PHYSICS OF FLUIDS VOLUME 15, NUMBER 5 MAY 2003

A methodology for optimal laminar flow control: Application
to the damping of Tollmien—Schlichting waves in a boundary layer
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A methodology for determining the optimal steady suction distribution for the delay of transition in

a boundary layer is presented. The flow state is obtained from the coupled system of boundary layer
equations and parabolized stability equatiRSB, to account for the spatially developing nature

of the flow. The wall suction is defined by an optimal control procedure based on the iterative
solution of the equations for the state and the dual state; the latter is available from the adjoint
boundary layer equations and the adjoint PSE. The technique is applied to the control of
two-dimensional Tollmien—SchlichtinglS) waves. Results show that the onset of the instability
can be significantly postponed and/or the growth rate considerably reduced by applying an
appropriate suction through the whole wall length, in a wide frequency band. Control over panels of
finite length completes the study and brings useful, preliminary information on the practicality of the
approach in view of implementation. Finally, a simplified methodology which does not rely on the
PSE is discussed, based on the minimization of the shape factor. Satisfactory results are achieved
with this simpler approach which might, thus, constitute a method of choice when results are needed
rapidly, i.e., during on-line control of TS waves. @003 American Institute of Physics.

[DOI: 10.1063/1.1564605

I. INTRODUCTION joint system of equationgfor both the basic flow and the
disturbances Adjoint equations have recently attracted the
Laminar flow control(LFC) is an old technique in aero- increased attention of fluid dynamicists, for a number of ap-
nautics (cf. the excellent recent review by Joslinintro-  plications ranging from flow receptivity to shape optimiza-
duced in the 1930s when the realization came about that &on, from optimal perturbations to meteorologite book by
thinner boundary layer is less prone to destabilization to inMarchul® and the proceedings of a recent workshop on ad-
finitesimal disturbances of the Tollmien—Schlichtii@S)  joint system$ provide but a view of some developments in
type. Since the laminar skin friction drag can be up to 90%the field.
smaller than that in the presence of turbulent flow, the eco-  Studies on suction-based-LFC can be traced back to the
nomical advantage of delaying transition is evident. Amongearly experiments by Ludwig Prandtl, some one-hundred
the methods adopted to achieve a thinner base flow, the oR@ars ago. He considered the flow past a cylinder and applied
which has attracted most attention is that based on the suguction on one side of the cylinder wall to prevent separa-
tion of fluid through the wall, over all or over porti@) of  tion; as a consequence drag was markedly reduced as op-
the surface, by employing porous plates, suction panels, giosed to the case without suction. The first theoretical study
other techniques. on the effect of suction in a boundary layer is due to
In this paper a LFC methodology based on optimal con-Schlichting® By applying uniform suction over an infinite
trol theory is proposed and validated for the case of twoflat plate he determined the ensuing asymptotic velocity pro-
dimensional TS waves over a flat surface. The procedure ifile. Later researchers demonstrated that boundary layers
of general nature and can be extended without conceptugith suction are more stable than the Blasius boundary layer
modifications to the case of boundary layers over curvedo two-dimensional TS wave$or a full account the reader is
surfaces subject to instability waves other than TS. The onlyeferred to the synthesis by Stifartinterestingly it became
limitation is that both base flow and disturbances should deeustomary to represent the critical Reynolds number of the
velop slowly in the directiofs) parallel to the wall, so that flow as a function of the shape factHlr, the collapse of the
parabolic equations can be established to govern their evolutata corresponding to many different forms of suction onto a
tion. Clearly then, the suction applied must be sufficientlysingle line led Stuart to state that in boundary layers, “to a
“well-behaved” not to modify the parabolic nature of the reasonable approximation, the critical Reynolds number for
boundary layer equationgBLE). The disturbances are any velocity profile is a function dff only.” A confirmation
treated by employing the parabolized stability equationsf this statement is also given by Schlichtih@chlichting
(PSB, a system which has already been applied successfullglso computed the uniform suction velocity necessary to
to a large variety of flow case&f. Herberf for a recent maintain the flow laminar throughout the whole length of the
review). The optimal control procedure rests on the defini-plate; such a value i¥\,=1.2x 10 * in outer velocity scale.
tion of a dual state, which represents the solution of an ad- Recent works on the subject of optimal control of insta-
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bility waves abound in the literature. A significant paper isVelocities are scaled by the free stream velodity and
that by Joslinet al.® who proposed a methodology for the lengths bySo(x4) = Vvxy/U.., v being the kinematic viscos-
determination of suction for drag reduction in a system modity and x; the dimensional equivalent of,. These charac-
eled by the Navier—Stokes equations. The optimality systeneristic quantities define a Reynolds numleO: Rs(X¢)

is “closed” by the adjoint Navier—Stokes equations. The — [j_x7/5, The evolution of the mean flow is described by
mathematics behind the approach, based on Lagrange mulibyangil's equations with classical boundary conditions ex-

pliers, can be found in G_unzburggethe same approach has cent for the normal velocity at the wall; in symbolic form
been followed by Cathalifaud and Luchifin their study of

the optimal control of streaks and vortices in flat and curved  £.,Q=0, (1)
boundary layers. Also Waltheret al’* employed the
Lagrange multiplier formalism to study the optimal control lim U(x,y)=1, Q(X,0)=[0Vy] (X). 2

of TS waves in a developing boundary layer. In their work — y—+e
they focused on the control of the instability wave, i.e., the
base flow was fixed and the controller acted at the amplituddhe system is initialized at=x, with the Blasius flow so-
level of the disturbances. The adjoint PSE equati@RSE lution. Using this model we implicitly assume that the mean
were derived and employed for the purpose, and a successfefessure remains unaffected by the wall forcing, i.e., that the
annihilation of the disturbance wave was achiey for- ~ magnitude of the wall forcing is of ordeR; . The appro-
midable technological challenge of how to implement thepriateness of this assumption is evaluated in Appendix A.
theoretically predicted blowing/suction distribution was not  The behavior of TS waves can be well described by the
dealt with in the last two papers cited, but it clearly repre-PSE. These linear equations were first proposed by Herbert
sents the stumbling issue for experimentalists involved irand Bertolott® and are fully documented in Refs. 27 and 28.
turning theoretical predictions into practjce The advantages of such an approach are multiple: it allows a

