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A B S T R A C T

The fully developed, steady, incompressible, laminar flow in a channel delimited by rough and/or permeable
walls is considered. The influence of the micro-structured bounding surfaces on the channel flow behavior
is mimicked by imposing high-order effective boundary conditions which stem from homogenization theory
and do not contain empirical parameters. A closed-form solution of the Navier–Stokes equations is found for
the flow in the channel, with conditions at each virtual boundary linking the slip velocities to shear stress
and streamwise pressure gradient. The boundary condition for the longitudinal velocity coincides with a little-
noticed extension of the so-called Beavers-Joseph condition, first derived by Saffman (1971); it applies to
both permeable and rough surfaces, including the case of separated flow (Couette-Poiseuille motion with
adverse pressure gradient). The analytical solution obtained for the velocity distribution in the channel is
validated against full feature-resolving simulations of the flow for either highly ordered or random textures,
highlighting the accuracy and the applicability range of the model. The Stokes-based model used to identify
slip and interface permeability coefficients in the effective boundary conditions is found to be reliable and
accurate up to 𝜖𝑅𝑒𝜏 ≈ 10, with 𝜖 ratio of microscopic to macroscopic length scales and 𝑅𝑒𝜏 the shear-velocity
Reynolds number. Above this threshold, the coefficients must account for advective effects: a new upscaling
procedure, based on an Oseen’s approximation, is thus proposed and validated, extending considerably beyond
the Stokes regime.
1. Introduction

The low-Reynolds-number motion of an incompressible fluid in a
plane channel bounded by a porous wall which borders the duct in
𝑦̂ = 0 has been a classical problem since the seminal experimental
work by Beavers & Joseph [1]. They observed that the flow rate in the
channel was larger in the presence of the porous layer than with a no-
slip wall and hypothesized that the fluid could slip at some Stokes–Darcy
interface with velocity
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|

|

|

|𝑦̂→0+
+ ̂

𝜇
, (1)

with the second term on the r.h.s. of Eq. (1) corresponding to Darcy’s
velocity; ̂ is a scalar measure of the permeability of the porous
medium in its bulk, 𝜇 is the dynamic viscosity, and  = |𝜕𝑝̂∕𝜕𝑥̂|
denotes the magnitude of the macroscopic, streamwise pressure gra-
dient. The dimensionless constant 𝛼 was later observed to depend on
the properties and the geometry of the permeable material near the
dividing surface, on the local direction of the flow, on the Reynolds
number and on the possible presence of structural non-uniformities
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at the surface of the porous medium, where the porosity is locally
larger [2,3]. Such non-uniformities are hardly avoidable in practice
since solid inclusions cannot pack as tightly near the porous/free-fluid
interface as they do in the bulk of the porous medium [4].

Saffman [5] gave a theoretical justification of the empirical con-
dition by Beavers & Joseph [1] by first applying ensemble averaging
to the Stokes equation across the porous/free-fluid domain and then
performing asymptotic matching at the two edges of the interface
layer. A closer look at Saffman’s development reveals that, upon re-
taining terms up to second order in the small parameter

√

̂, the
slip velocity is the same as in Eq. (1) except for Darcy’s term, which
was found to be corrected by an order one dimensionless factor 𝐵,
to become (𝐵̂∕𝜇). The literature is rich of studies that sought to
revisit/extend/generalize the Beavers-Joseph-Saffman (BJS) condition
and/or investigate its limitations and deficiencies, e.g. Refs. [6–11].

Some of the papers that followed the works by Beavers, Joseph
and Saffman used upscaling theories to close the problem and identify
the constant 𝛼 (and, rarely, also 𝐵). Among the major contributors,
extensively cited in the recent review by Bottaro [12], we count Mikelić
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and colleagues (using asymptotic homogenization) and Whitaker and
colleagues (using volume averaging). Recent papers are those by Lācis
& Bagheri [13], Lācis et al. [14], Sudhakar et al. [15], and Naqvi &
Bottaro [16], where homogenization theory was brought to second
order in terms of a small parameter, ratio of microscopic to macroscopic
length scales, for the BJS condition to read (for the channel flow case):

̂𝑠𝑙𝑖𝑝 = 𝜆̂ 𝜕𝑢̂
𝜕𝑦̂

|

|

|

|𝑦̂→0+
+ ̂𝑖𝑡𝑓

𝜇
; (2)

the coefficients 𝜆̂, a Navier slip length, and ̂𝑖𝑡𝑓 , the interface permeability,
are not simply proportional to

√

̂ and ̂, and can be found by solving
microscopic (auxiliary) problems in a representative unit cell, for any
regular microscopic pattern. It should be highlighted that: (i) the BJS
condition (2) is valid for both permeable and rough, impermeable
layers (in the latter case ̂ vanishes, whilst 𝜆̂ and ̂𝑖𝑡𝑓 do not); (ii)
omputed values of 𝜆̂ and ̂𝑖𝑡𝑓 are available in the literature for many

rough [14,15,17–19] and porous [14–16,20] wall microstructures; (iii)
the theory is not limited to the simple case of plane channels; several
examples with complex geometries are provided in the references given
above. In the general case, Eq. (2) must be coupled to a zero-net mass
flux condition for the wall-normal speed 𝑣̂ at the virtual interface [14].
Such transpiration becomes crucial when the flow is turbulent [12,14],
but is of no concern in the present fully developed flow setting, as
shown later.

In view of the aforementioned contributions, the authors believe
that a comprehensive investigation that addresses and systematically
pursues answers to the following critical questions regarding the bound-
ary condition (2) is still needed:

i. How versatile is it for different wall patterns/textures?
ii. How does it perform when the microscopic and macroscopic

length scales are comparable?
iii. Is accuracy enhanced when we advance in the order of the

asymptotic approximation?
iv. Is it accurate in the presence of near-wall backflow?
v. Is the condition still valid beyond the Stokes flow regime?

vi. Can it be further improved, in the presence of sizeable near-wall
advective effects, such that its applicability range is extended?

The purpose of this article is to highlight the extent of the validity
of the BJS condition (2) when rough and/or permeable layers, of
either isotropic or transversely isotropic microstructure in the (𝑥̂ − 𝑧̂)
plane, delimit the flow, including the case of positive pressure gra-
dient with flow separation; we further aim to show the effectiveness
of homogenization theory to evaluate the macroscopic coefficients, 𝜆̂
and ̂𝑖𝑡𝑓 , for a wide range of surface/substrate microstructures. The
goals above are accomplished by finding the analytical solutions of the
Navier–Stokes equation for the Poiseuille and the combined Couette-
Poiseuille problems in the channel, subject to slip boundary conditions,
and comparing them to numerical simulations of the flow in both the
channel and the porous/rough layer, with full resolution of the small-
scale flow features within the pores and/or the textured surface(s).
Moreover, a procedure is outlined to treat the case in which near-
wall advection becomes relevant, illustrating how slip and surface
permeability coefficients vary.

The basic homogenization approach is presented in Section 2 and
the macroscopic coefficients are evaluated for a collection of sur-
face patterns. In Section 3, the analytical solutions are derived and
validated. Finally, a novel version of the homogenization approach,
accounting for advection via an Oseen-based approach, is described and
its advantages over the Stokes-based model are thoroughly discussed.
Concluding remarks are provided in Section 4.

2. The homogenization model

2.1. Upscaling procedure and effective boundary conditions

The incompressible, isothermal, steady, laminar flow in a channel
of height 2𝐻 bounded from the bottom and the top sides (subscripts
270
𝑏 and 𝑡 respectively) by rough/permeable walls, i.e. at 𝑦̂𝑏 = 0 and
𝑦̂𝑡 = 0, is analyzed; cf. Fig. 1(𝑎). The dimensional mass and momentum
conservation equations governing the distribution of the velocity vector
(whose components are denoted as 𝑢̂1 = 𝑢̂, 𝑢̂2 = 𝑣̂, 𝑢̂3 = 𝑤̂) and the
modified pressure 𝑝̂ over space (𝑥̂1,𝑏(𝑡) = 𝑥̂𝑏(𝑡), 𝑥̂2,𝑏(𝑡) = 𝑦̂𝑏(𝑡), 𝑥̂3,𝑏(𝑡) = 𝑧̂𝑏(𝑡))
are
𝜕𝑢̂𝑖
𝜕𝑥̂𝑖

= 0, 𝜌𝑢̂𝑗
𝜕𝑢̂𝑖
𝜕𝑥̂𝑗

= −
𝜕𝑝̂
𝜕𝑥̂𝑖

+ 𝜇
𝜕2𝑢̂𝑖
𝜕𝑥̂2𝑗

, (3)

based on either of the two coordinate systems; 𝜌 is the fluid density
and 𝜇 is the dynamic viscosity. The channel flow is influenced by
the presence of the micro-structured boundaries where a complex,
generally three-dimensional interaction takes place as the fluid passes
near/within the surface corrugations. The presence of well-separated
length scales, i.e. the microscopic scales 𝓁𝑏 and 𝓁𝑡 characterizing the
ottom and top surfaces/substrates, respectively, and the macroscopic
ength scale (chosen here as 𝐻 , half the channel height), renders
he problem amenable to upscaling via the multiscale homogenization
pproach; effective boundary conditions of the velocity can be derived
t fictitious plane interfaces, next to the physical rough/porous bound-
ries, to mimic the effects of small surface inhomogeneities on the
acroscopic channel flow.

