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Instability of canopy flows
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Abstract Honami and monami waves are caused by large-scale coherent vortex structures which form in
shear layers generated by canopies. In order to reach new insights on the onset of such waves, the instabili-
ty of these shear layers is studied. Two different approaches are used. In the first approach, the presence of
the canopy is modeled via a drag coefficient, taken to vary along the canopy as by experimental indications.
The second approach considers the canopy as a porous medium and different governing equations for the
fluid flow are deduced. In this second case, the anisotropy of the canopy, composed by rigid cylindrical ele-
ments, is accounted for via an apparent permeability tensor. The results obtained with the latter approach
approximate better experimental correlations for the synchronous oscillations of the canopy.

1. Introduction

Flow-induced plant motion in atmospheric or aquatic boundary layers has recently been object of much
interest [Nepf, 1999; Finnigan, 2000; De Langre, 2008; Battiato and Rubol, 2014; le Bouteiller and Venditti,
2015], because of its influence on plant growth, transport of sediments, pollens, contaminants, or biomass
production.

When fluid moves above and through plants, the drag force associated with the presence of the vegetation
causes an inflection point in the mean velocity profile. This, in turn, might be responsible for the occurrence
of a Kelvin-Helmholtz instability which initiates the formation of large-scale coherent flow structures above
the canopy. Such large-scale waves are associated to a synchronous waving of the canopy, called monami
for the case of sea grass beds and honami for terrestrial crops. Thus, the presence of a shear layer near the
top of the vegetation bed, and its instability, have been related, since the study by Raupach et al. [1996], to
the onset of large-scale, coherent oscillations of the plants.

Although the canopy is frequently modeled in the laboratory by using flexible elements hinged at the wall
[Meroney, 1968; Novak et al., 2002; Farquhar et al., 2003; Doar�e et al., 2004], experiments [Ghisalberti and
Nepf, 2002, 2004, 2005] have demonstrated that the shear layer instability persists when rigid dowels are
used instead; this is why we assume in the following that grass blades are rigid and oriented orthogonally
to the surface. In the past, mean velocity profiles of the shear layer have been taken to be either piecewise
linear [Py et al., 2004; Doar�e et al., 2004] or in the shape of hyperbolic tangent profiles [Ghisalberti and Nepf,
2002; Raupach et al., 1996]. These represent coarse approximations of the experimentally measured profiles
[Ghisalberti and Nepf, 2004]. A different approach to infer mean flow profiles and to write perturbation equa-
tions has been pursued by Singh et al. [2015], through the use of momentum balance equations, with
account of the drag force through the canopy.

In this work, the linear stability analysis of canopy flows will be performed. We have chosen to model the
steady mean flow through the rigid canopy as accurately as possible, by employing a method initiated by
Ghisalberti and Nepf [2004], to treat four scenarios from the literature [Ghisalberti and Nepf, 2002, 2004,
2005]. In the following, we call this approach A. A second approach (B) pursued here consists in considering
the flow in the canopy as the motion through a dense porous medium ruled by Darcy’s equation. This sec-
ond approach to describe the mean flow through a orthotropic medium is thoroughly described and vali-
dated by Zampogna and Bottaro [2016] and is summarized in the Appendix A.

Linear stability equations are written for both approaches, and solved both without and with drag through
the canopy, demonstrating that canopy drag reduces the growth rate of the shear layer instability, in
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agreement with previous studies [Py
et al., 2004, 2006]. Wavelengths and
frequencies of the most unstable
modes are computed for the two
approaches, and compared with one
another and with experimental corre-
lations available from the literature.
The second approach, which couples
Rayleigh equation in the nonvege-
tated zone to Darcy’s equation
through the vegetation, provides
more reliable results, probably
because of the account of anisotropic
features in the canopy layer.