The APSE lie at the heart of some of the work describedspatial resolution of the problem, which is physically more
here. They represent a system of backward parabolic equaelevant than a temporal approach; the equations are
tions, the integration of which yields receptivity/sensitivity quasiparabol®*® in the streamwise direction so that they
functions? that provide the response of the boundary layer tocan be easily and accurately solved by a numerical marching
forcing at the inflow, at the wall or within the flow domain. procedure, and they take into account the streamwise weak
(Both PSE and APSE are only nearly parabolic. This factdependency of the perturbation mode shapes. The state dis-
will be briefly discussed further onActivities on adjoint  turbance vector in the PSE approach reads
equations for receptivity purposes appear to have been initi- _
ated in Russia in the 19863z flurry of new results for both Gx,y,t)=q(x,y)x(x)e~'",
local and nonlocal stability problems have been published in T y .
the last few year&*~22In the present work the APSE repre- With d=[u,v,p]" and x(x) =exp([; «(£)dé). The ampli-
sent but a step of the optimization process. Adjoint equationgide functionq is slowly varying inx, whereasy varies
arise naturally in variational procedures; for example, theyapidly; w defines a frequency angis a complex function,
have been employed in the study by Balakumar and?fiall whose real and imaginary parts correspond, respectively, to a
focused on determining the optimal suction distribution forwave number and an amplification rate.
the reduction of the\ factor, for instability waves growing The linear PSE system can be formally written
on top of the Blasius and the Hiemenz flows.

In closing this section we note that an approach similar Lpse=0,
to ours is being pursued at the same time in Swéfén,
both groups involved working under the impulse, and withWlth
partial support, of the European project ALT TApplication

: ; : J d 92
of Hybrid Laminar Flow Technology on Transport Aircrafts — A— _
y aQy p EPS,:—A(?y+B§X+C+D57y, (3)
fﬂo TR +_§U dy=0 4
Il. PROBLEM MODELING o U Tk /dy=0, (4)

We consider a two-dimensional flow above a flat plate ] ) )
betweerx=Xx, andx=x; ; X, is located upstream of branch the over-bar denoting complex conjugates. Boundary condi-
| of the neutral curve ang; downstream. A normal suction is toNs onu andv are homogeneous at the wall and in the free
applied at the wall y=0) over a streamwise domaifc stream. Equatiori4) is a closure relation for the determina-

included in[X,,x;] (dimensionless valugsThe flow state is tion of «, forcing the amplitude function to vary slowly in

defined by a mean velocity, the _streamwise dirt_acti(_)n. Even fchough its ch_oice is arbitrary,
a different normalization condition would induce only a
QUX,Y)=[U,VI(x,y), smaII,(’)(Rgoz), modification toa. The initial conditions are

given by the local stability eigenfunctions. All equations, for
the base flow and the disturbances, and matrix operators
X,y ) =[1,7,9]7(x,y,t). B, C, D are given in Appendix B.

and by a disturbance vector,
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Ill. OPTIMAL CONTROL with k between zero and one depending on the goal we pur-

) ) ) ) sue, and the exponent “unc” indicating the reference value

This section describes the optimal control approach pur¢ the yncontrolled case. The last term in the cost function is

sued. First, the problem of interest here is defined in a geNpoquced to prevent the occurrence of sharp gradients of
eral manner. Then, the Lagrange multipliers methodology ighe wall normal velocity* which could violate the BLE and

explained. _ _ __ PSE assumptions. It plays the role of a penalty in the objec-
~ As afirst step, some key “ingredients” must be identi- e functional. In practice the case=0 produces a solution
fied, i.e., (which may or may not violate the parabolic assumption

(1) the state functions which characterize the problem, her@nd by increasing this solution is simply smoothened at the

the mean flowQ and the TS waved, «); outer edges of ¢.
(2) the constraints: the Prandtl-PSE problem with its bound- A further requirement must be considered: to prevent
ary conditions; having an ill-posed problem leading to unbounded solutions,
(3) the way control is applied: a wall-normal forcingy; we must ensure that the size of the control remains small so
(4) the cost functional7, which must be extremized. that suction does not affect the mass fl{provoking the

so-calledsink effect To ensure this we impose the value of
The choice of7, is crucial. Since our objective is to neutral- the control energy as an additional constraint, i.e.,
ize (or limit the growth oj the TS wave throughout the do-
main, the cost functional must include an appropriate mea- V2 dx=E (5)
. . : wOX=Ec,
sure of the perturbation amplitude. Thus, a relevant quantity I'c

;5_tf)1(e magnitude of the disturbance energy at the final Statlo\r/]vith E.. fixed. The advantages of such an approach are that
=X,

the parameteE. has a physical meaning, and that compari-
Ei=E(xy), sons between different cost functionals can be easily made
for a given control energy. Alternatively, we could have cho-
sen to fix the flow rate through the porous wall, or the power
+oo consumption of the compressor needed to suck fluid from the
E(X)=|)(|2f (uu+vv)dy. wall (the latter quantity being proportional 13,). Taking
0 power of two of the control function has the advantage of
In view of (4) the variation ofE with x is related uniquely to ~ Yielding a simple linear relation o\, once functional gra-
the presence of the terhy|2. Thus, wherx; is chosen near dients are set to zero.

with

branch Il of the neutral curve, minimizing(x;) over a ~ The optimal control problem is now stated as follows:
range of frequencies is equivalent to minimizing Mdactor ~ Find the normal velocity at the wall \y and the state
defined by (Q,9,@) which minimize the cost functiongy subject to the

constraints (1), (2), (3), (4), (5) with appropriate boundary
N(R )=ma>{£log—) and initial conditions
% w V2 TEMX))] The method used in this paper to solve this control prob-
lem is based on Lagrange multipliers, as described, for in-
with x; located on branch I. This coefficient is commonly stance, by Gunzburg@rThe principle of the method is to
taken to characterize the transition location of the flow: it istransform the constrained optimization problem into an un-
usually admitted that foN~7 transition occur¥ (in a two-  constrained one. For this purpose the following inner product
dimensional boundary layerAlthough the determination of s defined,
the “critical” value of N is purely empirical and does not e
take into account the inflow disturbances conditions, the so- I Rl ey
calledeN method, introduced in the 1956%5%3is still widely ()= LO fo dudy dx
used nowadays in the aeronautical industry.