The homogenization approach adopted here proceeds along the
ame lines of Naqvi & Bottaro [16] and Ahmed et al. [20]. The whole
low domain is first decomposed into macroscopic and microscopic sub-
omains, and virtual matching interfaces (at 𝑦̂𝑏 = 𝑦̂∞,𝑏 and 𝑦̂𝑡 = 𝑦̂∞,𝑡; cf.
ig. 1(𝑏)) are defined where continuity of velocity and traction vectors
s applied. An asymptotic analysis is then conducted on the microscopic
roblems (bottom/top), which are accordingly reconstructed at differ-
nt orders of the small parameters 𝜖𝑏(𝑡) = 𝓁𝑏(𝑡)∕𝐻 . At each order, a
eneric solution of the problem considered is assumed, in which aux-
liary, newly introduced, purely microscopic variables appear; systems
f partial differential equations permit to numerically evaluate these
ariables (discussed in more detail in Section 2.2) and to define, via an
veraging procedure, the upscaled coefficients which enter directly the
ffective boundary conditions at the matching interface(s). In particu-
ar, it is convenient to eventually set 𝑦̂∞,𝑏(𝑡) to 0 and, hence, to evaluate
he macroscopic coefficients for matching interface(s) passing by the
ips/crests/outer rims of the ribs (or the first row of inclusions); cf.
ig. 1. The homogenized boundary conditions, valid up to second-order
n terms of 𝜖𝑏(𝑡), can be formally expressed in the following dimensional
orm:
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Second order

, (6)

evaluated at the boundary of interest (either 𝑦̂𝑏 = 0 or 𝑦̂𝑡 = 0).
An in-depth look at these expressions reveals that the no-slip bound-

ary conditions for the streamwise and the spanwise velocity compo-
nents (respectively, 𝑢̂ and 𝑤̂) are corrected at first order by the classical
Navier-slip conditions and at second order by the gradients of the
normal stress, while a transpiration velocity, 𝑣̂, at the fictitious wall in
𝑦̂𝑏(𝑡) = 0 appears only at second order. The dimensional groups of coef-
ficients, i.e. the Navier-slip lengths in the streamwise and the spanwise
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Fig. 1. Sketch of the hierarchical flow problem under analysis, with indication of the microscopic/macroscopic length scales. The domain decomposition is illustrated in panel (𝑏),
and doubly periodic elementary cells (periodicity here is in the 𝑥 and 𝑧 directions) of the top and bottom microscopic domains are shown in the right frame, with their dimensions
described in the dimensionless coordinates 𝑥𝑖,𝑏(𝑡).
directions (𝜆̂𝑥,𝑏(𝑡), 𝜆̂𝑧,𝑏(𝑡)), and the interface and intrinsic permeability
coefficients (̂𝑖𝑡𝑓

𝑥𝑦,𝑏(𝑡), ̂
𝑖𝑡𝑓
𝑧𝑦,𝑏(𝑡), ̂𝑦𝑦,𝑏(𝑡)) are homogeneous to, respectively,

a length and a surface area, and correspond to the product of their
dimensionless counterparts times, respectively, 𝑙𝑏(𝑡) and 𝑙2𝑏(𝑡), that is

𝜆̂𝑥 = 𝜆𝑥 𝑙, 𝜆̂𝑧 = 𝜆𝑧 𝑙, (7)

̂𝑖𝑡𝑓
𝑥𝑦 = 𝑖𝑡𝑓

𝑥𝑦 𝑙2, ̂𝑖𝑡𝑓
𝑧𝑦 = 𝑖𝑡𝑓

𝑧𝑦 𝑙2, ̂𝑦𝑦 = 𝑦𝑦 𝑙
2. (8)

The dimensionless macroscopic coefficients are dependent only on
the micro-structural details of the corresponding surface/substrate,
for instance the protrusion size-to-pitch ratio and the porosity1 (𝜃)
for, respectively, the rough surface and the permeable bed sketched
in Fig. 1. In other words, these coefficients are intrinsic to the ge-
ometric characteristics of the boundary and do not depend on the
Reynolds number; the effective boundary conditions up to second-
order accuracy in terms of 𝜖 requires considering the reconstructed
microscopic problems at (𝜖0) and (𝜖1) [20] where the inertial terms
are not yet present. For this reason, the closure problems required
to evaluate the model parameters are all Stokes-like (as presented in
Section 2.2). We anticipate at this stage that an alternative, modified
approach in which the upscaled coefficients are sensitive to near-wall
advection will be introduced in Section 3.2. Finally, it is noteworthy
that the effective boundary conditions (Eqs. (4)–(6)) were formulated
in Refs. [16,20] considering the simple case of a surface/substrate for
which the coordinates (𝑥̂, 𝑦̂, 𝑧̂) are the principal axes of the Navier-slip
tensor.

2.2. Evaluation of the macroscopic coefficients

In order to evaluate the dimensionless macroscopic coefficients for
different surface textures, the closure problems derived in Refs. [16,20]
are employed here, and the Stokes-based approach proposed for the
calculation of the model parameters is adopted. The closure problems
are solved over an elementary cell, representative of the microscopic
domain of interest, with the dimensions normalized by the microscopic
length scale 𝓁; the dimensionless coordinates 𝑥𝑖 = 𝑥̂𝑖∕𝓁 used to describe
the closure fields are shown in the right frame of Fig. 1.

1 The porosity 𝜃 of a permeable medium is defined as the ratio of the
volume occupied by the pores to the total volume of the medium.
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For the Navier-slip (𝜆𝑥, 𝜆𝑧) and interface permeability (𝑖𝑡𝑓
𝑥𝑦 , 𝑖𝑡𝑓

𝑧𝑦 )
coefficients, it is sufficient to solve two Stokes-like systems governing
the auxiliary variables (𝑢†11, 𝑢

†
21, 𝑢

†
31, 𝑝

†
1) and (𝑢†13, 𝑢

†
23, 𝑢

†
33, 𝑝

†
3), which

stem from the homogenization procedure, over the microscopic elemen-
tary cell, subject to periodicity of all the dependent variables in the 𝑥
and 𝑧 directions; the two systems are defined, respectively, as follows:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕𝑖𝑢
†
𝑖1 = 0,

−𝜕𝑖𝑝
†
1 + 𝜕2𝑘𝑢

†
𝑖1 = 0,

𝑢†𝑖1 = 0 at 𝛽𝜎 ,
−𝑝†1𝛿𝑖2 + 𝜕2𝑢

†
𝑖1 + 𝜕𝑖𝑢

†
21 = 𝛿𝑖1 at 𝑦 = 𝑦∞,

(9)

and

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕𝑖𝑢
†
𝑖3 = 0,

−𝜕𝑖𝑝
†
3 + 𝜕2𝑘𝑢

†
𝑖3 = 0,

𝑢†𝑖3 = 0 at 𝛽𝜎 ,
−𝑝†3𝛿𝑖2 + 𝜕2𝑢

†
𝑖3 + 𝜕𝑖𝑢

†
23 = 𝛿𝑖3 at 𝑦 = 𝑦∞,

(10)

with the operators 𝜕𝑖 = 𝜕
𝜕𝑥𝑖

and 𝜕2𝑖 = 𝜕2

𝜕𝑥2𝑖
, and 𝛿𝑖𝑗 the Kronecker

delta function. 𝛽𝜎 refers to the physical interface between the fluid
phase (𝛽) and the ribs/grains/solid walls (𝜎). Systems (9) and (10)
must be solved for a sufficiently large value of 𝑦∞ = 𝑦̂∞∕𝓁 so that
the microscopic fields are homogeneous in 𝑥 and 𝑧 near the matching
interface. Once the closure fields are available by performing simple
numerical simulations with 𝑦∞ set, for instance, to 5 (which is common
practice), the macroscopic coefficients for a matching interface of
particular interest at 𝑦∞ = 0 can be directly evaluated, without having
to rerun the simulations; they can be calculated as follows [16–18]:

𝜆𝑥 = 1
 ∫0

𝑢†11 𝑑𝐴, 𝜆𝑧 =
1
 ∫0

𝑢†33 𝑑𝐴, (11)

𝑖𝑡𝑓
𝑥𝑦 = 1

 ∫0
𝑢†11 𝑑𝑉 , 𝑖𝑡𝑓

𝑧𝑦 = 1
 ∫0

𝑢†33 𝑑𝑉 , (12)

where 0 and 0 are the virtual surface at and the fluid volume below
the plane 𝑦 = 0, respectively, and  is the area of an 𝑥−𝑧 cross section
of the elementary cell (if the surface texture has a fixed dimensional
pitch, 𝓁, in both 𝑥̂ and 𝑧̂, then  = 1 × 1).