2. The Mean Flow: The Drag
Coefficient Approach Versus
Euler-Darcy Coupling

The mean velocity of the fluid
through and outside the canopy is

sketched in Figure 1. A mixing layer develops, because of canopy drag, and its thickness is denoted by tml;
the velocity profile ranges between two extreme values, one, U1, which is found in the region from the
channel bottom at y 5 0 to y 5 y1 (the bottom, influential boundary layer is neglected), and the other, U2,
which prevails for y> y2 (y22y15tml). The mean velocity is Um5ðU11U2Þ=2. The height of the canopy is
denoted by h; the height of the flow channel of the experiments by Ghisalberti and Nepf [2004, 2005] is
equal to 3.38 h. In the present analysis, the air-water interface is not modeled and an indefinitely high water
channel is considered. While this differs from the experimental conditions, we do not expect free surface
waves to hold a significant role in the onset of the instabilities observed near the canopy’s edge. This is sup-
ported by Brevis et al. [2014] where it is shown that, for very low Froude numbers, such as in the present
case, water surface fluctuations are negligible.

As stated earlier, two approaches will be pursued, both in modelling the mean flow and in establishing the
disturbance equations; they will be denoted approach A and B.

Using the Reynolds’ decomposition for the instantaneous velocity and pressure, ui5Ui1u0i ; p5P1p0, for the
incompressible motion of a constant density (q) fluid, and averaging (this operation is indicated by over-
bars), we have:
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with i and j 5 1, 2 (cf. Figure 1). The variable P in equation (2) is the static pressure and fi is the mean drag
force of the canopy, defined as:

fi5ðfx ; fyÞ5 2
1
2

Cd aqU2; 0

� �
:

The coefficient a represents the frontal area of the vegetation per unit volume, i.e., the packing density of
the elements (equal to 0.08 cm21 in the experiments by Ghisalberti and Nepf [2004, 2005]), while Cd is the
drag coefficient of the canopy. The mean flow is approximately parallel in the experiments, so that the
equations reduce to:

Figure 1. Mean flow velocity profile through a rigid canopy computed with meth-
od A and B (solid blue and dashed red curves, respectively).
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In equation (4), we have assumed that the Reynolds stress can be modeled following Prandtl’s mixing
length model, with a constant mixing length lm, as proposed by Ghisalberti and Nepf [2004]:
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; (6)

with mt the eddy viscosity. The streamwise pressure gradient depends on the surface slope S5 sin a0 of the
channel bottom (which is slightly inclined in the experiments, with 0:1831025 < S < 1024), so that in the
case of steady-in-the-mean flow, equation (4) reads

@

@y
@U
@y

� �2
" #

5
1
l2
m

1
2

CdaU22m
@2U
@y2

2gS

� �
; (7)

this equation can be solved numerically, for 0< y< y2. Ghisalberti and Nepf [2004] assume that lm50:22 ðh2

y1Þ within the canopy (y1< y< h) and lm50:095 tml in the portion of the shear layer above the canopy
(h< y< y2). The coefficients 0.22 and 0.095 arise from measurements and averaging over several
experiments.

The drag coefficient Cd is deduced from the bulk drag coefficient CdA of a random array of rigid cylinders. At
large Reynolds numbers Red (based on the diameter d of a cylinder and U1), this coefficient decreases with
increasing cylinder density, a d, according to the best fit polynomial established by Nepf [1999]:

CdA5 11
10

Re2=3
d

 !
½1:1629:31ad138:6ðadÞ2259:8ðadÞ3�; ðad < 0:1Þ (8)

with CdðyÞ5CdAgðyÞ and g(y) a function deduced experimentally by Ghisalberti and Nepf [2004]. Here, again,
the profile of g(y) is obtained via averaging over a large number of experimental runs. The vertical profile of
the drag coefficient is displayed in Figure 2 for four cases taken from the papers by Ghisalberti and Nepf

(cases G, H, J: Ghisalberti and Nepf [2004];
case I: Ghisalberti and Nepf [2005]).

The methodology used to compute U is
based on a procedure initiated by Ghisal-
berti and Nepf [2004] and allows to auto-
matically determine the value of the
mean velocity at the top of the canopy,
U(h). It involves two independent relation-
ships to be satisfied iteratively:

1. h2y15 1
8:7 Cd a

ðDUÞ2

UðhÞ22U2
1

� �
, to evaluate

the lower point of the mixing layer, y1;
2. DU

UðhÞ � 16ða dÞ11 (for 0.016< ad<
0.081), to permit the evaluation of y2.