One may argue that choosirigs as a cost functional
does not guarantee priori that the perturbation amplitude
would decrease significantly over the whole unstable regio
Hence, it may be more convenient to introduced’nthe L=To— T, (6)
mean value oE over an objective domaih,,,

Lagrange multipliers Q*,q* ,\*,y*,8y,) are then intro-
duced to enforce the constraints and a Lagrangian functional
ris defined:

with

X

J1=(Q*,LQ) + f N OO[V(X,0)— Vi(x)1dx

Xo

En= frmE(x)dx.

In generall’,, may be the whole domairxy,Xx;] or a portion
of it such as, for example, the unstable region of the TS wave e
under unforced conditions. The final cost functional is then Bw

Ec— L VG dx| +(a*, Lpse a)
C
= Em J ( de) 2 X +eo[ _gu v
=Kk——+(1—Kk)—=m+S — | dx, Y T L7
Jo E#mc ( )Eﬁ]nc re dx +fx0 0% (X)J'0 (Uax +Uo_’x)dy dx+c.c.,
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where c.c. denotes complex conjugates, needed to ensure th

the range of the functional; is the real axis. We will see

later that the Lagrange multipliei®*,q* ,A*,y* play the

role of adjoint(or dua) variables for the direct variables 288 Viw
Q,q,Vw,a. By is the adjoint variable for the control con- 4
traint. All arguments of the Lagrangian functional are inde-
pendent from one another and the optimal control problem

can now be stated as:

Find the control \{y, the state(Q,q,a) and the dual state

(Q*,g* ,\*,¥*) which renderL stationary

It should be pointed out that this formulation guarantees
only a local extremum; in practice, the numerical results
show that a minimum is always found, which satisfies the 000 oo 0a 00 05
imposed requirements and produces a strong reduction of thc £
disturbance energy.

The gradient ofC in every direction is forced to zero and
this step requires several integrations by parts. Details on
how to effect this procedure can be found in Ref. 11. Can-
celing the gradient of{ with respect to the dual state Finally, the vanishing of the gradient gfwith respect to
(Q*,g*,\*,y*) leads to the Prandtl-PSE probldin2,3,4.  V\y provides a coupling relation between direct and adjoint
The vanishing of the gradient & with respect to the state states. This expression, tloptimality condition defines the
(Q,9,) yields the adjoint Prandtl-PSE problem, i.e., in sym-optimal wall forcingV,y as a function of the adjoint vector
bolic form Q* at the wall. With the cost functional given by E®), we
obtain the ordinary differential equation:

FIG. 1. Model of the suction velocity.

LEQ*=S", Q*=[AB],

* Nk * % % n*1T DL d2v
Pl =S" A" =[un ot et =255 — 285V A(Xx,0 =0, W)
DVw dx
4 0, xe&l'y
0= ey EX r with the boundary condition¥,,=0 at both edges of the
(k 1) unc Xe m? . . . .
Ef control domainl'. A(x,0) is the Lagrange multiplier asso-

. ) ) ciated with the continuity equation of the base flow, evalu-
with (S*,s") source terms which depend, respectively, Ongieq gt the wall. Whes# 0, theV,,~velocity profile exhibits

(Q.,9"%, @) and @,7*,@). J(x) is a function of the direct 4 «noundary layers” at the outer edges BE. . This can be
and adjoint variables and provides a closure relation for thgoq, by considering a simpler equation whe(g,0)=A, . is
1 m

determination ofy*. The role ofJ(x) is described, for ex- fixed to a constant valuifor example, the mean value of
ample, in Refs. 11, 15, 19-22; it is a function related to theA(x,O)] in a control domain defined b c=[x,,%]. The
receptivity properties of the boundary layer. By construction,qq| tion of Eq.(7) is in this case
the adjoint Prandtl and PSE equations are backward para-
bolic in x; they are given in Appendix B.

The adjoint equations are subject to homogeneous Am | cosha(£—0.5

boundary conditions and are initialized>at with Vl(x) 2B% a ’
coshz
A(Xf !y) = O,
XX v T a’= B .
q*(xf,Y)=(kETnc_7*) O,U,U (X£,Y), S(Xg—X)*’ Xf=Xo
f
+o i The model suction velocity is plotted in Fig. 1 for dif-
o JO R, U vv dy ferent values ofa=a(gBy/s,I'c). When 83, is fixed, the
¥* (X1) =K e 0 , slope of the wall-normal suction velocity at the boundaries
Ef f” 14 2ia (Qu+o0)dy increases with decreasirgy The control profiles calculated
0 Rs,U by the full equations show a behavior with respecs tehich
X is well modeled by the simple caggx,0) constant.
E(X¢) In the general case, we define a slope parametgr,
J(Xf):kﬁ- given by s=cyBy,. In practice,cq is imposed, and the pa-

rameters is calculated 8y,, the Lagrange multipliers asso-
Source terms and inhomogeneous terminal conditions stewiated with the control energy, is found during the iterative
from the choice of the cost functionédee also Refs. 21 and process from the constraiffh) and the integration of Eq7)
25); they are given in Appendix B. overl'c:
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IFCAZ(X,O)dX 1/2 0 BNy
* - u
= " ’ 1 (8)

Pw 4[Ectcofr (CoVi?+2Vy2)dx] BYS .
primes denoting derivation with respect to the argument. 2k .
When s=0, the value ofg}, is given by Eq.(8) with ¢, - .
=0 and the slope of the wall-normal velocity may go to 3 -
infinity at the edges of . If I'; extends tox;, the sharp wner | A% R
gradient ofV,y, does not occur there, sinégx;,0)=0. log(E/Ef")-4- N T