For the medium permeability component 𝑦𝑦, a triply periodic unit
cell of the porous region is considered, and the following closure system
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Fig. 2. Graphical representation of the results in Table 1.
Table 1
Dependence of the macroscopic coefficients (Navier-slip, 𝜆𝑥, interface permeability,
𝑖𝑡𝑓

𝑥𝑦 , and medium permeability, 𝑥𝑥) on porosity, 𝜃, for substrates consisting of inline
(i) longitudinal, 𝑋-elongated cylinders (LC), (ii) transverse, 𝑍-elongated cylinders (TC),
and (iii) spheres (SP).

Porosity 𝜆𝑥 (×10−2) 𝑖𝑡𝑓
𝑥𝑦 (×10−2) 𝑥𝑥 (×10−2)

(𝜃) 𝐿𝐶 𝑇𝐶 SP 𝐿𝐶 𝑇𝐶 SP 𝐿𝐶 𝑇𝐶 SP

0.215 5.88 4.10 – 0.38 0.18 – 0.12 0 –
0.5 6.88 4.51 10.49 0.56 0.22 0.88 0.70 0.18 0.30
0.6 7.40 4.71 10.72 0.67 0.24 0.97 1.21 0.43 0.55
0.7 8.17 4.99 11.70 0.90 0.27 1.16 2.22 0.96 1.06
0.8 9.35 5.39 12.81 1.41 0.30 1.49 4.18 1.99 2.16
0.9 11.30 6.01 14.84 2.64 0.41 2.44 8.03 3.97 5.08

is solved over it, with the free index 𝑗 set to 2:

⎧

⎪

⎨

⎪

⎩

𝜕𝑖𝑢̆𝑖𝑗 = 0,
−𝜕𝑖𝑝̆𝑗 + 𝜕2𝑘 𝑢̆𝑖𝑗 = −𝛿𝑖𝑗 ,
𝑢̆𝑖𝑗 = 0 at 𝛽𝜎 ,

(13)

subject to periodicity of 𝑢̆𝑖𝑗 and 𝑝̆𝑗 in 𝑥, 𝑦 and 𝑧. The 𝑢̆22 field is then
superficially averaged over the volume of the unit cell to evaluate
the coefficient 𝑦𝑦. Should the medium permeability components 𝑥𝑥
or 𝑧𝑧 be needed (although they do not contribute to the effective
boundary conditions), system (13) is to be solved for 𝑗 equal to 1 or 3,
respectively, and the superficial averaging is to be applied considering,
respectively, 𝑢̆11 or 𝑢̆33. For the case of a corrugated, impermeable
boundary, it is clear that 𝑖𝑖 vanishes identically, while the interface
permeability coefficients do not.

Numerical values of the macroscopic coefficients entering the effec-
tive boundary conditions at the virtual interface for selected configura-
tions of porous or rough layers are listed, respectively, in Tables 1 and
2; their behaviors with variations in the porosity (𝜃) for the different
permeable beds and in the rib size-to-pitch ratio (𝑒∕𝓁) for the rough sur-
faces are correspondingly plotted in Figs. 2 and 3. The values reported
are either evaluated through this work (for spherical grains, longitudi-
nal/transverse ribs of semicircular cross sections, and cubic roughness
elements) or gathered from the literature (for streamwise/spanwise
cylinders [20] and ribs of square cross sections [18]). For the case
of longitudinal (respectively transverse) solid inclusions/ribs, values of
the coefficients 𝜆𝑧, 

𝑖𝑡𝑓
𝑧𝑦 and 𝑧𝑧 can be inferred, although they are not

explicitly given in the tables, since they are equal to 𝜆𝑥, 𝑖𝑡𝑓
𝑥𝑦 and 𝑥𝑥 of

the transverse (respectively longitudinal) case at the same value of 𝜃 or
𝑒∕𝓁. When the cylindrical inclusions are elongated in the spanwise (𝑧)
or in the streamwise (𝑥) direction, the medium permeability component
𝑦𝑦 is the same (for given porosity) and is equal to 𝑥𝑥 for the
case of transverse cylinders (which coincides with 𝑧𝑧 for longitudinal
ones). For isotropic patterns such as porous substrates made of ordered
spherical grains, it is clear that 𝜆𝑥 = 𝜆𝑧, 

𝑖𝑡𝑓
𝑥𝑦 = 𝑖𝑡𝑓

𝑧𝑦 , and 𝑥𝑥 = 𝑦𝑦 =
𝑧𝑧. Although the medium permeability component 𝑥𝑥 (and 𝑧𝑧) does
not contribute to the homogenized, effective boundary conditions, its
272
Table 2
Values of the macroscopic coefficients for surfaces roughened with (i) longitudinal
square ribs (LSQ), (ii) transverse square ribs (TSQ), (iii) longitudinal semicircular
elements (LSC), (iv) transverse semicircular elements (TSC), and (v) inline array of
cubic elements (CU), at different values of the rib height-to-pitch ratio, 𝑒∕𝓁.
𝑒∕𝓁 𝜆𝑥 (×10−2) 𝑖𝑡𝑓

𝑥𝑦 (×10−2)

𝐿𝑆𝑄 𝑇𝑆𝑄 𝐿𝑆𝐶 𝑇𝑆𝐶 𝐶𝑈 𝐿𝑆𝑄 𝑇𝑆𝑄 𝐿𝑆𝐶 𝑇𝑆𝐶 𝐶𝑈

0.05 4.22 3.67 4.22 3.79 4.90 0.10 0.09 0.10 0.09 0.12
0.10 6.95 5.06 6.96 5.50 9.09 0.34 0.23 0.32 0.24 0.45
0.15 8.40 5.09 8.42 5.86 12.02 0.60 0.30 0.56 0.33 0.87
0.20 8.86 4.57 8.90 5.65 13.29 0.82 0.29 0.72 0.34 1.26
0.25 8.61 3.98 8.72 5.33 13.34 0.96 0.23 0.79 0.31 1.49
0.30 7.92 3.46 8.17 5.02 12.46 1.00 0.17 0.76 0.28 1.57
0.40 6.02 2.59 6.88 4.53 9.50 0.86 0.08 0.55 0.22 1.28
0.50 4.16 1.78 5.88 4.10 6.47 0.58 0.04 0.38 0.18 0.83

values are presented for permeable beds in Table 1 to highlight the
difference with respect to the corresponding interface permeability 𝑖𝑡𝑓

𝑥𝑦
(also 𝑖𝑡𝑓

𝑧𝑦 ). For the rough walls considered, the macroscopic coefficients
of interest exhibit non-monotonic relationships with the rib size-to-
pitch ratio (Fig. 3), where they all peak within the range 0.1 ≲ 𝑒∕𝓁 ≲
0.3. This behavior is not unexpected, since the model coefficients vanish
for cubic or longitudinal/transverse square ribs as 𝑒∕𝓁 tends to 0 or 1,
when the smooth surface case is recovered.

3. The macroscale problem: case studies, validation and discus-
sion

3.1. Laminar poiseuille flow in rough/permeable channels

3.1.1. A generalized analytical solution
The problem of laminar, pressure-driven flow in a channel bounded

by stationary rough/permeable layers at 𝑦̂ < 0 and 𝑦̂ > 2𝐻 is studied
here in pursuit of a generalized analytical solution for the macroscopic
velocity profile across the free-fluid region (cf. Fig. 4).

First, we seek dimensionless expressions of the governing Eqs. (3)
pertinent to the macroscale problem. With  the magnitude of the
pressure gradient forcing the channel flow in the streamwise direction,
a bulk stress/pressure scale may be defined as 𝜏 = 𝐻 . The velocity
scale is chosen as 𝑢𝜏 =

√

𝜏∕𝜌, corresponding to a shear velocity. The
dimensionless macroscopic variables are introduced as follows:

𝑋𝑖 =
𝑥̂𝑖
𝐻

, 𝑈𝑖 =
𝑢̂𝑖
𝑢𝜏

, 𝑃 =
𝑝̂

𝐻
, (14)

for the normalized pressure gradient to become 𝜕𝑃∕𝜕𝑋 = −1. The
𝑋−𝑍 planform of the near-wall micro-patterns is assumed to be either
isotropic or elongated in the spanwise or streamwise direction; in this
case, there are no near-wall transverse velocity components [21] and
the fully developed flow is oriented only along 𝑋, i.e. 𝑈 = 𝑈 (𝑌 ) and
𝑉 = 𝑊 = 0. Substituting (14) into (3) we obtain the following dimen-
sionless conservation equation governing the macroscale behavior of
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Fig. 3. Graphical representation of the geometries and results in Table 2.
Fig. 4. Description of the generalized Poiseuille flow problem, with examples of the rough/permeable walls: (𝑎) sketch of the full problem in dimensional coordinates; (𝑏) sketch
of the homogenized problem in dimensionless macroscopic coordinates, with the governing equation and the effective boundary conditions explicitly indicated.
the flow:
𝜕2𝑈
𝜕𝑌 2

