r)Ω,

v′ =
Nn/2

∑
n=−Nn/2+1

i

ρ

(

1

α±
A±

n eik±x

)

dBn,m(r)

dr
Ω,

w′ =
Nn/2

∑
n=−Nn/2+1

−
n

rρ

(

1

α±
A±

n eik±x

)

Bn,m(r)Ω,

T ′ =
Nn/2

∑
n=−Nn/2+1

1

cpρ

[

(

A±
n eik±x

)

Bn,m(r)+
E(r)

γ− 1
Ae

n eik0x

]

Ω,

(3)

where







































k± = k±n,m =
Mω∓

√

ω2 −χ2
n,mc2(1−M2)

c(1−M2)
,

k0 =−
ω

u
,

α± = α±
n,m = ω+ uk±n,m,

A±
n eik±x = A+

n eik+x +A−
n eik−x,

Ω = eiωt+inθ,

with n and m the azimuthal and radial wave num-

bers, respectively. In the most general case χn,m is the

(m + 1)th solution of dYn
dr

(χn,mR j,outer)
dJn
dr

(χn,mR j,inner) −
dJn
dr

(χn,mR j,outer)
dYn
dr

(χn,mR j,inner) = 0, in the annular ducts,

with Jn and Yn the Bessel functions of the first and second

kind, respectively. The function E(r) is arbitrary and

Bn,m(r) =
dYn

dr
(χn,mR j,outer)Jn(χn,mr)

−
dJn

dr
(χn,mR j,outer)Yn(χn,mr) (4)

in both the annular ducts.

2.2.1 Mass flux conservation equations

As the perturbation in the plenum depends on both θ and

r, the local mass flux conservation equation at each burner

inlet becomes1

∫ R1outer

R1inner

∫ θi +πβ

θi −πβ
(ρ1u1)

′
rdrdθ =

(

ṁi
2

)′
, (5)

1R j,inner = R j −d j/2 and R j,outer = R j +d j/2



for 1 ≤ i ≤ Nb, at x = L1, and at each burner outlet:

∫ R3

0

∫ θi +πβ

θi −πβ
(ρ3u3)

′
rdrdθ =

(

ṁi
2

)′
, (6)

for 1 ≤ i ≤ Nb, at x = L1 +L2.

2.2.2 Energy conservation equations

As for the mass flux, a disturbance energy conservation

equation at each burner inlet is written locally:

∫ R1outer

R1inner

∫ θi +πβ

θi −πβ
(ρ1u1H1)

′
rdrdθ =

(

ṁi
2H i

2

)′
, (7)

for 1 ≤ i ≤ Nb, at x = L1, and at each burner outlet:

∫ R3

0

∫ θi +πβ

θi −πβ
(ρ3u3H3)

′
rdrdθ =

(

ṁi
2H i

2

)′
+βS3

(

Qi
)′
,

(8)

with 1 ≤ i ≤ Nb, at x = L1 +L2.

2.2.3 Isentropic conditions

A linearised isentropic condition applies at each burner

inlet:

(

p1/pi
2

)′
=
(

(

ρ1/ρi
2

)γ
)′
, 1 ≤ i ≤ Nb, (9)

at x = L1 + L2, θ = θi, r = (R1inner +R1outer)/2. Should a

grid be present, the corresponding condition on disturbances

can be easily ascertained from the second formula in section

2.1.1.

2.2.4 ”Borda” equations

The Borda-like equations used at the burners outlet are

the linearized forms of those used for the mean flow, i.e.:

(

ṁi
2ui

2

)′
+βS3 p′2 =

∫ R3

0

∫ θi +πβ

θi −πβ

[

(

ρ3u2
3

)′
+ p′3

]

rdrdθ,

1 ≤ i ≤ Nb,

(10)

at x = L1 +L2.