IV. NUMERICAL IMPLEMENTATION

The optimal state is numerically reached by an iterative 6 = I'm={zy} -
procedure involving successive integrations of the direct and F == Im=lanay]
adjoint equations, according to the following algorithm. o QZ:;S
(1) Step 1: Initialization of the PSE problem using the local ol L 7(')0 —0
stability eigen-solutions; on the first iteration, whan R
=1, V{l) is set to zero.
(2) Step 2: Solution of the Prandtl problem wiM(x,0) FIG. 2. Disturbance energy for differeRt,: F=10 %, Ec=5x10".
=V{D(x).
(3) Step 3: Solution of the PSE problem. . _fgrid for PSE and APSE, and this is simply a convenient
(4) Step 4. Convergence test on the objective functional: ifpgice since calculations proceed very rapidly.
|u7§)n)—_~78n 1?|/~78n)<60 then stop, elsen=n+1; a The APSE and PSE are nearly parabolic and a numerical
case is considered well converged wheys- 10°% instability usually occurs at extremely small streamwise step
(5) Step 5: Inltlallzathn of the_ adjoint PSE and boundary gj;e whemx is lower thanAx,~1/Real(). A procedure
layer problems using the direct state. given in Ref. 29 has been implemented for the PSE and it
(6) Step 6: Solution of the adjoint PSE problem. induces a corresponding modification on the AR&E de-
(7) Step 7: Solution of the adjoint Prandtl problem. tails of this technical aspect of the numerical implementation

(8) Step 8: Update of the wall forcing distribution) via the reader can consult Ref. 25The casec,=0 of Fig. 7
the optimality condition and the constraint on the controlith only 50 points inx, no stabilization proceduyepro-

energy, i.e. Vi) = V(™ V+ (p/2B%) (DLIDVy) "~ Y. duces exactly the same results as the “reference” case of Fig.
(9) Step 9: Go to step 2. 2 (T'my={x¢}), which is obtained with the stabilization pro-

. . _cedure. We have also found that the minimal steg,, is
Although no efforts are made to optimize the relaxation "

. : ; ) nearly the same for the PSE and the APSE. The numerical
parameterp, convergence is rather quick, and is typlcallly instability of the PSE has been well known for ye&f&=

r_eached in about ten iterations. More sophisticated OpFim'Zaﬁqany techniques have been developed to cope with it and
tion algorlthms ha\2/5e been employed, for gxample, in th obust codes now exist and are used in practical
work by Pralitset al:=> and can be necessary in other types of o 24,25
A applications®
optimization problems.
Since the direct_ and a(_jj(_)int problems are of the Samg, RESULTS
nature, the same grid and finite difference tools are used for
their resolution. The grid is uniform in the direction (step The theory is applied for different reduced frequendies
Ax) and stretched in the direction, refined near the wall. In  (F=w/R;) ranging from 10° to 27X 10 °. Unless other-
the streamwise direction a first-order upwind or downwind,wise stated, the suction domaliit starts atx, and stops at
depending of the state, scheme is employed for the PSEX -
APSE problem and a second-order scheme is used for the Afirst test consists in estimating the influence of the size
direct and adjoint Prandtl’s equations. The normal directiorPf the objective domainl’,, for a given frequencyF
is treated by a fourth-order compact schdiBa. (7) as well. ~ =10"*, with a control energy fixed ac=5x10"", and
The free-stream boundary is located 15 boundary layer thickco=0. The parameteEc is chosen to provoke significant
nesses away from the wall. The closure relations are erwave damping, after several numerical trials and from the
forced by a Newton—Raphson procedure. Grid convergenceugh estimatEC~(xf—xo)V\2N, whereV,,~10 * (cf. Sec.
studies have been carried out, and solutions on a mesh of 400 x, and x; are taken such thaRs(xg) =250 andRs(X;)
streamwise points and 150 normal points for the case of Fig=750. In practice, computations are often carried on beyond
2 are grid-convergedbut these are not the minimum num- x; to follow the further evolution of the TS wave. The varia-
bers of points needed to reach convergenEarther details tion of E(x) normalized by the value dE(x;) for the un-
on the PSE/APSE procedure are given in Ref. 11. It shoul@ontrolled case is plotted in Fig. 2 and the associated optimal
be noted that, in general, the “best” grid for the PSE doesforcing profiles are shown in Fig. 3. In the first cddenoted
not coincide with the “best” grid for the APSE, where by by I',={x;}, the “reference” casethe objective is to mini-
“best” we mean the coarsest mesh producing grid-convergedhize the disturbance energy at the final statipn whereas
solutions. All solutions here are obtained with the sdfime) in the second and third casEg, corresponds, respectively, to
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FIG. 3. Optimal wall suction profiles for differeft,: F=10"%, E.=5

107 FIG. 4. Optimal shape factors for differeR,: F=10"4, Ec=5X10"".

the unstable regiofiof the uncontrolled case, beginning at trol function in the objective functional decreases the steep
Ry(x,) =419.5] and to the whole suction domain. In the lastVvariation of the suction velocity, leading to smoother growth

case a constant suction distributig, with Ec=5x10"7 is rate. The ap_propriqtenes; qf Prapdtl’s equa.tions in repre_sent—
applied all alongl¢. As expected, the smaller perturbation N9 flows \(wth rap|d.var|at|o.ns in the vertical velocny_ls
energy atx; is achieved in the first configuration; the best discussed in Appendix A, which presents some comparisons
result in terms of reduction of the megalongx) energy is with full Navier—Stokes computations. When comparing to
given by the third case. It should, however, be noticed thathe results by Balakumar and Helone might be struck by
whatever the case, the energy is always reduced very consithe differences between the control velocmes_ln the two ap-
erably over the entire domain and particularly in the unstabl@roaches for comparable flow cases. These differences origi-
region whereR,>420. The evolution of the disturbance en- _nate primarily from the d|ﬁere_nt cost functionals employed
ergy whenl",={x;} is almost identical to the case with con- IN the two control methodologies.

