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A methodology for optimal laminar flow control: Application
to the damping of Tollmien–Schlichting waves in a boundary layer

Christophe Airiau, Alessandro Bottaro, Steeve Walther, and Dominique Legendre
Institut de Mécanique des Fluides de Toulouse, Alle´e du Professeur Camille Soula, 31400 Toulouse, France

~Received 24 July 2001; accepted 29 January 2003; published 1 April 2003!

A methodology for determining the optimal steady suction distribution for the delay of transition in
a boundary layer is presented. The flow state is obtained from the coupled system of boundary layer
equations and parabolized stability equations~PSE!, to account for the spatially developing nature
of the flow. The wall suction is defined by an optimal control procedure based on the iterative
solution of the equations for the state and the dual state; the latter is available from the adjoint
boundary layer equations and the adjoint PSE. The technique is applied to the control of
two-dimensional Tollmien–Schlichting~TS! waves. Results show that the onset of the instability
can be significantly postponed and/or the growth rate considerably reduced by applying an
appropriate suction through the whole wall length, in a wide frequency band. Control over panels of
finite length completes the study and brings useful, preliminary information on the practicality of the
approach in view of implementation. Finally, a simplified methodology which does not rely on the
PSE is discussed, based on the minimization of the shape factor. Satisfactory results are achieved
with this simpler approach which might, thus, constitute a method of choice when results are needed
rapidly, i.e., during on-line control of TS waves. ©2003 American Institute of Physics.
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I. INTRODUCTION

Laminar flow control~LFC! is an old technique in aero
nautics ~cf. the excellent recent review by Joslin1!, intro-
duced in the 1930s when the realization came about th
thinner boundary layer is less prone to destabilization to
finitesimal disturbances of the Tollmien–Schlichting~TS!
type. Since the laminar skin friction drag can be up to 90
smaller than that in the presence of turbulent flow, the e
nomical advantage of delaying transition is evident. Amo
the methods adopted to achieve a thinner base flow, the
which has attracted most attention is that based on the
tion of fluid through the wall, over all or over portion~s! of
the surface, by employing porous plates, suction panels
other techniques.

In this paper a LFC methodology based on optimal c
trol theory is proposed and validated for the case of tw
dimensional TS waves over a flat surface. The procedur
of general nature and can be extended without concep
modifications to the case of boundary layers over cur
surfaces subject to instability waves other than TS. The o
limitation is that both base flow and disturbances should
velop slowly in the direction~s! parallel to the wall, so tha
parabolic equations can be established to govern their ev
tion. Clearly then, the suction applied must be sufficien
‘‘well-behaved’’ not to modify the parabolic nature of th
boundary layer equations~BLE!. The disturbances ar
treated by employing the parabolized stability equatio
~PSE!, a system which has already been applied success
to a large variety of flow cases~cf. Herbert2 for a recent
review!. The optimal control procedure rests on the defi
tion of a dual state, which represents the solution of an
1131070-6631/2003/15(5)/1131/15/$20.00

Downloaded 21 Oct 2004 to 130.251.56.122. Redistribution subject to AI
a
-

-
g
ne
c-

or

-
-
is
al
d
ly
-

lu-

s
lly

-
d-

joint system of equations~for both the basic flow and the
disturbances!. Adjoint equations have recently attracted t
increased attention of fluid dynamicists, for a number of a
plications ranging from flow receptivity to shape optimiz
tion, from optimal perturbations to meteorology~the book by
Marchuk3 and the proceedings of a recent workshop on
joint systems4 provide but a view of some developments
the field!.

Studies on suction-based-LFC can be traced back to
early experiments by Ludwig Prandtl, some one-hund
years ago. He considered the flow past a cylinder and app
suction on one side of the cylinder wall to prevent sepa
tion; as a consequence drag was markedly reduced as
posed to the case without suction. The first theoretical st
on the effect of suction in a boundary layer is due
Schlichting.5 By applying uniform suction over an infinite
flat plate he determined the ensuing asymptotic velocity p
file. Later researchers demonstrated that boundary la
with suction are more stable than the Blasius boundary la
to two-dimensional TS waves~for a full account the reader is
referred to the synthesis by Stuart6!. Interestingly it became
customary to represent the critical Reynolds number of
flow as a function of the shape factorH; the collapse of the
data corresponding to many different forms of suction ont
single line led Stuart to state that in boundary layers, ‘‘to
reasonable approximation, the critical Reynolds number
any velocity profile is a function ofH only.’’ A confirmation
of this statement is also given by Schlichting.7 Schlichting
also computed the uniform suction velocity necessary
maintain the flow laminar throughout the whole length of t
plate; such a value isVW51.231024 in outer velocity scale.

Recent works on the subject of optimal control of ins
1 © 2003 American Institute of Physics
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1132 Phys. Fluids, Vol. 15, No. 5, May 2003 Airiau et al.
bility waves abound in the literature. A significant paper
that by Joslinet al.,8 who proposed a methodology for th
determination of suction for drag reduction in a system m
eled by the Navier–Stokes equations. The optimality sys
is ‘‘closed’’ by the adjoint Navier–Stokes equations. T
mathematics behind the approach, based on Lagrange m
pliers, can be found in Gunzburger.9 The same approach ha
been followed by Cathalifaud and Luchini10 in their study of
the optimal control of streaks and vortices in flat and curv
boundary layers. Also Waltheret al.11 employed the
Lagrange multiplier formalism to study the optimal contr
of TS waves in a developing boundary layer. In their wo
they focused on the control of the instability wave, i.e., t
base flow was fixed and the controller acted at the amplit
level of the disturbances. The adjoint PSE equations~APSE!
were derived and employed for the purpose, and a succe
annihilation of the disturbance wave was achieved~the for-
midable technological challenge of how to implement t
theoretically predicted blowing/suction distribution was n
dealt with in the last two papers cited, but it clearly rep
sents the stumbling issue for experimentalists involved
turning theoretical predictions into practice!.