The former equation stems from a bal-
ance between production and dissipation
of shear-scale turbulent kinetic energy in
a vegetated shear layer while the latter
arises from the experimental correlation
observed between DU=U(h) and the vege-
tation density in a range of values of a d
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Figure 2. Vertical profile of the drag coefficient Cd for runs G, H, I, and J, along
the vertical direction normalized with canopy height h.
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[Ghisalberti and Nepf, 2004, 2005]. The iterations yield, at convergence, velocity profiles in good agreement
with measurements, as displayed in Figure 3.

In the second approach pursued here, the homogenized model of Zampogna and Bottaro [2016] is
assumed to hold in the porous layer. In this zone, the streamwise velocity component satisfies the
equation

U5j11
gS
m
: (9)

Equation (9) is the dimensional Darcy’s law, with j11 the first component of the permeability tensor (cf.
Appendix A), and U the Darcy’s velocity (which can be significantly smaller than the actual pore speed, as
function of the porosity of the medium). Even if equation (9) is linear, it is suitable to model high Reynolds
numbers flow thanks to the fact that the permeability tensor, jij, arises from the solution of a modified
problem in which flow inertia is introduced via an Oseen approximation (and not from a canonical Stokes’
problem) [Zampogna and Bottaro, 2016]. The permeability is thus an apparent permeability, not a function
of the porous structure alone, but also of the flow (as shown in Table A1 in Appendix A).

Observing the sketch of the velocity profile in Figure 1, it seems reasonable to impose continuity of the
streamwise velocity at a distance d (the penetration depth) below the top of the canopy, to maintain some
inertial effects right below the canopy’s edge. The parameter d plays the role of a fictitious interface posi-
tion, as proposed by le Bars and Worster [2006]; equation (9) is thus applicable for y 2 ½0; h2d�. In the region
above, the fictitious interface (y 2 ½h2d; y1�), with y1 the coordinate of the free surface, the Reynolds-
averaged steady solution (7), without canopy drag and neglecting the viscous term, yields a closed form for
the mean streamwise speed:

UðyÞ5Uðh2dÞ1 2
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ffiffiffiffiffi
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3
22ðy12yÞ

3
2

h i
: (10)

The condition at the fictitious interface is Uðh2dÞ5j11gS=m. Also in approach B, the computed velocity dis-
tribution approximates well the measurements by Ghisalberti and Nepf (cf. Figure 3).

3. Instability Analysis: Neglecting Drag Within The Canopy

Neglecting the canopy drag corresponds to solving the inviscid stability equations within the flow domain
to ascertain the effect of inflection points of the mean flow profile on the growth rate, frequency and wave-
length of the most unstable mode. In the context of canopy flows, this approach has been initially advocat-
ed by Raupach et al. [1996] on the argument that the mixing-layer analogy provides an explanation for
many of the observed distinctive features of canopy turbulence.

We scale velocity with the mean flow velocity Um, length with the canopy height h, pressure with qUm
2, and

time with h=Um, so that the dimensionless Rayleigh equation reads:
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Figure 3. Mean velocity profiles of the flow through a rigid canopy, for various experimental runs (markers represent experimental data
from Ghisalberti and Nepf [2004, 2005]). Solid and dashed lines are the mean flow profiles built using approach A and B, respectively. In
physical units, it is h513:8 cm and the free surface is at y1546:7 cm.
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ðU2cÞðD22a2Þ2U00
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v50; (11)

for the vertical velocity mode shape v(y), with D and single prime denoting d/dy; disturbances are taken to
behave like eiax2ixt and c5x=a is the phase velocity of the wave. The temporal stability problem studied
here requires finding complex eigenvalues c for each assigned value of the (real) wavenumber a. The
boundary conditions are simply v 5 0 at y 5 0 and y1 in approach A and y1 is here taken large enough for
results not to be modified upon subsequent increments of y1.

For the case of approach B, a different condition must be imposed at the fictitious interface placed in y51
2d where d is here the dimensionless counterpart of the penetration depth introduced earlier. It will be pre-
cisely this condition which will force the occurrence of one unstable mode, considering that the profile of
the mean velocity in the interval ½12d; y1� presents no inflection points (under B). At y512d we impose,
like we have done in the corresponding determination of the mean flow, continuity of pressure and of the
vertical velocity component. We thus need the expression of p and v deep within the canopy, where U is
constant. Solving equation (11) and imposing vð0Þ50, we find that, for y � 12d,

vcanopy5A sinhðayÞ; pcanopy52iAðU2cÞ coshðayÞ; (12)

so that, enforcing continuity of p and v at the fictitious interface, amounts to stating:

pð12dÞ tanh½að12dÞ�1iðU2cÞ vð12dÞ50: (13)