= −𝑅𝑒𝜏 , (15)

where 𝑅𝑒𝜏 =
𝜌𝑢𝜏𝐻
𝜇

corresponds to a shear-velocity Reynolds number.
A general solution of Eq. (15) is

𝑈 (𝑌 ) = 𝑅𝑒𝜏

[

−𝑌 2

2
+ (1 − 𝐴)𝑌 + 𝐵

]

, (16)

with 𝐴 and 𝐵 integration constants. Unlike the case of classical plane
Poiseuille flow, 𝐴 and 𝐵 do not vanish and can be found from applica-
tion of the effective boundary conditions which read:

𝑈𝑠𝑙𝑖𝑝,𝑏 = 𝑈 |

| = 𝜖𝑏 𝜆𝑏
𝜕𝑈 |

| + 𝜖2 𝑖𝑡𝑓 𝑅𝑒𝜏 , (17)
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|𝑌=0 𝜕𝑌 |

|𝑌=0
𝑏 𝑏
𝑈𝑠𝑙𝑖𝑝,𝑡 = 𝑈 |

|

|𝑌=2
= − 𝜖𝑡 𝜆𝑡

𝜕𝑈
𝜕𝑌

|

|

|

|𝑌=2
+ 𝜖2𝑡 

𝑖𝑡𝑓
𝑡 𝑅𝑒𝜏 . (18)

Notice that a single coordinate system has been used here, with 𝑋 = 𝑋𝑏
and likewise for 𝑌 and 𝑍. The constants 𝐴 and 𝐵 are found to be:

𝐴 =
𝛬𝑏 (1 + 𝜙𝑏) − 𝛬𝑡 (1 + 𝜙𝑡)

2 + 𝛬𝑏 + 𝛬𝑡
, 𝐵 = 𝛬𝑏

𝛬𝑡 (1 + 𝜙𝑡) + (2 + 𝛬𝑡)(1 + 𝜙𝑏)
2 + 𝛬𝑏 + 𝛬𝑡

,

(19)

with the definitions 𝛬𝑏(𝑡) = 𝜖𝑏(𝑡) 𝜆𝑏(𝑡) and 𝜙𝑏(𝑡) = 𝜖𝑏(𝑡)
𝑖𝑡𝑓

𝑏(𝑡)

𝜆𝑏(𝑡)
. The slip

velocities at the virtual interfaces are

𝑈 = 𝐵𝑅𝑒 , 𝑈 = (𝐵 − 2𝐴)𝑅𝑒 . (20)
𝑠𝑙𝑖𝑝,𝑏 𝜏 𝑠𝑙𝑖𝑝,𝑡 𝜏
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Eqs. (20) show that the slip speed at each boundary is sensitive to the
macroscopic coefficients of both walls. Eq. (16) can now be recast in
the following form:

𝑈 (𝑌 ) = −
𝑅𝑒𝜏
2

𝑌 2 +
(

𝑅𝑒𝜏 +
𝑈𝑠𝑙𝑖𝑝,𝑡 − 𝑈𝑠𝑙𝑖𝑝,𝑏

2

)

𝑌 + 𝑈𝑠𝑙𝑖𝑝,𝑏. (21)

he position 𝑌𝑚 where the speed is the largest, and the corresponding
alue of the velocity, 𝑈𝑚𝑎𝑥 = 𝑈 (𝑌 = 𝑌𝑚), are, respectively,

𝑚 = 1 +
𝑈𝑠𝑙𝑖𝑝,𝑡 − 𝑈𝑠𝑙𝑖𝑝,𝑏

2𝑅𝑒𝜏
, 𝑈𝑚𝑎𝑥 =

𝑅𝑒𝜏
2

(

1 +
𝑈𝑠𝑙𝑖𝑝,𝑡 − 𝑈𝑠𝑙𝑖𝑝,𝑏

2𝑅𝑒𝜏

)2

+ 𝑈𝑠𝑙𝑖𝑝,𝑏,

(22)

hich means that for the generalized Poiseuille flow the plane 𝑌 =
𝑚 shifts from the middle section (𝑌 = 1) towards the boundary of
arger slip, and the maximum velocity, 𝑈𝑚𝑎𝑥, is always larger than the
orresponding value in a smooth channel by

𝑈𝑚𝑎𝑥 =
𝑈𝑠𝑙𝑖𝑝,𝑡 + 𝑈𝑠𝑙𝑖𝑝,𝑏

2
+ 1

8𝑅𝑒𝜏

(

𝑈𝑠𝑙𝑖𝑝,𝑡 − 𝑈𝑠𝑙𝑖𝑝,𝑏
)2 . (23)

In addition, the bulk, channel-averaged velocity, 𝑈𝑐ℎ, deviates from the
value for a classical Poiseuille flow by an amount directly proportional
to the average of the two slip velocities; such a deviation and its
percentage can be expressed as follows:

𝛥𝑈𝑐ℎ =
𝑈𝑠𝑙𝑖𝑝,𝑏 + 𝑈𝑠𝑙𝑖𝑝,𝑡

2
, 𝛥𝑈𝑐ℎ% = 3

(𝑈𝑠𝑙𝑖𝑝,𝑏 + 𝑈𝑠𝑙𝑖𝑝,𝑡

2𝑅𝑒𝜏

)

× 100%. (24)

Finally, if the boundary conditions (17) and (18) were only first-order
accurate, all the relations derived would hold, except for setting 𝜙𝑏 and
𝑡 to 0 in (19).

.1.2. Sample validation
Focus shifts now on validating the analytical solution, assessing its

pplicability range and highlighting its practical relevance. We define
he bulk Reynolds number as 𝑅𝑒 = 𝜌𝑢̂𝑐ℎ𝐻∕𝜇, with 𝑢̂𝑐ℎ the dimensional

channel-averaged velocity. Since 𝑢̂𝑐ℎ = 𝑢𝜏 𝑈𝑐ℎ as per the normalization
adopted, the bulk Reynolds number is also 𝑅𝑒 = 𝑈𝑐ℎ 𝑅𝑒𝜏 . For a smooth,
impermeable channel, it is 𝑈𝑐ℎ = 𝑅𝑒𝜏∕3, hence 𝑅𝑒𝜏 =

√

3𝑅𝑒. With a
transitional 𝑅𝑒 of order 1000 for the classical plane Poiseuille flow [22,
23], the flow is expected to remain laminar until 𝑅𝑒𝜏 of order 50. For
all the cases discussed in this section, 𝑅𝑒𝜏 is well below this threshold,
typically 𝑅𝑒𝜏 ≤ 10. The performance of the rough/permeable channels
and the smooth ones are compared at a fixed 𝑅𝑒𝜏 , i.e. at a fixed applied
pressure gradient. Validation of the model requires conducting full
Navier–Stokes simulations in a channel of length 𝐿𝑋 , with all fields
near and within the corrugations/pores of the surfaces/substrates well
resolved. The length of the channel was progressively increased and
dependency of the computed 𝑋-𝑍-averaged streamwise velocity on
it was monitored; for the configurations/conditions considered here,
it was proven that a single geometrically periodic cell of the chan-
nel is sufficient to apply periodicity of the fields and, thus, to fully
describe the channel flow, which implies the absence of any flow
instabilities such as vortex shedding in the vicinity of the roughness
elements/grains (the reader is encouraged to refer to Ref. [24] for
a relevant description). Then, the velocity profile across the channel,
constructed by evaluating the plane-averaged value of the streamwise
velocity 𝑈 at each wall-normal distance 𝑌 , was compared to the
analytical solution (Eq. (21)). All simulations were run using Simcenter
STAR-CCM+ finite-volume-based software (versions 16.02.009-R8 and
18.02.008-R8).

Three types of bounding walls are involved in the validation step.
First, smooth, impermeable surfaces (𝑆𝑀) having 𝜆 = 𝑖𝑡𝑓 = 0. Second,
surfaces roughened by transverse, 𝑍-elongated, square elements of a
rib size-to-pitch ratio 𝑒∕𝓁 = 0.25 (𝜆 = 0.03975 and 𝑖𝑡𝑓 = 0.00233; cf.
Table 2), with 𝜖 = 𝓁∕𝐻 = 0.4 or 0.8. Such surfaces are indicated as
𝑄𝑒∕𝓁

𝜖 , i.e., 𝑆𝑄0.25
0.4 and 𝑆𝑄0.25

0.8 . Third, fluid-saturated porous substrates
ormed by transverse cylindrical inclusions, with porosity 𝜃 = 0.8
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(𝜆 = 0.05385 and 𝑖𝑡𝑓 = 0.00297; cf. Table 1), with 𝜖 = 𝓁∕𝐻 = 0.4 or
0.8. These substrates are referred to as 𝑇𝐶𝜃

𝜖 , i.e., 𝑇𝐶0.8
0.4 and 𝑇𝐶0.8

0.8 . To
provide extensive validation of the model predictions, six combinations
of the aforementioned walls were selected, as illustrated in Fig. 5 with
indication of the values of 𝛬 and 𝜙 for each boundary and the inte-
gration constants 𝐴 and 𝐵 for each channel. The macroscopic velocity
profiles, based on Eq. (16), are in perfect agreement with results of
the full simulations. The errors in the model predictions for the slip
velocities, 𝛥𝑈𝑚𝑎𝑥 and 𝛥𝑈𝑐ℎ (cf. Eqs. (20), (23) and (24), respectively)
are within about ±3%. Since results of the first- and the second-order
models are indistinguishable from one another to graphical accuracy,
only the predictions of the latter are plotted in the figure.