2.2.5 Inlet/outlet conditions

Whichever boundary condition is used, it is verified in-

dependently by each mode and thus 2Nn inlet conditions

and Nn outlet conditions are needed. Once the acoustic

impedance ζ = p′/u′ is defined, the boundary conditions can

either prescribe a specific value of ζ (for example ζ = 0 at

an open end or ζ → ∞ at a solid wall), or specify, for exam-

ple, that the given outflow boundary is choked, in which case

ρ′/ρ̄+ 2u′/ū− γp′/ p̄ = 0 [14], correct to first order even in

the presence of circumferentially-varying waves [15]. At the

inlet a further relation must be provided. A condition impos-

ing the absence of entropy waves at the compressor outlet [2]

is:

p′

p̄
−

ρ′

ρ̄
+(γ− 1)M1

u′

ū
= 0. (11)

2.2.6 Other boundary conditions

The missing conditions for the azimuthal and radial

waves are those of periodicity v′(θ) = v′(θ + 2π) plus the

enforcement of w′ = 0 at the radial boundaries of the main

ducts r = Rinner and r = Router.

2.2.7 Flame transfer function

To close the problem, a model able to represent the un-

steady heat release mechanism for each burner is required,

often in the form of a flame transfer function, such as:

Q′

Q̄
= ∑

i

G′
i

Ḡi

Fi(ω)

where Gi is a thermodynamic variable involved in the com-

bustion process and Q is the rate of heat release per unit area.

A discussion on this is postponed until section 5. The heat

release is confined in a thin sheet at the combustion chamber

inlet, hence no spatial dependence of Q′ is expected,

Q′ (t) = Q̂eiωt , (12)

with Q̂ an amplitude coefficient.

2.2.8 Explicit form of the mass flux conservation equa-

tion

In order to show the contribution of the radially depen-

dent terms, the mass flux conservation equations are explic-

itly written as an example. Using equations (2) and (3), the

mass flux conservation equations (5) and (6) become

∑
n

Iin

[

ϒ+
n,mKnmA+

n +ϒ−
n,mKnmA−

n −
ud

c2
d

Ke
nmAe

n

]

= A2

[

ϒ+
2 A+

2 +ϒ−
2 A−

2 −
u2

c2
2

Ae
2

]

,

1 ≤ i ≤ Nb,

at x = Ld , where d = 1 refers to the plenum and d = 3 to

the chamber, using L1 = L1 and L2 = L1 +L2, and

ϒ±
n,m =

(

ud

c2
d

−
k±n,m

α±
n,m

)

, ϒ±
2 =

(

u2

c2
2

−
k±2

α±
2

)

.



The azimuthal dependence is reduced to the integral:

Iin =

∫ θi +πβ

θi −πβ
einθdθ =











2

n
einθi

sin(nβπ), n 6= 0

2βπ, n = 0

,

1 ≤ i ≤ Nb,

and the radial contribution is included in terms Knm for

acoustic waves and Ke
nm for entropy waves. The integral Knm

is

Knm =

∫ Router

Rinner

Bn,m(r)rdr,

where Bn,m is defined by equation (4) and (Rinner,Router) is

equal to (R1i,R1o) for the plenum and (0,R3) for the combus-

tion chamber. The integral Ke
nm is defined as

Ke
nm = Ke =

∫ Router

Rinner

E(r)rdr,

in which the arbitrary function E(r) is fixed to unity in both

the plenum and the chamber. Setting E(r) does not influence

the solution of the system; however, it affects the resulting

mode shapes since it defines the ratio between the amplitudes

of acoustic and entropy waves.

2.2.9 The final matrix of the system

Combining equations (2-12), choosing the proper

boundary conditions and setting the flame transfer function,

a well posed linear problem is obtained:

[M(ω)] ·















A+
n

A−
n

Ae
n

Q̂















= 0; (13)

this homogeneous system of equations has a non-trivial solu-

tion when det[M] = 0. The problem is to obtain the complex

values of ω = ωr + iωi that render the determinant equal to

zero, and this is accomplished by a quick graphical approach

by looking at the points of intersection of isolines of zero real

part and zero imaginary part of the determinant. Henceforth,

f = ωr/2π represents the frequency of the mode of oscilla-

tion, and GR = −ωi defines whether the mode is unstable

or not. A positive value of the growth rate GR means that

an unstable mode exists which might bring the whole system

out of equilibrium towards a new state characterized by limit

cycle oscillations.