The APSE lie at the heart of some of the work describ
here. They represent a system of backward parabolic e
tions, the integration of which yields receptivity/sensitivi
functions12 that provide the response of the boundary laye
forcing at the inflow, at the wall or within the flow domain
~Both PSE and APSE are only nearly parabolic. This f
will be briefly discussed further on.! Activities on adjoint
equations for receptivity purposes appear to have been i
ated in Russia in the 1980s;13 a flurry of new results for both
local and nonlocal stability problems have been publishe
the last few years.14–22 In the present work the APSE repre
sent but a step of the optimization process. Adjoint equati
arise naturally in variational procedures; for example, th
have been employed in the study by Balakumar and Ha23

focused on determining the optimal suction distribution
the reduction of theN factor, for instability waves growing
on top of the Blasius and the Hiemenz flows.

In closing this section we note that an approach sim
to ours is being pursued at the same time in Sweden,24,25

both groups involved working under the impulse, and w
partial support, of the European project ALTTA~Application
of Hybrid Laminar Flow Technology on Transport Aircrafts!.

II. PROBLEM MODELING

We consider a two-dimensional flow above a flat pla
betweenx5x0 andx5xf ; x0 is located upstream of branc
I of the neutral curve andxf downstream. A normal suction i
applied at the wall (y50) over a streamwise domainGC

included in@x0 ,xf # ~dimensionless values!. The flow state is
defined by a mean velocity,

Q~x,y!5@U,V#T~x,y!,

and by a disturbance vector,

q̃~x,y,t !5@ ũ,ṽ,p̃#T~x,y,t !.
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Velocities are scaled by the free stream velocityU` and
lengths byd0(x08)5Anx08/U`, n being the kinematic viscos
ity and x08 the dimensional equivalent ofx0 . These charac-
teristic quantities define a Reynolds numberRd0

5Rd(x08)

5AU`x08/n. The evolution of the mean flow is described b
Prandtl’s equations with classical boundary conditions
cept for the normal velocity at the wall; in symbolic form

LPQ50, ~1!

lim
y→1`

U~x,y!51, Q~x,0!5@0,VW#T~x!. ~2!

The system is initialized atx5x0 with the Blasius flow so-
lution. Using this model we implicitly assume that the me
pressure remains unaffected by the wall forcing, i.e., that
magnitude of the wall forcing is of orderRd0

21. The appro-

priateness of this assumption is evaluated in Appendix A
The behavior of TS waves can be well described by

PSE. These linear equations were first proposed by Her
and Bertolotti26 and are fully documented in Refs. 27 and 2
The advantages of such an approach are multiple: it allow
spatial resolution of the problem, which is physically mo
relevant than a temporal approach; the equations
quasiparabolic29,30 in the streamwise direction so that the
can be easily and accurately solved by a numerical march
procedure, and they take into account the streamwise w
dependency of the perturbation mode shapes. The state
turbance vector in the PSE approach reads

q̃~x,y,t !5q~x,y!x~x!e2 ivt,

with q5@u,v,p#T and x(x)5exp(i*x0

x a(j)dj). The ampli-

tude functionq is slowly varying in x, whereasx varies
rapidly; v defines a frequency anda is a complex function,
whose real and imaginary parts correspond, respectively,
wave number and an amplification rate.

The linear PSE system can be formally written

LPSEq50,

with

LPSE5A ]

]y
1B ]

]x
1C1D ]2

]2y
, ~3!

E
0

1`S ū
]u

]x
1 v̄

]v
]x Ddy50, ~4!

the over-bar denoting complex conjugates. Boundary con
tions onu andv are homogeneous at the wall and in the fr
stream. Equation~4! is a closure relation for the determina
tion of a, forcing the amplitude function to vary slowly in
the streamwise direction. Even though its choice is arbitra
a different normalization condition would induce only
small,O(Rd0

22), modification toa. The initial conditions are

given by the local stability eigenfunctions. All equations, f
the base flow and the disturbances, and matrix operatorA,
B, C, D are given in Appendix B.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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1133Phys. Fluids, Vol. 15, No. 5, May 2003 A methodology for optimal laminar flow control
III. OPTIMAL CONTROL

This section describes the optimal control approach p
sued. First, the problem of interest here is defined in a g
eral manner. Then, the Lagrange multipliers methodolog
explained.

As a first step, some key ‘‘ingredients’’ must be iden
fied, i.e.,

~1! the state functions which characterize the problem, h
the mean flowQ and the TS wave (q,a);

~2! the constraints: the Prandtl-PSE problem with its bou
ary conditions;

~3! the way control is applied: a wall-normal forcingVW ;
~4! the cost functionalJ0 which must be extremized.

The choice ofJ0 is crucial. Since our objective is to neutra
ize ~or limit the growth of! the TS wave throughout the do
main, the cost functional must include an appropriate m
sure of the perturbation amplitude. Thus, a relevant quan
is the magnitude of the disturbance energy at the final sta
x5xf ,

Ef5E~xf !,

with

E~x!5uxu2E
0

1`

~ ūu1 v̄v !dy.

In view of ~4! the variation ofE with x is related uniquely to
the presence of the termuxu2. Thus, whenxf is chosen near
branch II of the neutral curve, minimizingE(xf) over a
range of frequencies is equivalent to minimizing theN factor
defined by

N~Rd0
!5max

v
S 1

2
log

E

E~xI!
D ,

with xI located on branch I. This coefficient is common
taken to characterize the transition location of the flow: it
usually admitted that forN'7 transition occurs31 ~in a two-
dimensional boundary layer!. Although the determination o
the ‘‘critical’’ value of N is purely empirical and does no
take into account the inflow disturbances conditions, the
calledeN method, introduced in the 1950s,32,33 is still widely
used nowadays in the aeronautical industry.

One may argue that choosingEf as a cost functiona
does not guaranteea priori that the perturbation amplitud
would decrease significantly over the whole unstable reg
Hence, it may be more convenient to introduced inJ0 the
mean value ofE over an objective domainGm ,

Em5E
Gm

E~x!dx.

In generalGm may be the whole domain@x0 ,xf # or a portion
of it such as, for example, the unstable region of the TS w
under unforced conditions. The final cost functional is th

J05k
Ef

Ef
unc1~12k!