3.1.3. Considerations on model accuracy
The applicability of the effective boundary conditions depends on

the separation of scales between the microscopic and the macroscopic
problems, with the accuracy of the model expected to degrade at large
values of the ratios 𝜖𝑏 and 𝜖𝑡. This may be associated with enhanced
near-wall advection as the streamlines deflect due to the dynamic inter-
action of the fluid with surface protrusions; such inertial effects cannot
be predicted by the Stokes-like systems underlying the homogenization
procedure. Porous substrates (𝜃 = 0.8) formed by either spanwise-
or streamwise-elongated cylinders are chosen here as representative
examples, to highlight how errors in the model predictions increase
with 𝜖, as shown in Fig. 6. It is clear that even the second-order accurate
interface condition does not guarantee high accuracy for the case of
transverse cylinders when 𝜖 is sufficiently large (cf. Fig. 6, right). By
contrast, if the cylinders are aligned along 𝑋, interaction with the
bulk channel flow is simply in the form of a skin-friction force, with
negligible inertial effects; this justifies the perfect agreement in Fig. 6
between the second-order macroscopic solution and the results of the
full simulations. It is noteworthy that the slip and the bulk velocities
are larger for the case of longitudinal cylinders since the macroscopic
coefficients (𝜆 = 0.09347 and 𝑖𝑡𝑓 = 0.01410) are larger than for the
transverse cylinders configuration at the same porosity (𝜆 = 0.05385
nd 𝑖𝑡𝑓 = 0.00297; cf. Table 1).

.1.4. Random media
Channels delimited by porous substrates/structured surfaces formed

y random patterns of inclusions/roughness elements represent a more
ractical situation. The homogenization approach applies to such con-
igurations provided that a sufficiently large microscopic elementary
olume is chosen to represent the features of the whole media/surface.
n example is shown in Fig. 7; the permeable bed, bounding the flow

rom the upper side, consists of 100 𝑍-elongated inclusions, randomly
isplaced in the 𝑋 − 𝑌 plane, with overlapping allowed among neigh-
oring grains. On average, there are 20 grains along 𝑋 and 5 grains
n 𝑌 ; the diameters of the inclusions are varied, for the porosity to
luctuate locally between 0.25 and 0.75, yielding an average porosity
𝑎𝑣𝑟 ≈ 0.5. The microscopic length scale, 𝓁𝑡, was chosen as 𝐿𝑋∕20,
ith 𝐿𝑋 = 4𝐻 the length of the periodic domain selected; hence,

t can be concluded that 𝜖𝑡 = 𝓁𝑡∕𝐻 = 0.2. The microscale problem
as approached in the same manner as that followed by Naqvi &
ottaro [16] for a random medium, and the coefficients were evaluated
o be 𝜆𝑡 = 0.1012 and 𝑖𝑡𝑓

𝑡 = 0.0112 (𝛬𝑡 = 0.0202 and 𝜙𝑡 = 0.0221).
he macroscopic velocity profile, based on the analytical solution (16),
atches well the streamwise-averaged results from the full simulation,

f. Fig. 7.

.1.5. Three-dimensional patterns
Until this point, validation of the model has been sought only for

wo-dimensional configurations of rough/porous walls. However, as
entioned in Section 3.1.1, a macroscopically one-directional flow is

lso expected over three-dimensional patterns provided that the exter-
al forcing (here in 𝑋) is aligned with one of the principal axes of the

avier-slip tensor. An example is illustrated in Fig. 8, where channel
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Fig. 5. Laminar flow (𝑅𝑒𝜏 = 6) in asymmetric rough (𝑎) or permeable (𝑏) channels, symmetric rough (𝑐) or permeable (𝑑) channels, and channels bounded by a smooth surface
from one side and a rough surface (𝑒) or a porous substrate (𝑓 ) from the other side. The analytical results (second-order) for the velocity profiles (red lines) are validated by
plane-averaged values from the full simulations (green-filled circles); the black profiles refer to Poiseuille flow in a smooth, impermeable channel, for which 𝐴 = 𝐵 = 0.

Fig. 6. Laminar flow (𝑅𝑒𝜏 = 6) in symmetric channels bounded by porous substrates consisting of either transverse or longitudinal cylinders, with porosity 𝜃 = 0.8. The analytical
results (dashed lines: first-order; solid lines: second-order) are compared with results of the full simulations (filled circles).
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Fig. 7. Laminar flow (𝑅𝑒𝜏 = 10) in a channel bounded from the top by a porous layer consisting of randomly arranged, spanwise-aligned inclusions, with the average porosity
equal to 0.5. A close-up of the velocity vector field near the interface (visualized via the line integral convolution method) is displayed in the gray frame. Analytical solution for
the upscaled velocity profile is validated against the full simulation; symbols are identical to those in Fig. 5.
Fig. 8. Laminar flow (𝑅𝑒𝜏 = 10) in a channel bounded on the lower side by a porous bed consisting of inline spheres, with 𝜃 = 0.5 (𝜆𝑏 = 0.1049 and 𝑖𝑡𝑓
𝑏 = 0.0088; cf. Table 1) and

𝜖 = 0.5. On the top right image, the analytical solution for 𝑈 is plotted together with results from the full simulation, using the same symbols as in Fig. 5.
flow over a porous substrate consisting of aligned spherical grains is
analyzed. Distributions of the three velocity components at the virtual
interface (𝑌 = 0) are displayed to confirm that, consistently with the
aforementioned condition, the plane-averaged values of wall-normal
and spanwise velocity components vanish; the analytical prediction of
the streamwise velocity agrees very well with the 𝑋-𝑍-averaged result
from the three-dimensional, feature-resolving simulation.

3.1.6. Small roughness/grains amplitudes
A simplified version of the generalized Poiseuille solution is proposed

for laminar flows in channels bounded by walls of small roughness
amplitude or by permeable layers with reduced dimensions of grains
and pores. In these cases, 𝜖 is sufficiently small and we expect the
hierarchy 𝜖2𝑖𝑡𝑓 ≪ 𝜖𝜆 ≪ 1 to hold. This permits not only to safely
reduce the model to first order (by neglecting 𝜙 in (19)) but also to use
the approximation 1 + 𝛬 ≈ 1 when evaluating the different parameters
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of interest; for instance, we obtain

𝑈𝑠𝑙𝑖𝑝,𝑏(𝑡) = 𝑅𝑒𝜏 𝛬𝑏(𝑡), 𝛥𝑈𝑚𝑎𝑥 = 𝑅𝑒𝜏
𝛬𝑏 + 𝛬𝑡

2
, 𝛥𝑈𝑐ℎ% = 3

𝛬𝑏 + 𝛬𝑡

2
× 100%.

(25)

The simplified solution is validated in Fig. 9 for the flow in a channel
bounded on the top by a porous substrate of porosity equal to 0.5, for
𝜖 ranging from 0 to 0.8. For all types of porous inclusions considered,
a linear behavior of 𝑈𝑠𝑙𝑖𝑝,𝑡, 𝑈𝑚𝑎𝑥 and 𝛥𝑈𝑐ℎ% is found versus 𝜖, and the
first-order boundary condition yields excellent predictions.

3.2. A crash introduction to the near-wall advection modeling

In the original structure of the homogenization model, described
in Section 2 and validated in Section 3.1, inertial effects are absent
from the problems at the two leading orders in 𝜖, and the microscopic
systems of equations are Stokes-like. Nevertheless, as anticipated in
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Fig. 9. Laminar flow (𝑅𝑒𝜏 = 10) in a channel bounded on one side by a smooth wall and on the other side by a porous substrate (𝜃 = 0.5) consisting of either spheres (𝜆 = 0.1049),
longitudinal cylinders (𝜆 = 0.0688), or transverse cylinders (𝜆 = 0.0451). The simplified solution (lines) is validated against full simulations (filled circles).
Section 3.1.3, near-wall advection may contribute significantly to the
problem at relatively large values of 𝜖, limiting the validity range
of the upscaling model adopted. In this section, we propose (and
then validate) an adjustment to the homogenization procedure such
that effects of near-wall advection on the macroscale behavior of the
laminar channel flow can be mimicked efficiently.