3 Calibration of the system for acoustic modes

The LOM is based on a lumped approach and a direct

link with a more realistic configuration must be found. In

the first stage of the analysis the main parameters to be cal-

ibrated are geometrical. Length, radius and thickness of the

LOM ducts cannot be set in a straightforward way, when ex-

amining the full three-dimensional model; it has thus been

decided that all geometrical parameters in the LOM, such as

the length of a duct or its mean radius, must match acous-

tically corresponding values in the real geometry. A cali-

bration against a three-dimensional finite element acoustic

simulation (3DFEA), able to catch all the stable or unstable

resonant modes, is thus required. The aim here is to provide

guidelines on the choice of the geometrical parameters when

reference results are not available.

As a rule of thumb, the larger the dimension, the smaller

the frequency of the waves established in a duct. Since

humming arises at relatively low frequencies, the dangerous

waves are presumably those (standing or travelling) in the

longer ducts, i.e. the plenum and the combustion chamber.

The waves in the premixers are axial and are detected only

for frequencies larger than the potentially dangerous ones.

Therefore, the plenum and the combustion chamber will be

hereinafter referred to as the main ducts. In the annular con-

figuration of the combustion chamber there are eight param-

eters to be set2 and, at first glance, only an automatic opti-

mization procedure seems to be able to provide a solution to

this problem. While it would be an interesting challenge to

create an automatic tool to simultaneously match all lengths,

frequencies and mode types, between the LOM and the three-

dimensional acoustic tool, it is possible to converge rapidly

with the iterative approach outlined below.

To start with, the effect of the flame and the transport

of gas through the system are discarded, and the approach

aims at matching LOM with 3DFEA results on the hypothe-

sis that the mean flow velocity ū in each duct and the flame

disturbance Q′ vanish. In this calibration phase the presence

of CBO’s is not considered; the geometry is thus axisymmet-

ric and each azimuthal mode appears as a double solution in

the complex ω plane. In this phase, searching for conditions

which guarantee acoustic equivalence between the 3DFEA

and the LOM is carried out for the parameters summarized

in table 1. For simplicity, solid wall boundary conditions are

imposed at the beginning and at the end of the main ducts in

both the LOM and the 3DFEA configurations; for the latter

case results are available [16, 17].

A preliminary low order simulation is needed in order

to step in the algorithm displayed in the flowchart 2. Such

a simulation should be carried out with tentative geometrical

values chosen on the basis of experience and common sense.

Once the first step is carried out a first comparison between

the results is possible. Since coupling among modes does

not arise, pure tones are easily recognizable with either ap-

proach; for instance, a n=2 mode in the combustion chamber,

or a n=4 mode in the plenum, can be identified immediately,

since the azimuthal wave-number n represents the number of

peaks or valleys (maxima or minima) in the distribution of p′

2Length L1, mean radius R1 and thickness d1 of the plenum; length L3,

mean radius R3 and thickness d3 of the combustion chamber, plus length L2

and cross sectional area A2 of the premixing ducts.



Table 1. Input parameters for the calibration phase

Inlet temperature 683K

Inlet pressure 16bar

Flame temperature 1736K

Mass flow rate 0

Boundary conditions u′ = 0

No flame perturbations Q′ = 0

Choose a set 

of similar 

eigenmodes

LOM 

Preliminary 

Simulation

Fig. 2. Flowchart describing the steps needed for the calibration al-

gorithm: preliminary simulations, parametric investigations and final

definition of the geometry.

along the circumference. In case axisymmetry were broken

(by the CBO’s, for example) it would be more difficult – al-

though not impossible - to match specific modes between the

LOM and the 3DFEA results.

The finite element approach provides 16 eigenvalues

with frequencies up to about 0.2kHz [17]. Some of these

modes correspond to disturbances confined in the inner/outer

part of the plenum in figure 1 (in grey), so that it would be

unreasonable to expect to be able to capture them with the

LOM. All the important modes, however, should be captured

by our model.