Em

Em
unc1sE

GC

S dVW

dx D 2

dx,
Downloaded 21 Oct 2004 to 130.251.56.122. Redistribution subject to AI
r-
n-
is

re

-

a-
ty
n

o-

n.

e

with k between zero and one depending on the goal we p
sue, and the exponent ‘‘unc’’ indicating the reference va
of the uncontrolled case. The last term in the cost function
introduced to prevent the occurrence of sharp gradients
the wall normal velocity,34 which could violate the BLE and
PSE assumptions. It plays the role of a penalty in the ob
tive functional. In practice the cases50 produces a solution
~which may or may not violate the parabolic assumptio!,
and by increasings this solution is simply smoothened at th
outer edges ofGC .

A further requirement must be considered: to prev
having an ill-posed problem leading to unbounded solutio
we must ensure that the size of the control remains sma
that suction does not affect the mass flux~provoking the
so-calledsink effect!. To ensure this we impose the value
the control energy as an additional constraint, i.e.,

E
GC

VW
2 dx5EC , ~5!

with EC fixed. The advantages of such an approach are
the parameterEC has a physical meaning, and that compa
sons between different cost functionals can be easily m
for a given control energy. Alternatively, we could have ch
sen to fix the flow rate through the porous wall, or the pow
consumption of the compressor needed to suck fluid from
wall ~the latter quantity being proportional toVW

3 ). Taking
power of two of the control function has the advantage
yielding a simple linear relation onVW once functional gra-
dients are set to zero.

The optimal control problem is now stated as follows
Find the normal velocity at the wall VW and the state
~Q,q,a! which minimize the cost functionalJ0 subject to the
constraints (1), (2), (3), (4), (5) with appropriate bounda
and initial conditions.

The method used in this paper to solve this control pr
lem is based on Lagrange multipliers, as described, for
stance, by Gunzburger.9 The principle of the method is to
transform the constrained optimization problem into an u
constrained one. For this purpose the following inner prod
is defined,

^f,c&5E
x0

xf E
0

1`

f̄c dy dx.

Lagrange multipliers (Q* ,q* ,l* ,g* ,bW* ) are then intro-
duced to enforce the constraints and a Lagrangian functio
is defined:

L5J02J1 , ~6!

with

J15^Q* ,LPQ&1E
x0

xf
l* ~x!@V~x,0!2VW~x!#dx

1bW* S EC2E
GC

VW
2 dxD 1^q* ,LPSE q&

1E
x0

xf
ḡ* ~x!E

0

1`S ū
]u

]x
1 v̄

]v
]x Ddy dx1c.c.,
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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1134 Phys. Fluids, Vol. 15, No. 5, May 2003 Airiau et al.
where c.c. denotes complex conjugates, needed to ensur
the range of the functionalJ1 is the real axis. We will see
later that the Lagrange multipliersQ* ,q* ,l* ,g* play the
role of adjoint ~or dual! variables for the direct variable
Q,q,VW ,a. bW* is the adjoint variable for the control con
traint. All arguments of the Lagrangian functional are ind
pendent from one another and the optimal control prob
can now be stated as:
Find the control VW , the state~Q,q,a! and the dual state
(Q* ,q* ,l* ,g* ) which renderL stationary.

It should be pointed out that this formulation guarante
only a local extremum; in practice, the numerical resu
show that a minimum is always found, which satisfies
imposed requirements and produces a strong reduction o
disturbance energy.

The gradient ofL in every direction is forced to zero an
this step requires several integrations by parts. Details
how to effect this procedure can be found in Ref. 11. C
celing the gradient ofL with respect to the dual stat
(Q* ,q* ,l* ,g* ) leads to the Prandtl-PSE problem~1,2,3,4!.
The vanishing of the gradient ofL with respect to the state
~Q,q,a! yields the adjoint Prandtl-PSE problem, i.e., in sy
bolic form

LP* Q* 5S* , Q* 5@A,B#T,

LPSE* q* 5s* , q* 5@u* ,v* ,p* #T,

dJ

dx
~x!5H 0, x¹Gm

~k21!
E~x!

Ef
unc , xPGm ,

with (S* ,s* ) source terms which depend, respectively,
(Q,q,q* ,a) and (q,g* ,a). J(x) is a function of the direct
and adjoint variables and provides a closure relation for
determination ofg* . The role ofJ(x) is described, for ex-
ample, in Refs. 11, 15, 19–22; it is a function related to
receptivity properties of the boundary layer. By constructi
the adjoint Prandtl and PSE equations are backward p
bolic in x; they are given in Appendix B.

The adjoint equations are subject to homogene
boundary conditions and are initialized atxf with

A~xf ,y!50,

q* ~xf ,y!5S k
xx̄

Ef
unc2g* D F0,

v
U

,uGT

~xf ,y!,

g* ~xf !5k
xx̄

Ef
unc

E
0

1` 2i ā

Rd0
U

v̄v dy

E
0

1`S 11
2i ā

Rd0
U D ~ ūu1 v̄v !dy

U
xf

,

J~xf !5k
E~xf !

Ef
unc .

Source terms and inhomogeneous terminal conditions s
from the choice of the cost functional~see also Refs. 21 an
25!; they are given in Appendix B.
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Finally, the vanishing of the gradient ofL with respect to
VW provides a coupling relation between direct and adjo
states. This expression, theoptimality condition, defines the
optimal wall forcingVW as a function of the adjoint vecto
Q* at the wall. With the cost functional given by Eq.~6!, we
obtain the ordinary differential equation:

DL
DVW

52s
d2VW

dx2 22bW* VW2A~x,0!50, ~7!

with the boundary conditionsVW50 at both edges of the
control domainGC . A(x,0) is the Lagrange multiplier asso
ciated with the continuity equation of the base flow, eva
ated at the wall. WhensÞ0, theVW-velocity profile exhibits
two ‘‘boundary layers’’ at the outer edges ofGC . This can be
seen by considering a simpler equation whereA(x,0)5Am is
fixed to a constant value@for example, the mean value o
A(x,0)] in a control domain defined byGC5@x0 ,xf #. The
solution of Eq.~7! is in this case

VW~x!5
Am

2bW* F cosha~j20.5!

cosh
a

2

21G ,

a25
bW*

s~xf2x0!2 , j5
x2x0

xf2x0
.