In the recent study by Ahmed & Bottaro [25], the problem of
seepage in porous media beyond the Stokes flow conditions has been
treated, and it was proved that the same upscaled governing equation
(Darcy’s law in that case) still applies, but with the permeability
appropriately modified to be dependent on the Reynolds number, de-
viating from the intrinsic permeability of the medium, which is merely
geometry-dependent. The problem under study here is different since
flow over, and not through, porous substrates is analyzed. However,
an analogous procedure is adopted so that the effective boundary
conditions (Eqs. (17) and (18)) and, hence, the generalized solution
for the velocity profile across the channel and all the relevant relation-
ships derived in Section 3.1.1, hold at considerably large values of 𝜖
and/or 𝑅𝑒𝜏 . The auxiliary systems used to evaluate the Navier-slip and
the interface-permeability coefficients (respectively, 𝜆𝑏(𝑡) and 𝑖𝑡𝑓

𝑏(𝑡)) are
reformulated to properly model the sensitivity of the microscopic fields,
and therefore the model coefficients, to near-wall inertia. The general
procedure outlined by Buda [26] is followed, with some adjustment,
to yield a reliable homogenization framework aimed at genuinely cap-
turing the role of near-interface advection in the generalized Poiseuille
problem under laminar flow conditions. Extensive validation of the
proposed model is subsequently performed for different geometric and
flow conditions.

3.2.1. Adjustment of the homogenization model
An Oseen-like linearization was proposed by Buda [26] to try to

include the effects of near-interface advection in the homogenization
scheme. Accordingly, the convective acceleration terms in the momen-
tum conservation equation governing the microscopic problem were
linearized, by defining a constant, spatially invariant, dimensional
velocity 𝑢̂𝜙,𝑖 = (𝑢̂𝜙, 0, 0) representative of the velocity level near the
physical wall where the inertial effects may be significant as the fluid
interacts with the protrusions/grains. Hence, the microscale problem is
now governed by the following conservation equations:

𝜕𝑢̂𝑖
𝜕𝑥̂𝑖

= 0, 𝜌𝑢̂𝜙,𝑗
𝜕𝑢̂𝑖
𝜕𝑥̂𝑗

= −
𝜕𝑝̂
𝜕𝑥̂𝑖

+ 𝜇
𝜕2𝑢̂𝑖
𝜕𝑥̂2𝑗

. (26)

The microscopic Reynolds number, defined as 𝑅𝑒𝜙 = 𝜌 𝑢̂𝜙 𝓁∕𝜇, is now
assumed to be of (1). By introducing the dimensionless velocity 𝑈𝜙 =
𝑢̂𝜙
𝑢𝜏

, one may write

𝑅𝑒𝜙 =
𝜌 𝑢̂𝜙 𝓁
𝜇

= 𝓁
𝐻

𝜌𝑢𝜏𝐻
𝜇

𝑢̂𝜙
𝑢𝜏

= 𝜖𝑅𝑒𝜏 𝑈𝜙. (27)

A homogenization procedure similar, in principle, to that described
in Section 2.1 was then followed by Buda [26]; the same effective
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boundary conditions (Eqs. (4)–(6)) were eventually attained, yet the
closure problems based on which the macroscopic coefficients are
calculated differ from those presented in Section 2.2 and read

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕𝑖𝑢
†
𝑖1 = 0,

−𝜕𝑖𝑝
†
1 + 𝜕2𝑘𝑢

†
𝑖1 = 𝑅𝑒𝜙 𝜕1𝑢

†
𝑖1,

𝑢†𝑖1 = 0 at 𝛽𝜎 ,
−𝑝†1𝛿𝑖2 + 𝜕2𝑢

†
𝑖1 + 𝜕𝑖𝑢

†
21 = 𝛿𝑖1 at 𝑦 = 𝑦∞.

(28)

As before, the coefficients 𝜆𝑥 and 𝑖𝑡𝑓
𝑥𝑦 can be calculated based on the

closure variable 𝑢†11 as follows:

𝜆𝑥 = 1
 ∫0

𝑢†11 𝑑𝐴, 𝑖𝑡𝑓
𝑥𝑦 = 1

 ∫0
𝑢†11 𝑑𝑉 , (29)

with the same definitions of , 0, 0 given in Section 2.2.
Attention is now drawn to the choice of the characteristic velocity

𝑈𝜙, required for the definition of 𝑅𝑒𝜙 which controls the auxiliary
system (28). In Ref. [26], the simple assumption 𝑢̂𝜙 = 𝑢𝜏 was adopted,
and thus 𝑈𝜙 = 1 and 𝑅𝑒𝜙 = 𝜖𝑅𝑒𝜏 . Here, a different approach is
followed seeking a better approximation for 𝑈𝜙. The velocity level at
some normal distance, 𝑦̂𝜙, away from the effective boundary, located
in 𝑦̂𝑏(𝑡) = 0, is assumed to reasonably characterize near-wall advection;
we hypothesize that this distance is proportional to the Navier-slip
length 𝜆̂𝑥, or simply 𝑦̂𝜙 = 𝜆̂𝑥. In addition, the velocity profile near the
boundary is assumed to follow the classical linear relationship

𝑈 = 𝑌 + + 𝑈𝑠𝑙𝑖𝑝, (30)

with 𝑈 = 𝑢̂
𝑢𝜏

, 𝑌 + =
𝜌𝑢𝜏 𝑦̂
𝜇

=
𝑦̂
𝐻

𝑅𝑒𝜏 , and 𝑈𝑠𝑙𝑖𝑝 = 𝜖𝑅𝑒𝜏 𝜆𝑥 (as per the

approximation in Eq. (25)). At 𝑦̂ = 𝜆̂𝑥 = 𝓁𝜆𝑥, we obtain

𝑈𝜙 = 𝓁
𝐻

𝜆𝑥𝑅𝑒𝜏 + 𝜖𝑅𝑒𝜏 𝜆𝑥 = 2𝜖𝑅𝑒𝜏 𝜆𝑥, (31)

and, therefore, 𝑅𝑒𝜙 = 2𝜖2𝑅𝑒2𝜏 𝜆𝑥. With the definition of 𝜆𝑥 in Eq. (29),
the final form of the closure problem is

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕𝑖𝑢
†
𝑖1 = 0,

−𝜕𝑖𝑝
†
1 + 𝜕2𝑘𝑢

†
𝑖1 = 2 𝜖2𝑅𝑒2𝜏

[

1
 ∫0

𝑢†11 𝑑𝐴
]

𝜕1𝑢
†
𝑖1,

𝑢†𝑖1 = 0 at 𝛽𝜎 ,
−𝑝†1𝛿𝑖2 + 𝜕2𝑢

†
𝑖1 + 𝜕𝑖𝑢

†
21 = 𝛿𝑖1 at 𝑦 = 𝑦∞,

(32)

a well-posed system to be solved over a representative elementary
cell of the microscopic domain with all the dependent variables peri-
odic in the 𝑥 and 𝑧 directions. This system renders the macroscopic
parameters 𝜆𝑥 and 𝑖𝑡𝑓

𝑥𝑦 dependent not only on the geometry of the
structured wall/substrate but also on the control parameter 𝜖𝑅𝑒𝜏 . The
coefficients calculated based on this approach are indicated here as
the ‘‘Oseen-based’’ coefficients, while those evaluated based on the
original, advection-free system (9) are termed as the ‘‘Stokes-based’’
coefficients. Clearly, the Oseen-based system reduces to the Stokes’ at
𝜖𝑅𝑒 = 0 for any surface texture. However, they are also identical at
𝜏
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Fig. 10. Contours of the microscopic variables 𝑢†11 and 𝑢†21 at three values of 𝜖𝑅𝑒𝜏 , shown over an 𝑥–𝑦 plane for the case of spanwise-elongated cylinders of porosity 𝜃 = 0.8 (panels
𝑎–𝑐). Here, close-ups of the contours near the fluid-porous interface are presented, while in the typical simulations the porous bed (𝑦 < 0) consists of five rows of cylinders. The
Oseen-based macroscopic coefficients 𝜆𝑥 and 𝑖𝑡𝑓

𝑥𝑦 are plotted in frames (𝑑) and (𝑒) against 𝜖𝑅𝑒𝜏 .
Fig. 11. Poiseuille flow (𝑅𝑒𝜏 = 10) in a channel bounded by two identical porous substrates consisting of inline patterns of spanwise-elongated cylinders (𝜃 = 0.8). Model predictions
for the velocity profiles with (𝑎) Stokes-based and (𝑏) Oseen-based macroscopic coefficients are compared against results of the full simulations for two values of 𝜖. Corresponding
behaviors of (𝑐) 𝑈𝑠𝑙𝑖𝑝 and (𝑑) 𝛥𝑈𝑐ℎ% are plotted for 𝜖 ranging from 0 to 3.2.
finite values of 𝜖𝑅𝑒𝜏 for the special case of streamwise, 𝑥-elongated
inclusions/ribs since all the closure variables in the auxiliary system
(32) become 𝑥1-invariant, and therefore 𝜕1𝑢

†
𝑖1 vanishes; for this reason,

the second-order accurate homogenization model with the Stokes-based
coefficients exhibited good accuracy in the case of porous substrates
constructed of streamwise-elongated cylinders even at large values of
𝜖 (in Section 3.1.3), unlike the case of transverse, spanwise-elongated
cylinders for which the accuracy deterioration was obvious, and the
Oseen-based coefficients should have been used instead, as will be
confirmed in Section 3.2.2. In preparation for the upcoming valida-
tion step, the configuration of regularly arranged, transversely aligned
cylinders with 𝜃 = 0.8 was considered for the solution of the closure
problem; this provides values of 𝜆𝑥 and 𝑖𝑡𝑓

𝑥𝑦 for 𝜖𝑅𝑒𝜏 ranging from
0 to 32, as presented in Fig. 10. It is worth noticing how advection
(with the increase of 𝜖𝑅𝑒 ) distorts the profiles of 𝑢† and reduces the
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values of 𝜆𝑥 and 𝑖𝑡𝑓
𝑥𝑦 ; for example, at 𝜖𝑅𝑒𝜏 = 32 these two coefficients

are lower than their Stokes-based counterparts by about 35% and 62%,
respectively (cf. frames (𝑑) and (𝑒)).