The procedure adopted to calibrate the geometrical val-

ues in the LOM is sketched in figure 2. After the first simu-

lation four acoustic modes with the lowest possible frequen-

cies are chosen: two axial and two azimuthal. The two axial

modes must be established in either the plenum, the combus-

tion chamber, or in both ducts. Through the choice of axial

waveforms the ducts’ lengths are calibrated. For the calibra-

tion of the radii the two azimuthal modes, which should also

be established in either the plenum, the combustion chamber,

or in both ducts, are focused upon. Finally, via conservation

of mass, it is easy to specify the ducts’ thicknesses. It is im-

portant to point out that the combustion chamber radius, Rcc,

is sufficiently independent of the other geometrical parame-

ters for its calibration to be carried out individually. In other

words, the first thing to do is – by focusing on the azimuthal

mode established in the combustion chamber – vary R3 until

the frequency found by the LOM for that particular azimuthal

function corresponds to the frequency of the same waveform

in the 3DFEA. The procedure for R1 is then repeated until the

corresponding azimuthal modes are matched. At this point,

one of the two axial modes should be focused upon, say that

which is concentrated (mainly or only) in the chamber, and

L3 is varied until the frequency of the axial mode is equal to

that of the corresponding acoustic mode in the 3DFEA. The

procedure to calibrate L1 is then repeated. In doing this, it is

found that the frequencies of the azimuthal modes calibrated

previously change but mildly. The final step of the iteration

is to set d1 and d3 so that the cross sectional areas of the

main ducts 2πR jd j, j = 1,3 are such that the imposed mass

flow rate is satisfied. The LOM is then run and the results

are compared to those of the 3DFEA. If the agreement is not

satisfactory the procedure starts over. With this algorithm

convergence is reached within the desired accuracy with a

handful of iterations (often as few as two or three).

In the absence of reference results to compare with, the

rules of thumb that have been found are summarized in table

2. The lengths (Rp, Rcc, Lp and Lcc) indicated in the table

shown in figure 3.

Table 2. Rules for defining the acoustic dimensions of the main

ducts of the LOM.

R1 ≈ 0.91Rp L1 ≈ 1.17Lp

R3 ≈ 0.91Rcc L3 ≈ 0.91Lcc

Only a limited influence on the relevant frequencies of

the acoustic dimensions of the premixing ducts has been

found. The distance between the fuel injection point and the

flame front appears in the definition of some FTF parameters,

indirectly affecting the stability.

A brief discussion of table 2 is in order: each acoustic

dimension turns out to be slightly shorter than the relative

real one, with the exception of the acoustic length L1 of the



Fig. 3. Sketch of the geometry with the reference lengths used in

defining the geometrical parameters of the LOM.

compressor diffuser, here called plenum. The radius of the

plenum R1 is comparable to the radial coordinate at which the

burners’ inlet is located. The radius of the combustion cham-

ber R3 is a measure of the actual radial position of the flame

front rather than the position of the burners’ outlet. In the

same manner the acoustic length of the combustion chamber

L3 approaches the distance between the flame front and the

turbine inlet. Concerning the acoustic length of the plenum,

L1, there is no simple relation between it and the path trav-

elled by a particle through it, or the path of an acoustic wave.

However, the exact definition of L1 is not crucial in the un-

derstanding of phenomena, such as the the humming effect,

which may occur in the burner.

At this stage the LOM geometry is well defined to match

the 3DFEA results describing the acoustic modes superim-

posed on a realistic mean flow. Once again, the importance

of the mean flow on the reliability of the results must be high-

lighted: its absence would deny the possibility to consider

entropy waves, whose importance has been largely demon-

strated (see e.g. [13]).

A comparison of the main results for the pressure mode

shapes obtained with both the LOM and the 3DFEA in the

absence of mean flow follows3. Despite the intrinsically dif-

ferent approaches, a very good agreement is obtained as far

as the frequencies of oscillation which can possibly yield

humming are concerned. All the acoustic modes obtained

with the two different tools are summarized in table 3; some

representative modes are shown for both the reference and

the LOM results in figures 4 to 11. In general, the compar-

ison is very satisfactory. For the sake of completeness, in

figures 12 and 13 the undetected modes 1 and 11 confined in

the inner part of the plenum are shown. Clearly such modes

cannot be caught by the LOM; furthermore, they are of minor

3Dimensionless eigenfrequencies are obtained by scaling all the re-

sults with the lowest frequency, among all the eigenmodes obtained by the

3DFEA approach, which finds a correspondence in the LOM results.

interest for the stability of the whole system.

(a) (b)

Fig. 4. Pressure mode shape for the 3rd mode n = 0, obtained at

unit dimensionless frequency with the 3DFEA code.

(a) (b)

Fig. 5. Pressure mode shape for the 3rd mode n = 0, obtained at

the frequency of 0.97 with the LOM.