The results, in terms of temporal growth rate xi as function of a, are shown for the four cases G through J in
Figure 4. The amplification factors of approaches A and B are in very good agreement with each other; var-
iations can be ascribed to the mild differences between the two velocity distributions. A further confirma-
tion of the results in Figure 4 is represented by the analytical solutions for the piecewise linear profiles in
the semi-infinite domain ½0;1Þ, the inclined piece of which is taken to be tangent to the numerical profile
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Figure 4. Temporal growth rate against wavenumber for the four cases, under Rayleigh’s stability equation. Solid lines: numerical results
(approach B with symbols); dashed lines: analytical results for piecewise-linear profiles.
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of approach A at the point of maximum vorticity (cf. Figure 1). By enforcing continuity of the normal veloci-
ty and pressure at the point where the two linear profiles meet, it is found that:

xiðaÞ5a Im 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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; (15)

B5 e24ay1 1e24ay2 22e22aðy21y1Þ24e22atml 24e22ay1 14e22ay2 14
� �

; (16)

and m5ðU22U1Þ=tml the slope of the profile at the inflection point. The three families of curves in Figure 4
are very close to one another at low to moderate values of a. The results indicate that the preferred wave-
number should be in the range 0:4 � a � 0:7 (which means that wavelengths go from about 9h to 16h).

To verify whether these values are reasonable, we turn to the detailed measurements and analysis of coher-
ent eddies by Raupach et al. [1996]. Their results are for honami waves, i.e., for the oscillations of terrestrial
canopies under the effect of wind, and thus apply to the case of a boundary layer (in their case the atmo-
spheric boundary layer) which is much thicker than the vegetation height. Because of this fact, they are not
directly applicable to the present case of aquatic canopies, but are nonetheless believed to provide relevant
orders of magnitudes of the waves’ characteristic features. The crucial parameter in the analysis by Raupach
et al. [1996] is the shear length scale Ls5UðhÞ=U0ðhÞ. Ls correlates well the streamwise spacing of the domi-
nant canopy eddies; in particular, Raupach et al. [1996] state that

a5
2ph
cLs

; (17)

with c58:160:3, on the basis of observations from several experiments. We further note that Ls appears to
be correlated also to the occurrence of monami waves in water: our analysis of the nine flow scenarios stud-
ied by Ghisalberti and Nepf [2002] suggests that monamis take place past a threshold value Ls50:65h, and
the corresponding instabilities display a wavenumber a which is always below 1.4. Further confirmation of
the relevance of Ls for the case of coherent eddies over aquatic vegetation is provided by Singh et al. [2015].

Another result by Raupach and colleagues, based on two-point u correlations of honami waves in a sparse
wheat canopy, is that the dominant circular frequency xr (the real part of x5xr1ixi) is approximated by

xr5
p
E

UðhÞ
Um

; (18)

with E 5 3 6 0.5. A fit through the experimental data of Ghisalberti and Nepf [2002] for experiments in water
provides a mean value of E which is centered around 3.5.

A further correlation reported by Raupach et al. [1996] concerns the growth rate xi of the most unstable
eddies, which is found to be proportional to hU0ðhÞ=Um.

Table 1 gives a summary of these predictions for the four experiments by Ghisalberti and Nepf analyzed
here. On the basis of what stated above on Ls, we might expect scenarios G, H and I to lead to monami
waves (and it is unexpected to find that case J apparently displays the largest instability growth rate).

Table 1. Significant Parameters of the Four Experiments Considered and Characteristic Wavenumber, Frequency, and Growth Rate of
the Coherent Eddies Which Form Above the Canopy, According to Estimates by Raupach et al. [1996]

CASE Ls=h UðhÞðcms21Þ Umðcms21Þ U0ðhÞðs21Þ a xr hU0ðhÞ=Um

G 0.73 2.22 2.75 0.22 1.06 6 0.04 0.87 6 0.14 1.104
H 0.73 5.95 8.29 0.59 1.06 6 0.04 0.77 6 0.13 0.982
I 0.76 3.60 5.24 0.35 1.02 6 0.04 0.74 6 0.12 0.922
J 0.55 1.88 2.73 0.25 1.42 6 0.05 0.74 6 0.12 1.835
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It is immediately apparent from the table that the most unstable wavenumbers of the inviscid stability anal-
ysis are 100% off the experimental correlations. Also, the frequencies of the most unstable mode at the
peak value of a are underestimated by the numerical results. These facts justify a closer look at the effect of
the drag force exerted by the canopy on the flow.