stant suction. The suction distribution differs considerably ~ The effect of varyingc, is assessed next, for the so-
according to the objective imposed. The profile in the firstcalled “reference” caseI(,={x}). Figures 6 and 7 show
case is similar to the case with constant suction. For théhe influence of the slope parameggron the suction profile
second case, suction is mainly localized upstreani gf ~ and disturbance energy when either the control enggyis
(here, the stable region of the uncontrolled floand for the ~ fixed, or whengy, is fixed to the “reference” valuethe

limit case wherd ,,=I"c=[Xg,X;] (third casg the control is
almost essentially imposed at the entrance of the domain.
The effects on the shape factdrand on the growth rate

= (1/E) (dE/dX) of these distributions are evaluated in Figs.
4 and 5. Figure 4 shows that whenever suction is applied, the o
shape factor is reduced. Furthermore, the variatiort$ afe
quite well correlated to those of the corresponding suction
profiles, so that the minimum ¢ is more or less located at 0,01
the station where suction is most intense. As the evolution of
the energy curves indicates, the region where the growth rat< -
is positive is reduced after suction is applied. Fig. 5.

When suction is stopped the shape factor increases back t 002~

its value without control, whereas the growth raterosses L ! " — Ea0 i
the horizontal axis after a transient period, whose length in- g - FZ;{mf}

creases a$', decreases. Figures 3, 6, and 8 show that for -0,03 - | - Tm=[zr,34] n
I'n=Tc=[Xp,X¢], the very strong variation of the wall ve- L c—.e Tm=T¢ |
locity nearx, produces a sharp peak on the growth rate evo- | Viy cst

lution, a fact which might contradict the hypotheses at the oogl— 4+ 1 1 1 1
basis of the PSE. It is hence an unwiseposterior) choice 200 300 400 ]5%0; 600 700 800

to selectl’ ,,=T'. As demonstrated next, adding a term pe-
nalizing the square of the streamwise derivative of the con-FIG. 5. Optimal growth rate for differerit,,: F=10"4, Ec=5x10"".
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FIG. 6. Optimal vyall suction prgf;les for different values of the slope pa 300 300 200 500 500 700 300
rametercy. F=10""%, Ec=5X10"". R
§
FIG. 8. Optimal wall suction profiles for differenEc: F=10% T,
legend of the plot indicates which quantity is held fixeleh  =Tc, co=0.

the first case, the slope ¥, decreases at the edgeslyf,
but V\y increases locally within the control domain to main-

tain the contraint on the control energy. As far the distur

bance energy curve is concerned, the results are very clogerc mcrea?re]:st,Ethg suction is more mt_edr?se Lnt:]hebcloge ymm:{y
among all the configurations examined in Fig. 7. In the secd Xo, SO tha ecreases more rapidly at the beginning o

ond case = 0.5, B%= Birer), fixing 8% means decreasing I',. WhenT',, is reduced to the last statigRrig. 10), suction

the control energyec and penalizing the final disturbance :svmlor(;: ornltersls iqlially':sprrttek?dlall O\Af"@\f/’ Ieven for fil ?]'gih
energy. Eventually, the control is found to be less efficient,c <. OF control énergy. Fortne farges aluekgy suction is

The cases=0 provides the most efficient suction profile for max.|mum'at the ef‘d of the control dqmam, but even thgn the
any given control energi¢ (cf. Fig. 7). In the remainder of pr0f|l_e varies relatively smo_othlyzf. Figs. 10 an(_JI n Th|§
the paperg, is always fixed to zero simply to provide the gquasihomogeneous spreading of the wall velocity permits the

limiting case scenario as to the reduction of the disturbancgmployment of a blgger amount of control energy as com-
energy pared to the case with',,=I'c, where sharp peaks at the

. . 71
In the figures that follow the influence of the eneigy domain entrance can beco'me quickly of ordey”. Qne
is assessed foF ;=T c=[Xo,X{] and T ,={x;}, at the fre- must, however, always weight the cost of controlling the
quencyF =10 mln thce firs?;:&:séFigs gande’ the suction flow against the expected benefits. Since considerable reduc-

distributions always decrease froto x; . For a local Rey- E(_)nsl'; Ehare ag?le\{eﬁtek;/en for small cor;trolden(irgles, ?IS
nolds numberR; greater than 400 there is no significant . shows, 1t mig € unnecessary 1o adopt a Costly

difference among all suction profiles, except wheg is strategy. This is further compounded by the fact that in real

equal to 108. This results in similar variations of the dis-

_turbance energf downstream oR;=400. As the level of

log(E/ E}‘"c) L
log(E/E¥") -4

— Ec=0

. 4L =+ Ec=10"%

r—- Ec=10""7

b —— EBo=25x10"7 E

— Ec=5x{0""

-8 . 1 _g 1 L 1
200 300 400 500 600 700 800 00 300 400 500 600 700 800

Rs RrS

FIG. 9. Optimal disturbance energies for differedBt: F=10"4, T,
=I¢, cu=0.

FIG. 7. Disturbance energy for different values of the slope pararogter
For caption, see Fig. 6.
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FIG. 10. Optimal suction profiles for differefic: F=10"%, T',={x}, FIG. 12. N factor with and without suction; suction is optimal fBr=2.5
co=0. X 1075, Ec=2.5x10"". Dashed lines shoM for a givenF, the solid line

is their envelope.

applications a number of external factghee-stream turbu- . .

lence, impinging insects, imperfectly operating suction sys—g'ven frequenc_y turn_s out to have a positive effect als_o on

tems, icing, etg.will be responsible for deviations between other_frequenqles._ Figures 12 a.nd 13 show the- behavior of

the control laws imposed and those actually realized. qulmlen—Schhchtmg waves .at dnfferent frquenmes, "’T” sub-
Clearly, optimal suction distributions could be deter- mitted to the same wall suction, i.e., the optimal suction for

— — —7 — —5
mined for any value oF. It is, however, interesting to study r.m_{)ifé’ _E§5—02.5><d10 q ar;%':—_zzo.gg 1‘?h ' Controlfbfe-
the effect of the optimal suction obtained for a giernon gns atR,= and ends aK,= - 'he range ot fre-

- - _ _5 _
instability waves characterized by different value$-ofThis guencies considered goes frolf=2x10"" to F=27