The model suction velocity is plotted in Fig. 1 for dif
ferent values ofa5a(bW* /s,GC). When bW* is fixed, the
slope of the wall-normal suction velocity at the boundar
increases with decreasings. The control profiles calculated
by the full equations show a behavior with respect tos which
is well modeled by the simple caseA(x,0) constant.

In the general case, we define a slope parameter,c0 ,
given by s5c0bW* . In practice,c0 is imposed, and the pa
rameters is calculated.bW* , the Lagrange multipliers asso
ciated with the control energy, is found during the iterati
process from the constraint~5! and the integration of Eq.~7!
over GC :

FIG. 1. Model of the suction velocity.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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1135Phys. Fluids, Vol. 15, No. 5, May 2003 A methodology for optimal laminar flow control
bW* 5S *GC
A2~x,0!dx

4@EC1c0*GC
~c0VW9

212VW8
2!dx# D 1/2

, ~8!

primes denoting derivation with respect to the argume
When s50, the value ofbW* is given by Eq.~8! with c0

50 and the slope of the wall-normal velocity may go
infinity at the edges ofGC . If GC extends toxf , the sharp
gradient ofVW does not occur there, sinceA(xf ,0)50.

IV. NUMERICAL IMPLEMENTATION

The optimal state is numerically reached by an iterat
procedure involving successive integrations of the direct
adjoint equations, according to the following algorithm.

~1! Step 1: Initialization of the PSE problem using the loc
stability eigen-solutions; on the first iteration, whenn
51, VW

(n) is set to zero.
~2! Step 2: Solution of the Prandtl problem withV(x,0)

5VW
(n)(x).

~3! Step 3: Solution of the PSE problem.
~4! Step 4: Convergence test on the objective functiona

uJ 0
(n)2J 0

(n21)u/J 0
(n),e0 then stop, elsen5n11; a

case is considered well converged whene051024.
~5! Step 5: Initialization of the adjoint PSE and bounda

layer problems using the direct state.
~6! Step 6: Solution of the adjoint PSE problem.
~7! Step 7: Solution of the adjoint Prandtl problem.
~8! Step 8: Update of the wall forcing distributionVW

(n) via
the optimality condition and the constraint on the cont
energy, i.e.,VW

(n)5VW
(n21)1 (r/2bW* ) (DL/DVW)(n21).

~9! Step 9: Go to step 2.

Although no efforts are made to optimize the relaxati
parameterr, convergence is rather quick, and is typica
reached in about ten iterations. More sophisticated optim
tion algorithms have been employed, for example, in
work by Pralitset al.25 and can be necessary in other types
optimization problems.

Since the direct and adjoint problems are of the sa
nature, the same grid and finite difference tools are used
their resolution. The grid is uniform in thex direction ~step
Dx) and stretched in they direction, refined near the wall. In
the streamwise direction a first-order upwind or downwin
depending of the state, scheme is employed for the P
APSE problem and a second-order scheme is used for
direct and adjoint Prandtl’s equations. The normal direct
is treated by a fourth-order compact scheme@Eq. ~7! as well#.
The free-stream boundary is located 15 boundary layer th
nesses away from the wall. The closure relations are
forced by a Newton–Raphson procedure. Grid converge
studies have been carried out, and solutions on a mesh o
streamwise points and 150 normal points for the case of
2 are grid-converged~but these are not the minimum num
bers of points needed to reach convergence!. Further details
on the PSE/APSE procedure are given in Ref. 11. It sho
be noted that, in general, the ‘‘best’’ grid for the PSE do
not coincide with the ‘‘best’’ grid for the APSE, where b
‘‘best’’ we mean the coarsest mesh producing grid-conver
solutions. All solutions here are obtained with the same~fine!
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t.

e
d

l

if

l

a-
e
f

e
or

,
E-
he
n

k-
n-
ce
00
g.

ld
s

d

grid for PSE and APSE, and this is simply a convenie
choice since calculations proceed very rapidly.

The APSE and PSE are nearly parabolic and a numer
instability usually occurs at extremely small streamwise s
size, whenDx is lower thanDxmin'1/Real(a). A procedure
given in Ref. 29 has been implemented for the PSE an
induces a corresponding modification on the APSE~for de-
tails of this technical aspect of the numerical implementat
the reader can consult Ref. 25!. The casec050 of Fig. 7
~with only 50 points inx, no stabilization procedure! pro-
duces exactly the same results as the ‘‘reference’’ case of
2 (Gm5$xf%), which is obtained with the stabilization pro
cedure. We have also found that the minimal stepDxmin is
nearly the same for the PSE and the APSE. The numer
instability of the PSE has been well known for years;2,28,30

many techniques have been developed to cope with it
robust codes now exist and are used in practi
applications.2,24,25

V. RESULTS

The theory is applied for different reduced frequenciesF
(F5v/Rd) ranging from 1025 to 2731025. Unless other-
wise stated, the suction domainGC starts atx0 and stops at
xf .

A first test consists in estimating the influence of the s
of the objective domainGm for a given frequencyF
51024, with a control energy fixed atEC5531027, and
c050. The parameterEC is chosen to provoke significan
wave damping, after several numerical trials and from
rough estimateEC'(xf2x0)V̄W

2 , whereV̄W'1024 ~cf. Sec.
I!; x0 and xf are taken such thatRd(x0)5250 andRd(xf)
5750. In practice, computations are often carried on bey
xf to follow the further evolution of the TS wave. The varia
tion of E(x) normalized by the value ofE(xf) for the un-
controlled case is plotted in Fig. 2 and the associated opti
forcing profiles are shown in Fig. 3. In the first case~denoted
by Gm5$xf%, the ‘‘reference’’ case! the objective is to mini-
mize the disturbance energy at the final stationxf , whereas
in the second and third casesGm corresponds, respectively, t

FIG. 2. Disturbance energy for differentGm : F51024, EC5531027.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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the unstable region@of the uncontrolled case, beginning
Rd(xI)5419.5] and to the whole suction domain. In the la
case a constant suction distributionVW with EC5531027 is
applied all alongGC . As expected, the smaller perturbatio
energy atxf is achieved in the first configuration; the be
result in terms of reduction of the mean~alongx) energy is
given by the third case. It should, however, be noticed t
whatever the case, the energy is always reduced very con
erably over the entire domain and particularly in the unsta
region whereRd.420. The evolution of the disturbance e
ergy whenGm5$xf% is almost identical to the case with con
stant suction. The suction distribution differs considera
according to the objective imposed. The profile in the fi
case is similar to the case with constant suction. For
second case, suction is mainly localized upstream ofGm