4. Instability Analysis: Accounting for Canopy Drag

Drag is accounted for, in approach A, through a source term in the momentum equations, yielding a modi-
fied Rayleigh equation similar to that used by Singh et al. [2015] for the study of canopy flows. The differ-
ence from Singh et al.’s approach is that our drag coefficient Cd is not taken to be constant within the
canopy but variable, as shown in Figure 2. Another difference lies in the fact that in the stability analysis we
have considered a domain extending to a large value of y1, whereas they have limited the vertical extent
of the domain to the actual size of the water channel of the experiments by Ghisalberti and Nepf [2002],
enforcing at the free surface a no-shear condition. A final difference lies in the turbulence model used in
Singh et al. [2015], based on a constant eddy viscosity through the canopy.

The equation used in approach A is:

ðU2cÞðD22a2Þv2U00v2
ia
a

DðCd UDvÞ50; (19)
with v 5 0 at y 5 0,y1.

Approach B couples Rayleigh’s equation outside of the canopy to Darcy’s equation within it, with a match-
ing at the fictitious interface, y512d, on pressure and vertical velocity. Deep inside the porous zone, the
dimensional disturbance equations are

@ui

@xi
50; ui52

jij

l
@p
@xj

: (20)

Scaling the variables as in the previous section, the continuity equation remains unaltered and Darcy’s
equation becomes:

ui52
qUmh

l
jij

h2

@p
@xj

52ReKij
d

ah2

@p
@xj

; (21)

with Re5qUmh=l the Reynolds number and d=ah25ðl=hÞ2 a geometric coefficient related to the diameter
(d50:64cm) of the cylindrical fibers forming the canopy. From now on, for simplicity, we will indicate the
group ReK22 d=ah2 with the symbol n.

Given the orthotropic nature of the canopy (cf. Appendix A), the off-diagonal terms of the permeability ten-
sor Kij vanish, and continuity yields

ðD22~a2Þp50; (22)

with ~a5a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K11=K22

p
. For the case of Stokes flow, it is K11=K2250:50 (cf., van der Westhuizen and du Plessis

[1996]), but here, on account of inertia, we have chosen to use K11=K2250:833, as by computations from
Zampogna and Bottaro [2016] at the present values of the Reynolds number (cf. Appendix Table A1). Upon
application of the condition vð0Þ50, it is found that p and v deep inside the canopy are given by:

pcanopy5~A coshð~ayÞ; vcanopy52n~a~A sinhð~ayÞ: (23)

Continuity of p and v at y512d yields the boundary condition to be used when solving Rayleigh’s equation
in the domain ½12d; y1�, i.e.,

vð12dÞ1n ~a tanh½~að12dÞ� pð12dÞ50: (24)

The other condition is simply vjy150.

Stability results are displayed as xi versus a in Figure 5. For approach A, the curves are very similar to those
of the previous section, except for a damping effect experienced by the most unstable Kelvin-Helmholtz
mode for all cases considered. This is precisely the effect predicted by Py et al. [2004] for the mixing layer
instability over a flexible crop canopy. However, given that the wavenumber of largest growth seems still
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underestimated (at least against experimental correlations, cf. Table 1) something seems to be missing from
model A. A similar argument motivated Py et al. [2004] to study a coupled fluid-structure model, accounting
for the flexibility of the canopy via a wave equation [Doar�e et al., 2004]. Py and colleagues demonstrated
that, for realistic values of the crop flexibility, the characteristics of the mixing layer instability were signifi-
cantly modified, in particular with an increase of the most amplified wavenumber. This explained, at least in
qualitative terms, discrepancies with measurements of the size of coherent eddies over a variety of cano-
pies, as reported by Finnigan [2000].