3.2.2. Validation and accuracy improvement
Validation of the Oseen-based homogenization approach, described

in Section 3.2.1, is performed first on the laminar Poiseuille flow in
symmetric channels bounded by permeable beds (porosity 𝜃 = 0.8)
made of spanwise-elongated cylindrical inclusions in an inline arrange-
ment with equal pitch distances 𝓁 in the 𝑥̂ and 𝑦̂ directions. This
configuration has been considered earlier, in Section 3.1.3, with the
Stokes-based macroscopic coefficients, and deterioration of the model
accuracy when proceeding to large values of 𝜖 = 𝓁∕𝐻 , at 𝑅𝑒𝜏 = 6,
was highlighted and justified. Here, we monitor the improvement in
the accuracy of the analytical model when the adjusted coefficients,
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Fig. 12. Poiseuille flow in a channel bounded by two identical porous substrates consisting of inline patterns of spanwise cylinders with 𝜃 = 0.8 and 𝜖 = 0.8. In panel (𝑎), model
predictions for the velocity profile using either Stokes-based or Oseen-based macroscopic coefficients are compared against result of the full simulation for 𝑅𝑒𝜏 = 40. Corresponding
behaviors of (𝑏) 𝑈𝑠𝑙𝑖𝑝 and (𝑐) 𝛥𝑈𝑐ℎ% are plotted with 𝑅𝑒𝜏 varied from 0 to 40.
dependent on the value of 𝜖𝑅𝑒𝜏 as plotted in Fig. 10, are plugged into
the definition of the constants 𝐴 and 𝐵 (Eq. (19)) which control the
velocity profile (Eq. (16)). Full, fine-grained simulations were run for
values of 𝜖𝑅𝑒𝜏 between 0 (Stokes’) and 32, either by increasing 𝜖 from
0 to 3.2 with 𝑅𝑒𝜏 = 10 (presented in Fig. 11) or by increasing 𝑅𝑒𝜏 from
0 to 40 with 𝜖 = 0.8 (presented in Fig. 12), to provide reference results
for validation. From inspection of Figs. 11 and 12, it is evident that
predictions of the advection-capturing analytical solution agree very
well with results of the feature-resolving simulations. The Stokes-based
model overestimates the slip velocity, 𝑈𝑠𝑙𝑖𝑝, at 𝜖 = 3.2 and 𝑅𝑒𝜏 = 10 by
about 60%, while the proposed adjustment is capable of reducing the
absolute deviation from the result of the full simulation to less than
3%; cf. Fig. 11(𝑐). This is reflected in more accurate predictions for the
percentage change in the channel-averaged velocity due to the presence
of the porous substrates, as shown in Fig. 11(𝑑). Similar improvements
can be observed in Fig. 12(𝑏) and Fig. 12(𝑐), respectively, as 𝑅𝑒𝜏
increases.

Furthermore, the robustness of the new model has been tested by
validating its results for the laminar Poiseuille flow (at 𝑅𝑒𝜏 = 12) in
symmetric channels bounded by rough surfaces of different textures.
In particular, the boundaries considered are ribbed with transverse ele-
ments having square, rectangular, triangular (isosceles), or semicircular
cross sections, where 𝜖 = 𝓁∕𝐻 = 2 for all configurations. The geometric
characteristics of these patterns (denoted from 𝐼 to 𝐼𝑉 ), the values of
the macroscopic coefficients and the corresponding Stokes- and Oseen-
based predictions for the velocity profiles are presented in Fig. 13;
the advantage of the Oseen-based approach in enhancing the accuracy
of the homogenized model under significant near-wall advection is
consistently confirmed.

To facilitate the use of the proposed Oseen-based model in fur-
ther validation/optimization work, the case of flow over a surface
roughened with spanwise-elongated ribs having a square cross section
of side length 𝑒 is considered for a parametric study investigating
how the dependence of the Navier-slip and the interface permeability
coefficients on the rib size-to-pitch ratio is sensitive to the value of
𝜖𝑅𝑒𝜏 , gradually departing from the Stokes flow conditions tested in
Ref. [18]. Fig. 14 shows that 𝜆𝑥 and 𝑖𝑡𝑓

𝑥𝑦 decrease monotonically as
𝜖𝑅𝑒𝜏 increases, for all values of 𝑒∕𝓁, with the coefficients more sensitive
to 𝜖𝑅𝑒 within the range 0.1 ≤ 𝑒∕𝓁 ≤ 0.3.
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Finally, it can be concluded from the trends of the macroscopic
coefficients, presented in Figs. 10 and 14, and the results for the
channel flow, plotted in Figs. 11 and 12, that the Stokes’ model is
reliable below the threshold 𝜖𝑅𝑒𝜏 ≈ 10, whereas a more versatile
homogenization model, which accounts for advection, must be used
beyond this limit; the proposed Oseen’s linearization is an effective
approach to capture this effect.

3.3. What about flow separation?

To investigate the accuracy of the adopted effective boundary condi-
tions in predicting flow separation at the fluid-porous interface, we now
consider the combined Couette-Poiseuille laminar flow in a channel
bounded from the top (at 𝑦̂ = 2𝐻) by a smooth, impermeable plate
moving at a prescribed velocity 𝑢̂𝑚 and from the bottom (𝑦̂ < 0) by
a stationary textured wall/substrate, where a fictitious plane interface
between the rough/porous layer and the overlying channel flow of
interest is chosen at 𝑦̂ = 0; the lower boundary is characterized by
dimensionless Navier-slip and interface permeability coefficients, 𝜆 and
𝑖𝑡𝑓 . Besides the motion of the upper plate, a macroscopic pressure
gradient 𝜕𝑝̂∕𝜕𝑥̂ is applied, either favorably or adversely affecting the
motion. We define the following dimensionless variables and control
parameters:

𝑌 =
𝑦̂
𝐻

,  = 𝑢̂
𝑢̂𝑚

,  = 𝐻2

𝜇 𝑢̂𝑚
𝜕𝑝̂
𝜕𝑥̂

, 𝛬 = 𝜖 𝜆, 𝜙 = 𝜖 𝑖𝑡𝑓

𝜆
, (33)

where  = 0 characterizes pure Couette flow and +∕ − 𝑣𝑒 finite values
of  indicate adverse/favorable pressure gradients, respectively. Un-
der steady, fully developed flow conditions, the following momentum
conservation equation governs the problem:
𝜕2
𝜕𝑌 2

= , (34)

neglecting advective terms, controlled by the dimensionless parameter
̃ =

𝜌 𝑢̂𝑚𝐻
𝜇

. Eq. (34) is subject to the boundary conditions

 |

|

|𝑌=0
= 𝛬 𝜕

𝜕𝑌
|

|

|

|𝑌=0
− 𝛬𝜙,  |

|

|𝑌=2
= 1. (35)

The solution of such a generalized Couette-Poiseuille problem takes the
form

 = 𝑌 2
+ 𝜙 𝑌 + (𝑌 + 𝛬)

[

1 − 2(1 + 𝜙)
]

. (36)

2 2 + 𝛬
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Fig. 13. Poiseuille flow (𝑅𝑒𝜏 = 12) in symmetric channels bounded by surfaces roughened with spanwise-elongated elements. Four different microstructures of the rough surfaces
are considered (cf. the right frame) with 𝜖 = 𝓁∕𝐻 = 2. Model predictions for the velocity profiles (Stokes/Oseen) are compared against results of the full simulations.
Fig. 14. Surface roughened with transverse square ribs: dependence of 𝜆𝑥 and 𝑖𝑡𝑓
𝑥𝑦 on the rib size-to-pitch ratio, for 𝜖𝑅𝑒𝜏 ranging from 0 (black) to 32 (blue) in steps of 8.
Consequently, the slip velocity at the bottom boundary, 𝑠𝑙𝑖𝑝, and the
bulk, channel-averaged velocity, 𝑐ℎ, read

𝑠𝑙𝑖𝑝 =
𝛬

2 + 𝛬
[

1−2(1+𝜙)
]

, 𝑐ℎ =
( 2
3
+ 𝜙

)

+ 1 + 𝛬
2 + 𝛬

[

1−2(1+𝜙)
]

.