_5 . . . _
appears to be necessary in particular in view of the procedur?e< 107>. For all these frequencies a reduction of the distur

employed; in fact, since the PSE are not uniformly valicin bance energy Is observed, as shown by the evolution dilthe

(just like the Orr—Sommerfeld equatiprdifferent starting fac(;or tvr\]”thbaﬂd Wlthd%utbsuctmn n F'Ig gz.thV\/thePtﬁuctlon
points need to be employed when integrating the system forcn'ds, the benavior ecomes simifar to that of the un-

ward for varying frequencieB. This poses a difficulty if one contr;)lle(; _ctase. g transnlg)l:hvzetre di-ﬁned b)ll dhln\:alue .
were interested in computing the control to an inflow condi-fthu("_j1 r?1 i,nl Cinidera;glff] Ei alsr?k?3|r:ont\r/vcl)u r\?o \?v?t(;]urr']ré
tion with a broad frequency content, since the inhomoge- € domain considered. 9: € heutral curves a

neous term in the adjoint equations would be constituted b)\/N'thOUt the previous control are displayed. When suction is

terms defined over different domains. Fortunately, the situa‘:leplled branch | moves downstream and branch Il upstream,

tion is not that desperate, and a control obtained for one

T I T l T I T l T
i
0 roon i ]
I \ - = N0 suction
L i 2,56-04 - { \ suction T
\ \
- ‘ \ -
5 - { \
2,0e-04 — \
10 -
F 1,5€-04 [~
log(E/Ef™) | - i
150 _ T 1,0e-04 -
I —— Ec=0 \.\ 4 |
—— Ec=5x10"% \
20— Eo=5x10-7 N 5,0e-05 |-
v=.e Bc=5x10"¢ . |
R ) 1 P | | P | . 0,0e+00 L | L | L | L | .
2200 300 400 500 600 700 800 o] 500 1000 1500 2000 2500
R; Ré
FIG. 11. Optimal disturbance energies for differdf¢: F=10"4, Iy, FIG. 13. Neutral curves with and without suction; suction is optimalFor
={x;}, ¢o=0. =2X10"5 Ec=2.5x10"".
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- e 3 —
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FIG. 15. Disturbance energies: continuous suction compared to suction over
R5 five strips.

FIG. 14. Suction profiles: continuous suction compared to suction over five
strips,F=10"%, Ec=5%x10"7, T',=T¢.
stabilization of the boundary layer; hence, rather than seek-
ing the optimal suction for damping a Tollmien—Schlichting
except for R; greater than 1500 where the two secondwave, the objective here is to find the suction profile that will
branches are more or less superposed. Globally when suctigiioduce the smallest shape factor throughout the domain.
is applied the unstable region is reduced. The results are leg$is is clearly a heuristic approach; the appropriateness of
encouraging if the optimal control corresponding to a fre-the results will have to be checkedposterioriby perform-

quencyF=2x10"* were employed, since the unstable re-ing PSE calculations on the base flow determined.
gion for that frequency is very small compared to the un-

stable region for the wave of frequen&y=2.5x10"° (cf.  A. The optimal control system
Fig. 13. An empirical observation is that the best control
over a wide range of frequencies is the optimal distribution

h rr n he monochromatic wave displaying th : S .
that corresponds to the monochromatic wave displaying t unknown inhomogeneous wall condition. The new objec-

widest unstable range. , . . .
A further test consists in considering a control over pan_'uve functional is the integral of the shape factérover the

els of fixed length; the level of each suction is found byOblec“Ve domair’, i.e.,
applying the theory to a forcing domain subdivided into sev-

eral intervals(Fig. 14), with Ec=5x10"7 and F=10"*. OZJ H dx

Here again, not much difference can be seen on the energy
curves when comparing “the optimal strip case” to the “con- with
stant strip casef{the latter being defined by a constant ve- s, J&r(1-u)dy
locity along each one of the five strips considered producing H= 3 - TP —0dy

the same flow rate as the “optimal strip caseMoreover, 2 Jo U( )dy

even thought the decrease in energy is not as strong as in tihNo penalty on the gradient of the velocity suction is added:;
continuous case, the reduction is still very significant wherthe influence of such a penalization on the resfiftserm of
compared to the situation without conti@lig. 15. Compar-  suction velocity slope, disturbance growth rate, control en-
ing the energy curves for the two cases with suction oveergy distribution is expected to be qualitatively of the same
strips, one may think that the constant suction distribution ikind as in Sec. V.

more efficient than the optimal one. In fact, the mean value  Reapplying the methodology described before, the La-
of the disturbance energy is smaller for the optimal casegrangian functional is defined by

since suction acts more efficiently near the entrance of the

For this new problem, the state function is the mean flow
and the constraint is simply the Prandtl problem, with an

m

control domain. L=Jo= T
where 7, is now J;=(Q* ,£PQ>+f§;)\*[V(x,0)
VI. AN ALTERNATIVE FORMULATION ~V(x)Jdx+ B(Ec— [V dx). Construction of the op-

In the following the problem is reconsidered with an timal control probler_n is_simpler than _in the preyious case
alternative cost functional leading to a much simpler formu-2nd leads to an optimality system which reads in symbolic
lation. The reason for trying a simpler approach stems fronftotations
the observation that suboptimal suction distributions produce  £,Q=0,
satisfactory resultécf. Fig. 12. As discussed in Sec. | even
a small decrease of the shape factor is associated with a LEQ*=S].
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R& FIG. 18. Optimal disturbance energies for differ&t, F=10"4.