In cases G through J examined here the canopy is not flexible, which means that it is the model itself
(Rayleigh equation plus drag in the canopy, expressed with a drag coefficient Cd) which might have to
be questioned. Model B proposed here represents an alternative, never explored before, which shows
some promise. In fact, the results based on the coupled Rayleigh-Darcy system provide most unstable
wavenumbers which approaches the heuristic predictions by Raupach et al. [1996], as shown in
Table 2.

Also the growth rate of the most unstable mode is rather well correlated by the results of model B which
indicate that

xiUm

U0ðhÞh 50:10860:014; (25)

i.e., the ratio above is constant to within 13%. Conversely, the same ratio based on xi of approach A varies
from 0.037 to 0.080.

Table 2. Most Unstable Modes for Approaches A and B, Accounting for Drag Throughout the Canopy

CASE aA aB xiA xiB xrA xrB

G 0.73 1.05 0.083 0.157 0.68 1.225
H 0.50 0.8 0.045 0.112 0.45 0.929
I 0.43 0.75 0.034 0.103 0.38 0.867
J 0.70 1.00 0.092 0.168 0.63 1.182
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Figure 5. Stability curves for runs G, H, I, and J, accounting for drag. The solid and the dashed lines are based, respectively, on approach A
and B. The stars indicate estimates of the most unstable mode, based on Raupach et al. [1996] correlations.
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Figure 6. Modulus of the most unstable perturbation mode shapes for run G (a50:7). Solid lines: Rayleigh equation. Dashed lines: including the drag force. Upper frames: approach A;
lower frames: approach B.
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Figure 7. Microscopic solutions of equations (A3) in the elementary unit volume, for Stokes’ flow (top row) and for inertial flow (Rel UO
1 5764 with mean flow along x1). The second config-

uration corresponds to case H of Ghisalberti and Nepf [2004]. Averaging Kij over the unit cell we have Kij (given in Table A1).
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The most unstable circular frequencies xr of the analysis, on the other hand, exceed those of Raupach
et al.’s correlation (cf. Table 2). On the basis of our results, the coefficient � should be about half the value
quoted in Raupach et al. [1996] for the case of honami.

An example of mode shapes is provided in Figure 6 for scenario G. For comparison purposes also the mode
shapes of section 3 (no drag case) are reported; all cases refer to a wavenumber equal to 0.7. As for the
curves of the growth rate, in the case without drag the eigenfunctions of the two approaches are similar.
The main difference is in the fact that in approach B the horizontal disturbance velocity is not constrained
to be continuous at the fictitious interface. Regarding the case with drag, instead, the main difference
between the two approaches seems to be the nonsmoothness of the vertical velocity at y512d:

5. Conclusions

Shear layers generated by canopies are dominated by large-scale coherent vortex structures, initiated by
Kelvin-Helmholtz instabilities [Raupach et al., 1996], known to be responsible for coherent, oscillatory
motions of the vegetation, called honami or monami, whether in air or water.

The instability of these shear layers is studied here using two different approaches to model the flow, for
the determination of the mean velocity profile (which fits in both cases the experimental data by Ghisalberti
and Nepf [2004, 2005]) as well as to analyze the stability of the system. In terms of the mean flow, the
Prandtl mixing length assumption appears to yield reasonable results in both approaches.

When we neglect the canopy drag, the two models display the same stability behaviors and yield similar
results as the theoretical model based on a piecewise-linear mean profile, at least for the case of long
waves. Comparisons of the most unstable modes with the measurements by Raupach et al. [1996] and Ghi-
salberti and Nepf [2004] suggest that drag within the canopy must be accounted for (a fact which had
already been suggested by Py et al. [2004]).

We have thus tried to include the drag exerted by the canopy in two different manners. In the first instance,
the drag force is a source term in the perturbation equations arising from the 2 1

2 Cd aU2 term in equation
(4). This is the usual way of treating the drag within the canopy, with a single scalar coefficient Cd. The mod-
el by Singh et al. [2015] is based on this hypothesis; the difference between our approach and theirs is that
we let Cd vary along the canopy as by experimental results.