~here, the stable region of the uncontrolled flow!, and for the
limit case whereGm5GC5@x0 ,xf # ~third case! the control is
almost essentially imposed at the entrance of the dom
The effects on the shape factorH and on the growth rates
5 (1/E)(dE/dx) of these distributions are evaluated in Fig
4 and 5. Figure 4 shows that whenever suction is applied,
shape factor is reduced. Furthermore, the variations ofH are
quite well correlated to those of the corresponding suct
profiles, so that the minimum ofH is more or less located a
the station where suction is most intense. As the evolution
the energy curves indicates, the region where the growth
is positive is reduced after suction is applied~cf. Fig. 5!.
When suction is stopped the shape factor increases bac
its value without control, whereas the growth rates crosses
the horizontal axis after a transient period, whose length
creases asGm decreases. Figures 3, 6, and 8 show that
Gm5GC5@x0 ,xf #, the very strong variation of the wall ve
locity nearx0 produces a sharp peak on the growth rate e
lution, a fact which might contradict the hypotheses at
basis of the PSE. It is hence an unwise~a posteriori! choice
to selectGm5GC . As demonstrated next, adding a term p
nalizing the square of the streamwise derivative of the c

FIG. 3. Optimal wall suction profiles for differentGm : F51024, EC55
31027.
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trol function in the objective functional decreases the ste
variation of the suction velocity, leading to smoother grow
rate. The appropriateness of Prandtl’s equations in repres
ing flows with rapid variations in the vertical velocity i
discussed in Appendix A, which presents some comparis
with full Navier–Stokes computations. When comparing
the results by Balakumar and Hall23 one might be struck by
the differences between the control velocities in the two
proaches for comparable flow cases. These differences o
nate primarily from the different cost functionals employ
in the two control methodologies.

The effect of varyingc0 is assessed next, for the so
called ‘‘reference’’ case (Gm5$xf%). Figures 6 and 7 show
the influence of the slope parameterc0 on the suction profile
and disturbance energy when either the control energyEC is
fixed, or whenbW* is fixed to the ‘‘reference’’ value~the

FIG. 4. Optimal shape factors for differentGm : F51024, EC5531027.

FIG. 5. Optimal growth rate for differentGm : F51024, EC5531027.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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legend of the plot indicates which quantity is held fixed!. In
the first case, the slope ofVW decreases at the edges ofGC ,
but VW increases locally within the control domain to mai
tain the contraint on the control energy. As far the dist
bance energy curve is concerned, the results are very c
among all the configurations examined in Fig. 7. In the s
ond case (c050.5, bW* 5bW* re f), fixing bW* means decreasin
the control energyEC and penalizing the final disturbanc
energy. Eventually, the control is found to be less efficie
The cases50 provides the most efficient suction profile fo
any given control energyEC ~cf. Fig. 7!. In the remainder of
the paper,c0 is always fixed to zero simply to provide th
limiting case scenario as to the reduction of the disturba
energy.

In the figures that follow the influence of the energyEC

is assessed forGm5GC5@x0 ,xf # and Gm5$xf%, at the fre-
quencyF51024. In the first case~Figs. 8 and 9!, the suction
distributions always decrease fromx0 to xf . For a local Rey-
nolds numberRd greater than 400 there is no significa
difference among all suction profiles, except whenEC is
equal to 1028. This results in similar variations of the dis

FIG. 6. Optimal wall suction profiles for different values of the slope p
rameterc0 . F51024, EC5531027.

FIG. 7. Disturbance energy for different values of the slope parameterc0 .
For caption, see Fig. 6.
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turbance energyE downstream ofRd5400. As the level of
EC increases, the suction is more intense in the close vici
of x0 , so thatE decreases more rapidly at the beginning
Gm . WhenGm is reduced to the last station~Fig. 10!, suction
is more or less equally spread all overGC , even for a high
level of control energy. For the largest value ofEC suction is
maximum at the end of the control domain, but even then
profile varies relatively smoothly~cf. Figs. 10 and 11!. This
quasihomogeneous spreading of the wall velocity permits
employment of a bigger amount of control energy as co
pared to the case withGm5GC , where sharp peaks at th
domain entrance can become quickly of orderRd

21 . One
must, however, always weight the cost of controlling t
flow against the expected benefits. Since considerable re
tions in E are achieved even for small control energies,
Fig. 11 shows, it might be unnecessary to adopt a co
strategy. This is further compounded by the fact that in r

-

FIG. 8. Optimal wall suction profiles for differentEC : F51024, Gm

5GC , c050.

FIG. 9. Optimal disturbance energies for differentEC : F51024, Gm

5GC , c050.
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applications a number of external factors~free-stream turbu-
lence, impinging insects, imperfectly operating suction s
tems, icing, etc.! will be responsible for deviations betwee
the control laws imposed and those actually realized.

Clearly, optimal suction distributions could be dete
mined for any value ofF. It is, however, interesting to stud
the effect of the optimal suction obtained for a givenF on
instability waves characterized by different values ofF. This
appears to be necessary in particular in view of the proced
employed; in fact, since the PSE are not uniformly valid inx
~just like the Orr–Sommerfeld equation!, different starting
points need to be employed when integrating the system
ward for varying frequenciesF. This poses a difficulty if one
were interested in computing the control to an inflow con
tion with a broad frequency content, since the inhomo
neous term in the adjoint equations would be constituted
terms defined over different domains. Fortunately, the sit
tion is not that desperate, and a control obtained for

FIG. 10. Optimal suction profiles for differentEC : F51024, Gm5$xf%,
c050.