(a) (b)

Fig. 6. Pressure mode shape for the 7th mode n = 0, obtained at

the frequency of 1.76 with the 3DFEA code.

4 A brief analysis on the effect of the mean flow

Many acoustic tools do not take into account the pres-

ence of a mean flow, and this is generally an accept-

able approximation when considering only acoustic modes.

Nonetheless, when combustion takes place the flame gener-

ates a streamwise pulsating hot spot, i.e. an entropy wave

propagating at the mean flow velocity. These entropy waves

could have higher amplitudes than ordinary acoustic waves

[13]. Taking into account the mean flow is necessary to

model entropy waves. The effect of the mean flow on the

LOM results can be assessed from figure 14; it is apparent



(a) (b)

Fig. 7. Pressure mode shape for the mode n = 0, obtained at the

frequency of 1.80 with the LOM.

(a) (b)

Fig. 8. Pressure mode shape for the 10th mode n = 3, obtained at

the frequency of 2.09 with the 3DFEA code.

(a) (b)

Fig. 9. Pressure mode shape for the mode n = 3, obtained at the

frequency of 2.11 with the LOM.

(a) (b)

Fig. 10. Pressure mode shape for the 13th mode n = 2, obtained

at the frequency of 2.68 with the 3DFEA code.

that while for most modes the mean flow provokes damping

of the mode, the frequency is but mildly affected, at least for

the configuration examined here.

It has to be added that the results shown in figure 14 con-

sider the possible presence of entropy waves in both cases. In

fact, the Mach number M of the mean flow in the so-called

zero-Mach case is not exactly zero, but equal to 5 · 10−3 for

(a) (b)

Fig. 11. Pressure mode shape for the mode n = 2, obtained at the

frequency of 2.65 with the LOM.

Table 3. List of eigenmodes obtained with the LOM and with the

3DFEA.

Mode 3DFEA LOM Mode 3DFEA LOM

1 0.73 - 9 2.08 2.08

2 0.83 - 10 2.09 2.11

3 1 0.97 11 2.29 -

4 1.22 0.77 12 2.61 -

5 1.46 1.46 13 2.68 2.65

6 1.61 1.45 14 2.72 2.77

7 1.76 1.80 15 2.80 2.72

8 2.08 2.12 16 2.86 -

(a) (b)

Fig. 12. Pressure mode shape for the axial mode, obtained at the

frequency of 0.73 with the 3DFEA code.

computational convenience. If the case M = 0 were com-

puted, a few modes, corresponding to hot spots, would dis-

appear.

5 The transfer function

Several transfer functions have been tested in low order

models based on different approaches [2, 10, 18, 19]. Two

classical transfer functions are:

Q′

Q̄
= κ

m′
2

m̄2
e−iωτ (14)



(a) (b)

Fig. 13. Mode shape for the mode obtained at 2.29 with the 3DFEA

code.
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Fig. 14. o: zero-Mach simulation (in reality M = 0.005). +: sim-

ulation with the real Mach number of a flow evolving in a gas turbine

burning system M = 0.15. FTF chosen: equation (15). κ = 1,

τ = 7ms.

Q′

Q̄
= κ

u′2
ū2

e−iωτ (15)

The crucial weakness of these approaches is the evalua-

tion of the unknown parameters κ− τ. A new transfer func-

tion based on empirical data has been developed based on

first principles and is hereinafter described.

5.1 Derivation of a new model

It is important to stress a consequence of the lumped ap-

proximation: the flame is located at the interface between

the end of the premixers and the combustion chamber inlet

as shown in figure 15(a). Comparing this model with real-

ity, it is straightforwardly deduced what the LOM’s premixer

duct are modelling: the volume of flow exiting the real pre-

mixer does not immediately burn when entering the combus-

tion chamber but it takes a short time to reach ignition thank

to the recirculating flow in the inner and in the outer part of

the lobed flame. In the LOM the value at the flame front are

already available and the premixer in figure 15(a) represents

the entire cyan-colored volume in figure 15(b).