FIG. 16. Minimization of the shape factor: suction profiles for different
values ofEc .

amplitude of the wall suction velocity. As the level &f

increases, a peak appears on the suction distribution at the
The source terng}; of the adjoint problem comes from de- first station. This sudden peak causes a rapid reductidh of
riving the cost functional with respect to the mean flow ve-at the entrance of the domain. The effect on a TS wave with
locity U. Details of the direct and adjoint problems are givenF =10"* of the optimal base flow profiles is shown in Fig.

in Appendix C. 18: as expected, all of these suction distributions induce very
significant reductions in disturbance energy.
B. Numerical results The two last Figs.(19 and 20 show the behavior

(of TS waves in a range of frequencies fronx 20°° to
27x10°°. All of these perturbations are subject to the opti-
mal suction computed in the intervaRs(xy) =250 to
Rs(Xs)=2000, forEc=2.5x10"". The difference between

the control energy is low, suction increases slowly andhe two neutral curvegFig. 19 is not large, albeit compa-

reaches its maximum near the end of the domain. The resu?table to that displayed in Fig. 13. On the other hand,he

is not very different from those plotted in Figs. 3 and 6. The'2Ctor (Fig. 20 is kept below 2 throughout the control do-
shape factors are plotted in Fig. 17. Compared to the uncorin: PastRs=2000, N increases in a similar manner as in
trolled caseH is reduced over the whole domain and its 79 12-

minimum can be found in correspondence to the maximum

In the following numerical results are given for a contro
domain that starts aR4(xg)=250 and stops aRy(X;)
=750. Figure 16 shows optimal suction profiles for various
control energy levels varying from>10 7 to 10 °. When

T l T I L} I T I T
2,6 I“
F 4 :l — —.1no suction
25e-04—- W\ __ suction N
25 - A\
L N 2,0e-04 —
24 - I
B 15e-04
H - ]
23 1T 1,0e-04 |-
. !
L ;A L
— E¢=0 \'\. \\\ I
22 — Eg=5x10"7 - S~e__S |' 4 5,06-05 |-
--- E¢=10"% S i L
- == Eg=10"5 S ;o | | | |
~, A 0.0 00 L 1 Il 1 1
P | AR U Y SR R D d =% 500 1000 1500 2000 2500
200 300 400 500 600 700 800 R5
R;s
FIG. 19. Neutral curves with and without suction; suction is optimal for
FIG. 17. Optimal shape factors for differet . Ec=2.5x10"".
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/ APPENDIX A: A-POSTERIORI VERIFICATION

- / ST OF THE PARABOLIC ASSUMPTION

/ ; USED FOR THE TREATMENT

OF THE BOUNDARY LAYER FLOW WITH SUCTION

In some of the cases treated, particularly those for which
the penalization parameterin the cost function is set to
. RO R . zero, the parabolic assumption inherent in Prandtl's equa-
T tions is put to a rude test, because of the sharp gradients of

1500 2000 2500 Vw Wwhich can appeafkcf. Figs. 3, 6, 8, and 14 Some
R; Navier—Stokes calculations of the boundary layer flow with
or without suction have thus been carried out, to assess
whether the Prandtl-based numerical predictions are reliable.

The computations reported in the following have been
carried out with thelabiMm code presented in detail in previ-
ous studies to which the reader is referféd®’ The code
solves the three-dimensional unsteady Navier—Stokes equa-
tions written in velocity-pressure variables in a general sys-

The optimal LFC of TS waves developing in a two- tem of orthogonal curvilinear coordinates. The discretization
dimensional boundary layer has been studied. The techniquaakes use of a staggered mesh and the equations are inte-
used for solving this problem relies on the iterative numeri-grated in space using a finite volume method, all spatial de-
cal resolution of a coupled system of direct and adjoint equarivates being approximated using second-order centered
tions, plus an optimality condition. One of the key points of schemes. Time advancement is achieved through a Runge—
this optimal control approach is the definition of the costKutta—Nicolson algorithm which is second-order accurate in
functional. In the present case, given the parabolic nature dfime, while incompressibility is enforced at the end of each
the equations governing the system’s state, it has been fourione step by solving a Poisson equation for an auxiliary po-
necessary to penalize the derivative of the control velocity, tdential.
avoid steep gradients &f, which could contradict the hy- Several different boundary conditions are imposed on
pothesis of slow streamwise variation of the base flow. Thighe boundaries of the computational domain. In the compu-
is particularly the case when the cost functional is based orations the wall is located at=0 and starts ak=0. A uni-
the integral of the disturbance energy through the streamwist®rm inflow velocity U,,=1 is imposed ak=x,<0, and a
domain, since in this case a very sharp peak'gfis always parabolic approximation of the governing equations, allow-
produced at the initial control points, to rapidly bring the ing the flow to leave freely the domain without inducing
disturbance energy to a low value. Penalizing the gradient adignificant perturbations, is imposed downstream, i.e.xfor
V results in the formation of more or less wide “boundary =x;. On the external boundary, correspondingytey..,
layers” at the edges of the control domain, as deduced fronthe boundary condition states that the normal derivative of
a simplified analysis of the equations. This technique develthe normal velocity is zero and the tangential velocity equals
oped here appears to be very efficient and a simple gradietite uniform inflow velocity. Finally, a symmetry condition is
algorithm permits a convergence of the optimality conditionimposed aty=0 between the inlet and the beginning of the
(7) within few iterations, producing large reductions in dis- wall. The reason to initiate the computations ahead of the
turbance energy at mild control cost. When large control enleading edge(of a zero thickness flat platds to allow a
ergies are employed almost any suction distribution producefatural” adjustment of the flow around the plate’s leading
strong effects on the TS waves amplitudes, rendering thedge, a known source of problems in this kind of computa-
optimal control approach proposed almost purposeless; otion.
the other hand, the present approé&sha similar one such as The computational domain along goes from 0 toy.,
that given in Ref. 2Bis necessary when a strict constraint =36.845(x;), where 8(x)=(x»/U.)*? and x; is the right-
exists on the control energy that can be used, or when suctiamost point in the domain. In the streamwise direction the
can be applied only over one or a few short porous strips. domain ranges fronxo=—7.15(X;) to x;=8454(x¢), SO

An alternative, simpler approach has also been testethat, at the final pointRs;=845. To ensure grid-converged
based on the minimization of the shape factor. The results anesults several different grids have been tested. Eventually, it
promising for the damping of TS waves. is found that a grid composed by 12080 nodes is suffi-

FIG. 20. N factor with and without suction; suction is optimal fér
=2.5x107".