FIG. 11. Optimal disturbance energies for differentEC : F51024, Gm

5$xf%, c050.
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given frequency turns out to have a positive effect also
other frequencies. Figures 12 and 13 show the behavio
Tollmien–Schlichting waves at different frequencies, all su
mitted to the same wall suction, i.e., the optimal suction
Gm5$xf%, EC52.531027 and F52.531025. Control be-
gins at Rd5250 and ends atRd52000. The range of fre-
quencies considered goes fromF5231025 to F527
31025. For all these frequencies a reduction of the dist
bance energy is observed, as shown by the evolution of thN
factor with and without suction in Fig. 12. When suctio
ends, the behavior ofN becomes similar to that of the un
controlled case. If transition were defined by anN value
equal to 7, it can be argued that transition would not occu
the domain considered. In Fig. 13 the neutral curves with
without the previous control are displayed. When suction
applied branch I moves downstream and branch II upstre

FIG. 12. N factor with and without suction; suction is optimal forF52.5
31025, EC52.531027. Dashed lines showN for a givenF, the solid line
is their envelope.

FIG. 13. Neutral curves with and without suction; suction is optimal forF
5231025, EC52.531027.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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except for Rd greater than 1500 where the two seco
branches are more or less superposed. Globally when su
is applied the unstable region is reduced. The results are
encouraging if the optimal control corresponding to a f
quencyF5231024 were employed, since the unstable r
gion for that frequency is very small compared to the u
stable region for the wave of frequencyF52.531025 ~cf.
Fig. 13!. An empirical observation is that the best contr
over a wide range of frequencies is the optimal distribut
that corresponds to the monochromatic wave displaying
widest unstable range.

A further test consists in considering a control over pa
els of fixed length; the level of each suction is found
applying the theory to a forcing domain subdivided into se
eral intervals~Fig. 14!, with EC5531027 and F51024.
Here again, not much difference can be seen on the en
curves when comparing ‘‘the optimal strip case’’ to the ‘‘co
stant strip case’’~the latter being defined by a constant v
locity along each one of the five strips considered produc
the same flow rate as the ‘‘optimal strip case’’!. Moreover,
even thought the decrease in energy is not as strong as i
continuous case, the reduction is still very significant wh
compared to the situation without control~Fig. 15!. Compar-
ing the energy curves for the two cases with suction o
strips, one may think that the constant suction distribution
more efficient than the optimal one. In fact, the mean va
of the disturbance energy is smaller for the optimal ca
since suction acts more efficiently near the entrance of
control domain.

VI. AN ALTERNATIVE FORMULATION

In the following the problem is reconsidered with a
alternative cost functional leading to a much simpler form
lation. The reason for trying a simpler approach stems fr
the observation that suboptimal suction distributions prod
satisfactory results~cf. Fig. 12!. As discussed in Sec. I eve
a small decrease of the shape factor is associated wi

FIG. 14. Suction profiles: continuous suction compared to suction over
strips,F51024, EC5531027, Gm5GC .
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stabilization of the boundary layer; hence, rather than se
ing the optimal suction for damping a Tollmien–Schlichtin
wave, the objective here is to find the suction profile that w
produce the smallest shape factor throughout the dom
This is clearly a heuristic approach; the appropriateness
the results will have to be checkeda posterioriby perform-
ing PSE calculations on the base flow determined.

A. The optimal control system

For this new problem, the state function is the mean fl
Q and the constraint is simply the Prandtl problem, with
~unknown! inhomogeneous wall condition. The new obje
tive functional is the integral of the shape factorH over the
objective domainGm , i.e.,

J05E
Gm

H dx

with

H5
d1

d2
5

*0
1`~12U !dy

*0
1`U~12U !dy

.

No penalty on the gradient of the velocity suction is add
the influence of such a penalization on the results~in term of
suction velocity slope, disturbance growth rate, control
ergy distribution! is expected to be qualitatively of the sam
kind as in Sec. V.

Reapplying the methodology described before, the
grangian functionalL is defined by

L5J02J1 ,

where J1 is now J15^Q* ,LPQ&1*x0

xf l* @V(x,0)

2VW(x)#dx1bW* (EC2*Gm
VW

2 dx). Construction of the op-
timal control problem is simpler than in the previous ca
and leads to an optimality system which reads in symbo
notations

LPQ50,

LP* Q* 5SH* .

e

FIG. 15. Disturbance energies: continuous suction compared to suction
five strips.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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1140 Phys. Fluids, Vol. 15, No. 5, May 2003 Airiau et al.
The source termSH* of the adjoint problem comes from de
riving the cost functional with respect to the mean flow v
locity U. Details of the direct and adjoint problems are giv
in Appendix C.

B. Numerical results

In the following numerical results are given for a contr
domain that starts atRd(x0)5250 and stops atRd(xf)
5750. Figure 16 shows optimal suction profiles for vario
control energy levels varying from 531027 to 1025. When
the control energy is low, suction increases slowly a
reaches its maximum near the end of the domain. The re
is not very different from those plotted in Figs. 3 and 6. T
shape factors are plotted in Fig. 17. Compared to the unc
trolled case,H is reduced over the whole domain and
minimum can be found in correspondence to the maxim

FIG. 16. Minimization of the shape factor: suction profiles for differe
values ofEC .

FIG. 17. Optimal shape factors for differentEC .
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amplitude of the wall suction velocity. As the level ofEC

increases, a peak appears on the suction distribution a
first station. This sudden peak causes a rapid reduction oH
at the entrance of the domain. The effect on a TS wave w
F51024 of the optimal base flow profiles is shown in Fig
18: as expected, all of these suction distributions induce v
significant reductions in disturbance energy.

The two last Figs.~19 and 20! show the behavior
of TS waves in a range of frequencies from 231025 to
2731025. All of these perturbations are subject to the op
mal suction computed in the intervalRd(x0)5250 to
Rd(xf)52000, forEC52.531027. The difference between
the two neutral curves~Fig. 19! is not large, albeit compa
rable to that displayed in Fig. 13. On the other hand, theN
factor ~Fig. 20! is kept below 2 throughout the control do
main; pastRd52000, N increases in a similar manner as
Fig. 12.

FIG. 18. Optimal disturbance energies for differentEC , F51024.