The heat release per unit of area Q is:

Q =
ṁF Hi

A f lame

, (16)

where ṁF is the fuel mass flow rate, A f lame is the flame

(a)

(b)

Fig. 15. (a): LOMTI’s model. (b): realistic configuration. In cyan (2)

the premixer is shown , in green (3) the combustion chamber, in red

the flame front at their interface. The plenum is not represented in

figure (b).

bounding area and Hi is the lower heat of combustion. Since

in the lumped approximation the flame is actually located

at the combustion chamber interfaces with each burner, and

the thermodynamic variables of the combustion chamber are

tuned in order to match the empirical flame temperature,

A f lame is assumed equal to A3 = 2πR3d3 at the combustion

chamber inlet section. This is a strong hypothesis which does

not adhere to the effective flame shape; a multiplicative fac-

tor could be introduced to mitigate the effect of this assump-

tion. Imposing

ṁ f lame = ṁair + ṁF = ρ f lameu f lameAcc, (17)

and defining the air/fuel ratio α= ṁair/ṁF , an expression for

Q is deduced:

Q =
Hiρ f lameu f lame

α+ 1
. (18)

All quantities are evaluated at the combustion chamber in-

let where the flame is actually located in the present model.

Operating the usual decomposition and linearising:



Q′

Q̄
=

ρ′
f lame

ρ̄ f lame

+
u′f lame

ū f lame

−
α′

ᾱ+ 1
. (19)

Density and velocity are already present in the LOM. This is

not the case for the air/fuel ratio at the combustion chamber

inlet. The fluctuation of α is driven by the pressure fluc-

tuations at the fuel injectors that are located in the middle of

each diagonal swirler. Henceforth, the air/fuel ratio perturba-

tion at the flame is related to the pressure perturbation at the

orifice of each injector. This value should be phase-shifted

by the time the signal takes to travel from the injectors to

the flame: e−iωτ( f ). The pressure of the fuel supply ducts

can be assumed constant and independent from the pressure

perturbations of the air flow. Therefore, the air/fuel ratio at

the injectors is linked to the fuel and air pressures according

to Dalton’s law of partial pressures which, for fuel and air,

reads: ptotal = pF + pair, or yF = pF/ptotal where ptotal is

the mean pressure at the injector itself, i.e. the mean pres-

sure in each premixer duct (p2).

Since the thermal power produced by the flame is com-

pletely converted in enthalpy of the mixture (for a perfect

efficiency of the process), neglecting kinetic energy, it re-

sults ṁFHi ≃ ṁF(α + 1)cP(Tcc − Tpremixer). The methane

heat of combustion is approximately 50MJ/Kg and temper-

atures are known, so that a value α ≈ 35 is obtained. This

value confirms the chemical approach that imposes a lean

combustion where the equivalence ratio is set approximately

to φ ≃ 0.53. In this case Φ is defined as αST /α where, for

the representative reaction:

CxHy +(x+
y

4
)(O2 +

79

21
N2)→

xCO2 +
y

2
H2O+(x+

y

4
)

79

21
N2,

a stoichiometric air/fuel ratio like

αST =
(

x+
y

4

) 100

21

PMair

PMCxHy

,

results. For the combustion of methane in air αST ≃ 17.167,

thus

α =
ṁair

ṁF

=
αST

Φ
=

17.167

0.53
≃ 32.

Knowing α, it is possible to define the value of pF that is

considered unaffected by any fluctuation. Replacing values

with their mean quantities:

α =
ṁair

ṁF

=
nair

nF

PMair

PMF

=
pair

pF

PMair

PMF

=

ptotal − pF

pF

PMair

PMF

=

(

p2

pF

− 1

)

PMair

PMF

.

Imposing χ = PMair/PMF = 1.8025 for methane4, the ex-

pression

pF = p̄2
χ

χ+ ᾱ

results which shows that the partial pressure of the fuel is

about 20 times smaller than the mean pressure of the air in

the premixers. To relate pressure fluctuations at the injector

to the air/fuel ratio fluctuations, using

α =

(

p2

pF

− 1

)

χ,

after the usual decomposition it follows

α′ = (χ+ ᾱ)
p′in j

p̄2
, (20)

where the subscript inj denotes the injection point.