VII. CONCLUDING REMARKS
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FIG. 21. Suction velocity for cases 1 and 2. FIG. 23. Wall terms of the streamwise momentum equation at the wall

evaluated from Navier—Stokes computations, case 2.
ciently accurate for our purposes. A constant spacing of grid

points along thex direction is used, whereas in tlyedirec- The two terms on the right-hand side of the equation are
tion the mesh is uniform close to the wall and then smoothlyy.awn in Figs. 22 and 23the left-hand side term is not
stretched, ensuring that the ratio between the width of tWQqwn not to render the figures too crowded:; we have, how-
successive cells is less than 1.12. In the absence of contrgler verified that the above-mentioned equation is satisfied
the shape factor found is always within 0.5% of the theoretyccyyrately. In the absence of suction, Fig. 22 shows that the
ical value of 2.591, in the rand®,=[200,843 (cf. Fig. 24. ressure gradient is equal to the viscous term, and they are
The optimal suction distributions chosen for the presengoth less than 081078, In case 1, the streamwise pressure
comparison tests correspond g, ={x}, co=0.1(cf. Fig.  gradient can reach the value ok20~® in proximity of the
6) andmeyc, Co=0 (Efﬂ: Fig. 8. For both cases we have ,qint where wall suction is first appliee., Ry=250). On
Ec=5x10 “andF=10"". These are called cases 1 and 2,y¢ gther hand, the vertical diffusion term is much larger and
respectively, and are displayed in Fig. 21. Cagéoi which it (eaches a magnitude of about 3.30°5. For case 2 the

the pe?alization factor is different from zgr “well be-  gjyation is more critical and a pressure gradient peak can be
haved,” whereas case 2 is characterized by a very sharp granticed in Fig. 23 neaR,=250: both terms of the above-

dient of Vy, at the beginning of the control domain. _ mentioned equation achieve a largest magnitude of about
With suction, thex-momentum Navier—Stokes equation 5 gy 1074, Clearly, near the point where the peak occurs
at the wall reads Prandtl's equations are untenable; however, this peak relaxes
U P 1 4°U

Wy T T ax TReay?

2.65 T T T T
x107° . 28 ¢ |
0 -‘\l -6-0 ST \/,. 1
\ . 255 | ]
\ !
" \ o %E (no suction) i
t 1%%%[{- (no suction) / H o2s5¢ 1
\ . N8
\ --—- & (2suct10n) / !\ \\\
\ ——— 18U i [} D
20t e 5y (suction) ! | 245 F 1 % |
0 \ e Oy / 7 Sogs,
\ /' R:0 N
‘\ Pl ‘:/
\ PR 24 Yy 1
=30 \\ '/'/ -
\ .
~ ~e -
235 . ‘ . ‘ ‘ .
200 300 400 500 600 700 800 900
40 . . , ‘ . . R
200 300 400 500 600 700 800 900
Rs FIG. 24. Shape factors: comparison between the parabolic approach and

Navier—Stokes(NS) solutions. Solid line: Blasius’s similarity solution.
FIG. 22. Wall terms of the streamwise momentum equation at the wallDashed line: case 1, Prandtl’s equations. Dot-dashed line: case 2, Prandtl's
evaluated from Navier—Stokes computations; case without suction aneéquations. Symbols: NS computations corresponding to no suction and cases
case 1. 1 and 2.
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very rapidly and shortly downstream of #P/dx becomes Vxe[Xg,X¢], lim U(x,y)=1,
very small, consistent with the parabolic approximation. y— oo

From Fig. 24 it can be appreciated that the agreement in

shape factor between Prandtl's and Navier—Stokes’ results is  VXe[Xo,X¢], [uU,v](x,00=[0,0],
very good, even for case 2. This attests to the weak depen-

dence of the shape factor on the mean pressure gradient, for Vxe[Xo,X],
the cases examined here.

Given the very rapid relaxation of the pressure gradient
shown in Fig. 23 and the good comparison in shape factors
between Prandtl's and Navier—Stokes’ solutions, it is reason-  yye[0,+o[, U(Xq,y)=Uq(y),
able to state that the predictions based on the parabolic
model presented in this paper meet the criteria of quality and  Vye[0,+%[, [u,v,p](Xo,Y)x(Xo)=[Ug,v0,Pol(¥),
accuracy required by the present application.

lim [u,v](x,y)=[0,0].

y— -+

Initial conditions:

with U, the Blasius solution at, and[ug,vq,pg] the cor-
APPENDIX B: OPTIMALITY SYSTEM responding eigensolution.

FOR THE MINIMIZATION OF THE DISTURBANCE

ENERGY OF A TS WAVE
1. Direct problem

Direct equations:

2. Adjoint problem

Adjoint equations:

1 -u]l_ [0 o], [0 —2u)]
: + +
O Lot Yot 0 OQ—O o v ¥F1 o%Fo 2y, |
_ -1 — Y
v Ul o o =Ry oY o o
- *
V 0 0 u o 1 Tlo R3S
0
0 V 1|g+|0 U 0fq,
0 1 0 1 00 0 0 uo1l
_ . 0 V 1(g¢+| 0 U Ofqg
+U U Il Y x
St Uy 01 0 1 0 0
+ 0 é—Vy 0 |q
ia 0 0 _fl—Vy 0 ia
[-R;* 0 0 + —Uy &t+Vvy 0 g
’ i i@ 0o 0
+ 0 ~Ry 0(a,=0
L 0 0 0 [Rss 0 ©
with &y=i(aU—w)+ aZ/R(gO. +| 0 Rgol 0 q;y:S*
PSE normalization conditiorf’g “(Uu,+vv,)dy=0. 0 0 0
Boundary conditions: B
Vxe[Xo.X], U(x,00=0, with
Vw(x), xel¢ _ o?
= §=i(eU-w)—5—,
V(x,0) [0' x&T e ; 1 Ro,
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Adjoint PSE closure relation: 0, xe¢l'¢
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(e Vw(X), xel'¢
dJ (k—l)/E”m”CXXJ (uu+vv)dy, xel'y, - N
Ix X) = 0 Initial condition:
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2. Adjoint problem

+o 2ia
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oundary conditions:
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_ 0 O 1 0
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