FIG. 19. Neutral curves with and without suction; suction is optimal
EC52.531027.
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VII. CONCLUDING REMARKS

The optimal LFC of TS waves developing in a tw
dimensional boundary layer has been studied. The techn
used for solving this problem relies on the iterative nume
cal resolution of a coupled system of direct and adjoint eq
tions, plus an optimality condition. One of the key points
this optimal control approach is the definition of the co
functional. In the present case, given the parabolic natur
the equations governing the system’s state, it has been fo
necessary to penalize the derivative of the control velocity
avoid steep gradients ofVW which could contradict the hy
pothesis of slow streamwise variation of the base flow. T
is particularly the case when the cost functional is based
the integral of the disturbance energy through the streamw
domain, since in this case a very sharp peak ofVW is always
produced at the initial control points, to rapidly bring th
disturbance energy to a low value. Penalizing the gradien
VW results in the formation of more or less wide ‘‘bounda
layers’’ at the edges of the control domain, as deduced fr
a simplified analysis of the equations. This technique de
oped here appears to be very efficient and a simple grad
algorithm permits a convergence of the optimality conditi
~7! within few iterations, producing large reductions in di
turbance energy at mild control cost. When large control
ergies are employed almost any suction distribution produ
strong effects on the TS waves amplitudes, rendering
optimal control approach proposed almost purposeless
the other hand, the present approach~or a similar one such a
that given in Ref. 23! is necessary when a strict constra
exists on the control energy that can be used, or when suc
can be applied only over one or a few short porous strip

An alternative, simpler approach has also been tes
based on the minimization of the shape factor. The results
promising for the damping of TS waves.

FIG. 20. N factor with and without suction; suction is optimal forEC

52.531027.
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APPENDIX A: A -POSTERIORI VERIFICATION
OF THE PARABOLIC ASSUMPTION
USED FOR THE TREATMENT
OF THE BOUNDARY LAYER FLOW WITH SUCTION

In some of the cases treated, particularly those for wh
the penalization parameters in the cost function is set to
zero, the parabolic assumption inherent in Prandtl’s eq
tions is put to a rude test, because of the sharp gradien
VW which can appear~cf. Figs. 3, 6, 8, and 14!. Some
Navier–Stokes calculations of the boundary layer flow w
or without suction have thus been carried out, to ass
whether the Prandtl-based numerical predictions are relia

The computations reported in the following have be
carried out with theJADIM code presented in detail in prev
ous studies to which the reader is referred.35–37 The code
solves the three-dimensional unsteady Navier–Stokes e
tions written in velocity-pressure variables in a general s
tem of orthogonal curvilinear coordinates. The discretizat
makes use of a staggered mesh and the equations are
grated in space using a finite volume method, all spatial
rivates being approximated using second-order cente
schemes. Time advancement is achieved through a Run
Kutta–Nicolson algorithm which is second-order accurate
time, while incompressibility is enforced at the end of ea
time step by solving a Poisson equation for an auxiliary p
tential.

Several different boundary conditions are imposed
the boundaries of the computational domain. In the com
tations the wall is located aty50 and starts atx50. A uni-
form inflow velocity U`51 is imposed atx5x0,0, and a
parabolic approximation of the governing equations, allo
ing the flow to leave freely the domain without inducin
significant perturbations, is imposed downstream, i.e., fox
5xf . On the external boundary, corresponding toy5y` ,
the boundary condition states that the normal derivative
the normal velocity is zero and the tangential velocity equ
the uniform inflow velocity. Finally, a symmetry condition i
imposed aty50 between the inlet and the beginning of th
wall. The reason to initiate the computations ahead of
leading edge~of a zero thickness flat plate! is to allow a
‘‘natural’’ adjustment of the flow around the plate’s leadin
edge, a known source of problems in this kind of compu
tion.

The computational domain alongy goes from 0 toy`

536.8d(xf), whered(x)5(xn/U`)1/2 and xf is the right-
most point in the domain. In the streamwise direction t
domain ranges fromx0527.1d(xf) to xf5845d(xf), so
that, at the final point,Rd5845. To ensure grid-converge
results several different grids have been tested. Eventual
is found that a grid composed by 1200380 nodes is suffi-
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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ciently accurate for our purposes. A constant spacing of g
points along thex direction is used, whereas in they direc-
tion the mesh is uniform close to the wall and then smoot
stretched, ensuring that the ratio between the width of
successive cells is less than 1.12. In the absence of co
the shape factor found is always within 0.5% of the theor
ical value of 2.591, in the rangeRd5@200,845# ~cf. Fig. 24!.

The optimal suction distributions chosen for the pres
comparison tests correspond toGm5$xf%, c050.1 ~cf. Fig.
6! andGm5GC , c050 ~cf. Fig. 8!. For both cases we hav
Ec5531027 andF51024. These are called cases 1 and
respectively, and are displayed in Fig. 21. Case 1~for which
the penalization factor is different from zero! is ‘‘well be-
haved,’’ whereas case 2 is characterized by a very sharp
dient of VW at the beginning of the control domain.

With suction, thex-momentum Navier–Stokes equatio
at the wall reads

VW

]U

]y
52

]P

]x
1

1

Re

]2U

]y2 .

FIG. 21. Suction velocity for cases 1 and 2.

FIG. 22. Wall terms of the streamwise momentum equation at the
evaluated from Navier–Stokes computations; case without suction
case 1.
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The two terms on the right-hand side of the equation
drawn in Figs. 22 and 23~the left-hand side term is no
shown not to render the figures too crowded; we have, ho
ever, verified that the above-mentioned equation is satis
accurately!. In the absence of suction, Fig. 22 shows that t
pressure gradient is equal to the viscous term, and they
both less than 0.531026. In case 1, the streamwise pressu
gradient can reach the value of 231026 in proximity of the
point where wall suction is first applied~i.e., Rd5250). On
the other hand, the vertical diffusion term is much larger a
it reaches a magnitude of about 3.331025. For case 2 the
situation is more critical and a pressure gradient peak can
noticed in Fig. 23 nearRd5250; both terms of the above
mentioned equation achieve a largest magnitude of ab
2.531024. Clearly, near the point where the peak occu
Prandtl’s equations are untenable; however, this peak rela

ll
nd

FIG. 23. Wall terms of the streamwise momentum equation at the w
evaluated from Navier–Stokes computations, case 2.