It is possible to briefly discuss on the physical mean-

ing of equation (20) arguing that a positive value for p′, i.e.

a pressure increase of the mixture in the premixer, yields a

small fuel mass flow rate ensuring an increased air/fuel ra-

tio, i.e. a positive value for α′. The value of α′ already

obtained reaches the flame, i.e. the combustion chamber in-

let in the LOM, after a convective time delay represented by

e−iωτ. The final expression for the proposed transfer function

is then:

Q′

Q̄
=

ρ′
f lame

ρ̄3
+

u′f lame

ū3
−

ᾱ+χ

ᾱ+ 1
·

p′in j

p̄2
e−iωτ. (21)

It is remarkable the fact that (ᾱ + χ)/(ᾱ + 1) is approx-

imately equal to one in the case of lean combustion of

methane and air. This term takes the place of the unknown

parameter κ in equations (14) and (15). Although there is

now a known multiplying factor, the presence of the time de-

lay τ appears – so far – to be unavoidable.

The weakness of the present flame model is that of con-

sidering a flat region of heat release confined in a thin sheet at

4PMair = 0.21PMO2
+ 0.79PMN2

= 0.21 · 32Kg ·mol−1 + 0.79 · 28Kg ·
mol−1 = 28.84Kg · mol−1, PMF = PMCH4

= 1 · 12Kg · mol−1 + 4 · 1Kg ·
mol−1 = 16Kg ·mol−1



the premixers/combustion chamber interface. This is a com-

mon assumption in LOM. An alternative volumetric flame

approach has been proposed in [10]. The additional hypoth-

esis made is that of considering the fuel pressure independent

from the unsteady flow field at the injectors. This is probably

an acceptable approximation, considering the mechanism of

fuel supply that consists in a rotating valve modulating the

mass flow rate of fuel injected in the diagonal swirlers.

6 Results for a realistic turbine

A simulation on a realistic configuration can now be car-

ried out, taking into account the mean flow and the presence

of 20 adjacent CBO’s. Since axisymmetry is theoretically

disrupted by the presence of the CBO’s, eigenmodes can no

longer be easily recognizable as pure modes of oscillation.

Actually, the CBO’s do not have a crucial influence on ax-

isymmetry; the annular layout of the chambers prevails and

quasi-pure eigenmodes are often recognizable.

In the literature, the specific heats Cp and Cv are generally

approximated as independent from temperature. The specific

heat ratio γ appears both in the mean flow computations and

in the disturbance equations, when the speed of sound has to

be evaluated in each duct j, as cs j =
√

γRTj. From polyno-

mial approximation of experimental data an expression for

γ as function of the temperature T (pressure dependence is

negligible) [20] can be deduced. Thus γ is not constant in

the present computations, and an expression γ j = f (Tj) is

adopted in each duct [21]. As γ goes from 1.4 to 1.3 as the

temperature increases, a variation of cs like 1−
√

1.3/1.4 is

expected. The variation in the speed of sound affects eigen-

modes, since acoustic perturbations will be slower in ducts

with higher temperature (such as the combustion chamber).

6.1 Low frequency results: axial and span-wise modes

In figure 16 results for the transfer function (21) are

shown. Only two unstable eigenmodes are found at dimen-

sionless frequency equal to 1.47 and 2.71 (shown in figure

17). Importantly, they are only mildly affected by variations

in τ.

The weak dependence on τ can be explained analysing the

pressure mode shape in each premixer: p′ does not vary sig-

nificantly along the ducts, hence a reference point located

in the middle of the duct experiences very similar pressure

oscillations if compared to another one at any other location.

It is remarkable the fact that only two unstable modes

arise, as also indicated by the experimental results avail-

able [19]. Furthermore, the two frequencies observed and

measured are very close to the unstable frequencies com-

puted in the LOM.

The weak effect of τ suggests that p′2 has a lower influ-

ence than ṁ′
3, i.e. even if pressure perturbations at the injec-

tors modify the equivalence ratio of the mixture, the heat re-

lease at the flame is primarily influenced by the overall mass
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Fig. 16. Results for Lin j =
1
2
Lpremixer , where Lin j means the lo-

cation inside the premixers where the pressure perturbation pin j is

calculated. A configuration with 20 CBO’s is chosen. The acoustic

boundary conditions are u′ = 0. τnocbo is the value of the time de-

lay in the burners without CBO’s. The value of τ in the burners with

CBO’s has been set as τcbo = τnocbo +L2b/ū2b.