(37)

As before, if the boundary condition (35) were first-order accurate, the
relations (36) and (37) would hold, with the parameter 𝜙 set to zero.

The analytical solution for the macroscopic velocity profile
(Eq. (36)) is validated in Fig. 15 for the case of a combined Couette-
Poiseuille flow subjected to either favorable ( = −2) or adverse
( = +2) pressure gradient, with the channel bounded from the bottom
by a permeable layer constructed of streamwise-elongated cylindrical
inclusions (𝜃 = 0.5). To assess sensitivity of the model accuracy to
the value of 𝜖 = 𝓁∕𝐻 , departing from the case of perfect separation
of length scales (at 𝜖 → 0), four configurations of the porous bed are
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considered with 𝜖 increased from 0.4 to 6. Interestingly, both the first
and the second-order solutions are able to predict the flow separation
at the permeable boundary for 𝑅 = +2, yet it is clear that upgrading
the effective boundary conditions to second order (by including effects
of the interface permeability) significantly improves accuracy of the
model predictions at the larger values of 𝜖; this is consistent with
the previous discussion in Section 3.1.3 for the corresponding case of
Poiseuille flow.

We now elaborate a bit further on the predictions of the first-order
accurate analytical solution, which has been proven to describe fairly
well the macroscopic velocity profile at relatively low values of 𝜖.
The Couette-Poiseuille flow is now assumed to be controlled only by
the parameters  and 𝛬 = 𝜖𝜆. In Fig. 16, analytical predictions for
the profile  =  (𝑌 ), corresponding to different values of , are
plotted for four values of the slip coefficient 𝛬, gradually deviating
from the case of a smooth, impermeable boundary (𝛬 = 0). It is clear
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Fig. 15. Generalized Couette-Poiseuille flow ( = ±2) in a channel bounded from the bottom by a porous substrate consisting of an inline pattern of longitudinal cylinders with
porosity 𝜃 = 0.5 (𝜆 = 0.0688, 𝑖𝑡𝑓 = 0.0056). Four values of 𝜖 are tested, i.e. 𝜖 = 0.4, 1.6, 3.2, and 6. Results of the full simulations (symbols) are used to validate the analytical
solution for  (lines), based on either the first-order (a) or the second-order (b) model.
that the slip velocity at the permeable/rough boundary and the bulk,
channel-averaged velocity increase with 𝛬 for the case of no pressure-
gradient or favorable pressure gradient (Figs. 16(𝑎) and (𝑏)); the same
effect of 𝛬, progressively less pronounced, is observed in the case of
adverse pressure gradient, provided that the value of  is sufficiently
small for backflow not to appear. At  = 𝑐𝑟 = 0.5, all profiles
coincide regardless of the value of 𝛬, with vanishing slip velocity and
velocity gradient at the bottom boundary; this is the critical threshold
for separation (Fig. 16(𝑑)). Larger values of  lead to progressively
larger portion of the channel interested by backflow, and the larger
the parameter 𝛬 is, the more amplified the backflow becomes (cf.
Fig. 16(𝑒)). A summary of the first-order results obtained, in terms of
𝑠𝑙𝑖𝑝 and 𝑐ℎ, are shown in Fig. 16(𝑓 ) and (𝑔), for the values of 𝛬
considered.

The conclusions to be inferred from Fig. 16 would be modified to
some extent in case the parameters of the problem were such that
upscaling were needed up to order two in 𝜖, or consideration of near-
wall nonlinear effects were necessary. This is, however, a trivial task
to pursue, since Eqs. (36) and (37) remain valid, and one has simply
to employ the appropriate values of 𝛬 and 𝜙, possibly via an Oseen-
based approximation. For example, if second-order accurate effective
boundary condition had been used, it is trivial to find that the critical
limit of the dimensionless pressure gradient would be anticipated, i.e.
𝑐𝑟 = 0.5∕(1 + 𝜙); thus, for instance, if 𝜙 ≈ 0.5 (as for the pattern
considered in Fig. 15 with 𝜖 = 6), it would be 𝑐𝑟 ≈ 0.34.

4. Conclusions

The laminar flow in a channel is crucially sensitive to the small-scale
features of the rough/porous bounding walls; this is assessed here for
the steady, incompressible, fully developed flow driven by a constant
pressure gradient and/or by motion of a wall at a prescribed con-
stant speed (i.e., pure Poiseuille, pure Couette, and combined Couette-
Poiseuille flows). The microscopic pattern of the rough/permeable wall
is assumed not to have a preferential orientation at an angle different
from 0 or 90 degrees from the direction of the pressure gradient since,
should that be the case, a near-wall transverse velocity component
would appear [21]. In other words, the wall/substrate must be such
that the Navier slip tensor has components only along the principal
axes of the flow. These are quite general hypothesis, satisfied by
many natural/engineered wall textures [12]. Analytical solutions of the
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Navier–Stokes equation governing the one-directional flows, 𝑢̂ = 𝑢̂(𝑦̂),
exist, subject to BJS-like conditions which apply at a virtual planar
interface in 𝑦̂ = 0 and/or 𝑦̂ = 2𝐻 , next to the physical boundaries.
The classical upscaling approach is tenable as long as the parameter 𝜖,
ratio of the microscopic length scale to half the channel height, remains
sufficiently small and the flow regime in close vicinity of the walls is
Stokes-like. As a rule of thumb, the approach is found to be reliable un-
til 𝜖𝑅𝑒𝜏 ≈ 10. Under these conditions, the generalized Poiseuille solution
is very accurate when compared against feature-resolving simulations
of the flow in channels with different combinations of wall textures.
The generalized combined Couette-Poiseuille solution was tested under
favorable/adverse pressure gradients, and its accuracy in predicting
possible backflow next to the fluid-porous interface was highlighted.

One of the most important issues addressed in this article is how
to efficiently incorporate the effects of near-wall advection into the
homogenization procedure when 𝜖𝑅𝑒𝜏 is larger than about 10. For
this purpose, an Oseen’s approximation was employed to linearize the
convective acceleration terms in the momentum conservation equa-
tions governing the microscale problem. Numerical solutions of the
closure problems revealed a decreasing trend of the model coefficients,
for any given tested microstructure, as inertial effects became signif-
icant. It was confirmed, via extensive validation, that the adjusted
approach can widen the applicability range of the homogenized so-
lution considerably. Nonetheless, should flow instabilities be present
in the domain (e.g., at relatively high Reynolds numbers) in the form
of vortex shedding next to the protrusions/grains or, eventually, tran-
sition to turbulence, homogenization would become a more complex
undertaking. For instance, tackling near-wall advection with Oseen’s
linearization in the presence of such instabilities may be questionable,
and a fully nonlinear model is probably needed; this could be achieved
by the use of adjoint homogenization [12]. In addition, when near-
wall transient effects are significant, they should be considered in the
upscaling framework, and sufficiently large representative elementary
cells of the microscopic domain (possibly larger than a single geometric
unit cell) must be identified [24]. Further, under turbulent flow con-
ditions it is necessary to define a three-directional effective velocity
at the fictitious wall, even if the mean flow is one-directional. This
is important since turbulent fluctuations along directions both tangent
and normal to the fictitious interface considerably affect the behavior of
the turbulent boundary layer and, therefore, the skin-friction drag [12,

14,20,27–29].
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Fig. 16. Predictions of the first-order analytical solution (𝜙 = 0) for the behavior of the generalized Couette-Poiseuille flow, with the parameter 𝛬 = 𝜖𝜆 characterizing the bottom
boundary of the channel varied between 0 (smooth, impermeable) and 0.3. The macroscopic velocity profiles are plotted in panels (a–e) for different values of , and the trends
of the slip and the channel-averaged velocities are displayed in frames (f ) and (g).
The analysis conducted attests to the effectiveness of multiscale
homogenization and provides a low-cost framework for understanding
the large-scale features of laminar flows over rough/permeable sur-
faces. One advantage of the approach is that the effective boundary
conditions adopted are free of empirical parameters; the macroscopic
coefficients involved are available from well-defined closure problems
to be solved in a microscopic elementary cell, and can be evaluated sys-
tematically for walls characterized by different types of non-uniformity,
including the effects of porosity, roughness, superhydrophobicity, com-
pliance, etc. Several results for 𝜆 and 𝑖𝑡𝑓 have been recently computed
(e.g. Refs. [14–20]) and can be used to assess the effect of a variety
of rough/porous micro-structured media. These results (and others
that might easily be obtained for different microscopic geometries)
may serve for the inverse design of wall patterns, to satisfy specific
282
constraints, or for the validation of newly developed computational
fluid dynamics codes.
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