FIG. 24. Shape factors: comparison between the parabolic approach
Navier–Stokes~NS! solutions. Solid line: Blasius’s similarity solution
Dashed line: case 1, Prandtl’s equations. Dot-dashed line: case 2, Pra
equations. Symbols: NS computations corresponding to no suction and c
1 and 2.
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very rapidly and shortly downstream of it]P/]x becomes
very small, consistent with the parabolic approximatio
From Fig. 24 it can be appreciated that the agreemen
shape factor between Prandtl’s and Navier–Stokes’ resul
very good, even for case 2. This attests to the weak de
dence of the shape factor on the mean pressure gradien
the cases examined here.

Given the very rapid relaxation of the pressure gradi
shown in Fig. 23 and the good comparison in shape fac
between Prandtl’s and Navier–Stokes’ solutions, it is reas
able to state that the predictions based on the parab
model presented in this paper meet the criteria of quality
accuracy required by the present application.

APPENDIX B: OPTIMALITY SYSTEM
FOR THE MINIMIZATION OF THE DISTURBANCE
ENERGY OF A TS WAVE

1. Direct problem

Direct equations:

F 0 1

V 2UGQy1F1 0

0 0GQx1F 0 0

2Rd0

21
0GQyy50,

F V 0 0

0 V 1

0 1 0
G qy1FU 0 1

0 U 0

1 0 0
G qx

1F j01Ux Uy ia

0 j02Vy 0

ia 0 0
G q

1F 2Rd0

21
0 0

0 2Rd0

21
0

0 0 0
G qyy50

with j05 i (aU2v)1 a2/Rd0
.

PSE normalization condition:*0
1`(ūux1 v̄vx)dy50.

Boundary conditions:

;xP@x0 ,xf #, U~x,0!50,

V~x,0!5H VW~x!, xPGC

0, x¹GC
,
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;xP@x0 ,xf #, lim
y→1`

U~x,y!51,

;xP@x0 ,xf #, @u,v#~x,0!5@0,0#,

;xP@x0 ,xf #, lim
y→1`

@u,v#~x,y!5@0,0#.

Initial conditions:

;yP@0,1`@ , U~x0 ,y!5U0~y!,

;yP@0,1`@ , @u,v,p#~x0 ,y!x~x0!5@u0 ,v0 ,p0#~y!,

with U0 the Blasius solution atx0 and @u0 ,v0 ,p0# the cor-
responding eigensolution.

2. Adjoint problem

Adjoint equations:

F1 2U

0 V GQy* 1F0 0

1 0GQx* 1F0 22Uy

0 2Vy
GQ*

1F0 0

0 Rd0

21GQyy* 5S* ,

F V 0 0

0 V 1

0 1 0
G qy* 1FU 0 1

0 U 0

1 0 0
G qx*

1F j12Vy 0 i ā

2Uy j11Vy 0

i ā 0 0
G q*

1F Rd0

21
0 0

0 Rd0

21
0

0 0 0
G qyy* 5s*

with

j15 i ~ āU2v!2
ā2

Rd0

,

S* 52RealF ū* uy1 v̄* vy

ia~ ū* u1 v̄* v !1 v̄* vx1ū* ux1~ v̄* v2ū* u!x2~ ū* v !y
G ,

s* 55 F ḡ* ux2~g* u!x2~12k!uuxu2/Em
unc

ḡ* vx2~g* v !x2~12k!vuxu2/Em
unc

0
G , xPGm

F ḡ* ux2~g* u!x

ḡ* vx2~g* v !x

0
G , x¹Gm

.
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Adjoint PSE closure relation:

dJ

dx
~x!5H ~k21!/Em

uncxx̄E
0

1`

~ ūu1 v̄v !dy, xPGm

0, x¹Gm

with

J~x!5E
0

1`F S U2
2ia

Rd0
D ~ ū* u1 v̄* v !1ū* p1 p̄* uGdy.

Boundary conditions:

;xP@x0 ,xf #, B~x,0!50,

;xP@x0 ,xf #, lim
y→1`

@A,B#~x,y!5@0,0#,

;xP@x0 ,xf #, @u* ,v* #~x,0!5@0,0#,

;xP@x0 ,xf #, lim
y→1`

@u* ,v* #~x,y!5@0,0#.

Terminal conditions:

;yP@0,1`@, A~xf ,y!50,

;yP]0,1`[,

@u* ,v* ,p* #~xf ,y!5~kux~xf !u2

2g* ~xf !!F0,
v
U

,uG~xf ,y!,

J~xf !5
kxx̄

Ef
uncE

0

1`

~ ūu1 v̄v !dyU
xf

,

g* ~xf !5
kxx̄

Ef
unc

E
0

1` 2i ā

Rd0
U

v̄v dy

E
0

1`S 11
2i ā

Rd0
U D ~ ūu1 v̄v !dy

U
xf

.

3. Optimality condition

~with c050!

A~x,0!5H 22bW* VW~x! xPGC

0 x¹GC
.

APPENDIX C: OPTIMALITY SYSTEM
FOR THE REDUCTION OF THE SHAPE FACTOR H

1. Direct problem

Direct equations:

F 0 1

V 2UGQy1F1 0

0 0GQx1F 0 0

2Rd0

21
0GQyy50.

Boundary conditions:

;xP@x0 ,xf #, U~x,0!50,

;xP@x0 ,xf #, lim
y→1`

U~x,y!51,
Downloaded 21 Oct 2004 to 130.251.56.122. Redistribution subject to AI
V~x,0!5H 0, x¹GC

VW~x!, xPGC
.

Initial condition:

;yP@0,1`@ , U~x0 ,y!5U0~y!.

2. Adjoint problem

Adjoint equations:

F1 2U

0 V GQy* 1F0 0

1 0GQx* 1F0 22Uy

0 2Vy
GQ*

1F0 0

0 Rd0

21GQyy* 5
1

d2
F 0
11H~122U !G .

Boundary conditions:

;xP@x0 ,xf #, B~x,0!50,

;xP@x0 ,xf #, lim
y→1`

@A,B#~x,y!5@0,0#.

Terminal condition:

;yP@0,1`@ , A~xf ,y!50.

3. Optimality condition

A~x,0!5H 0, x¹GC

22bW* VW~x!, xPGC .
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