(a) (b)

Fig. 17. Pressure mode shape for the two unstable eigenmodes

with 1.47+ i70s−1 and 2.71+ i23s−1, respectively.

flow rate of the fuel reaching the flame front. The resulting

simplified transfer function is:

Q′

Q̄
=

ρ′
f lame

ρ̄3
+

u′f lame

ū3
, (22)

and corresponding results are shown in figure 18. The unsta-

ble modes are only slightly influenced by this simplification.

These results confirm the hypothesis just outlined, provid-

ing also the important conclusion that the time delay τ is not

needed.

6.2 High frequency results: radial modes

As detailed in [2], modes with radial wave number m

propagate in duct j only for frequencies higher than

fc =
cs j

2π
λm,n

√

1−M2
j

where cs j and M j are respectively the speed of sound and

the Mach number in the duct j and λm,n is obtained from
dJn
dr

(λm,nR) = 0. These cut-off frequencies are given in table

6.2.
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Fig. 18. Comparison between results for τ = 4ms (o) in figure 16

and the simplified transfer function (22) (+).

n plenum chamber

0 8.37 15.65

±1 8.40 15.69

±2 8.48 15.82

Table 4. Cut-off frequencies as function of the azimuthal wave num-

ber n for radial mode m = 1

Results for m > 0 confirm the damping phenomenon of

the duct. For example in figures 19 to 21 the lowest frequen-

cies of oscillation in the plenum for n = 0,1,2 and m = 1

are shown. From [22] it is known that radial modal coupling

could be neglected since it is numerically found that, while

each individual resonant frequency is slightly influenced by

the other modes, the overall trends are but mildly affected:

the envelops of solutions, and hence the most unstable fre-

quencies, are essentially unaltered.

Fig. 19. Mode shape for m = 1 and n = 0 at frequency of 8.39,

GR = 1.7s−1

It is remarkable the fact that the frequencies of all these

modes are slightly larger than the relative cut-off frequency.

This is very comfortable since it implies that they can be

safely disregarded. On the other hand, it is important to be

able to account for them, since they might be related to a

phenomenon known as screech. While the screech is not im-

Fig. 20. Mode shape for m = 1 and n = 1 at frequency of 8.41,

GR = 1.75s−1

Fig. 21. Mode shape for m = 1 and n = 2 at frequency of 8.50,

GR = 1.8s−1

portant in annular combustion chambers it assumes relevance

when cylindrical chambers are considered.

7 Conclusions

A low order model able to represent a network of annu-

lar and cylindrical ducts has been developed. This tool, based

on the convective inhomogeneous wave equation, is able to

take into account a mean flow evolving in the system as well

as to model the presence of entropy waves generated by the

flame. Furthermore it can easily include a vorticity term

(not shown here). The lumped geometry has been calibrated

against a finite element simulation by matching the acoustic

modes obtained without mean flow and heat release fluctu-

ations. The description of the calibration represents one of

the achievements of the present work. The good agreement

between the LOM and the 3DFEA, considering the modes

suspected to yield humming, allows to recommend the fur-

ther development of this model as a predictive tool capable

to quickly perform those parametric studies needed in the

preliminary design phase of gas-turbine burners.

It has been shown that the effect of the mean flow is

important, but not critical when looking at the general be-

haviour. In order to find out whether a mode can become un-

stable, convective terms must be included. Furthermore the

LOM requires the presence of a mean flow if there is the need

to consider the entropy waves evolving in a non-isentropic

field [13]. As a side benefit, the presence of a non-zero mean

flow accelerates convergence of the numerical calculations.



A well-known transfer function has initially been used to

model the flame response and the critical influence of the un-

known parameters has been pointed out. Then, a new model

for the flame response, coherent with the lumped approxima-

tion, has been proposed. This model still considers a steady

thin flat flame located at the junction of each premixer duct

with the combustion chamber, but the heat release fluctua-

tions is deduced from well known laws. With the new model

proposed here, the effect of the time lag τ on the eigenmodes

is virtually absent, at least for the configuration examined,

and this opens interesting perspectives for the development

of new flame transfer functions based on the principles out-

lined here.

When looking at radial modes the LOM results confirm

that screech is not critical in annular combustion chambers,

whenever the azimuthal dimensions prevail over the axial

ones. Nonetheless, such a phenomenon assumes a signifi-

cant role when dealing with cylindrical combustion cham-

bers where the mean thickness is no longer negligible when

compared to the mean radius.
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