In the second approach pursued, the (dense) canopy is treated as an anisotropic porous medium ruled by
Darcy’s law, with an apparent tensorial permeability Kij , function of the porosity of the medium and of the
mean velocity of the fluid through the vegetation (which is here assumed undeformable). Thus, both the
mean and the disturbance fields in the canopy can be expressed analytically (cf. equations (9) and (23)) and
depend on the components of the apparent permeability tensor, on the Reynolds number Re, and on a geo-
metric parameter characteristic of the vegetation bed. We believe that this second approach could partially
answer one of the points raised by Keylock [2015] where the need for better models of dissipation in the
near-bed region of fluvial flows is discussed, and considered necessary to address successfully river man-
agement and fluvial ecological issues.

The second approach yields reasonable estimates of the wavenumber a and of the frequency xr, at least
when compared to existing correlations. The growth rate of the most unstable mode is proportional to the
quantity hU0ðhÞ=Um, with almost the same constant of proportionality for the four configurations studied, in
agreement with experiments by Raupach et al. [1996].

The study described here represents an attempt to model instabilities in canopy flows in a simple way,
neglecting all those effects which are believed to be secondary. Approach A could possibly be improved by
the inclusion of the near-wall boundary layer or by employing a turbulence model less diffusive than the
simple eddy viscosity model to obtain the base flow in conditions not as idealized as in the present configu-
ration [see, e.g., Katul et al., 2004; Wilson and Shaw, 1977]. Likewise, in approach B one could use Brinkman’s
equation to model viscous effects within the canopy or Forchheimer’s equation to account for inertial
terms. This second possibility could be employed to model the flow within the canopy, simulating a behav-
ior which is closer to the real one, without any artificial parameter. In any case, only careful experimental
measurements can justify the preference of a model over another and permit progress in the determination
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of the most appropriate interface condition to be enforced at the boundary of a porous (or poroelastic)
medium and a pure fluid region.

Appendix A: Homogenized Model

The homogenized model which allows to deduce equations (9) and (20) is briefly reviewed here. For more
details, we refer to Zampogna and Bottaro [2016]. The starting point is the Navier-Stokes equations which
hold in the regions of the canopy, sketched in Figure 1, occupied by the fluid phase. Assuming that the
macroscopic pressure gradient is balanced by the microscopic diffusion term, the pressure scale P satisfies
the order relation P=h5lV=l2 (with V the velocity scale within the canopy), so that

Rel

� @ui

@t
1uj

@ui

@xj

�
52

1
�

@p
@xi

1
@2ui

@xj@xj
;

@ui

@xi
50; (A1)

where Rel is the Reynolds number based on the microscale l and �5l=h is a small parameter (with the pre-
sent notations, the index 1 denotes the x axis, the index 2 is the y axis and 3 is z). The canopy is partitioned
in microscopic elementary cubic cells of side l which include only one piece of a single cylindrical fiber (cf.
Figure 7). The flow is assumed periodic inside this microscopic elementary volume. The homogenization
procedure consists of two steps:

1. a multiple scale expansion on the basis of the parameter �: the unknown fields are approximated at order
0 and the equations for the microscopic permeability, valid in the microscopic volume, for any given sol-
id structure and porosity, are deduced;

2. an average over the small volume is defined and a macroscopic law for the flow is found.
The dimensionless governing equations obtained for the averaged flow (U, P) are

Ui52Kij
@P
@xj

;
@Ui

@xi
50; (A2)

where Kij is the average value, over the microscopic cell, of the tensor Kij which satisfies the following
problem

2RelU
O
k
@Kij

@xk
5
@Aj

@xi
2dij2

@2Kij

@x2
g
;

@Kij

@xi
50; (A3)

where the vector Aj describes the dependence of the order � pressure on the order 0 pressure gradient; it is
not used since the fields are here approximated only up to order 0 [Zampogna and Bottaro, 2016]. The term
Rel UO

k @Kij=@xk comes from the Oseen approximation of the nonlinear term in (A1), and UO
k is defined as

UO
k 5

1
Vcanopy

ð
Vcanopy

Uk dV ; (A4)

Vcanopy is the total volume of the macroscopic canopy region (solid plus fluid volume). Since in the Oseen
approximation, there is an estimate of the macroscopic velocity field, in principle, an iterative procedure
(over Rel UO

k ) is needed to solve the equations for Kij [Zampogna and Bottaro, 2016]. In the present case,
there is no need to perform any iterative procedure because the values of Rel UO

k are taken from the experi-
ments by Ghisalberti and Nepf [2004, 2005]. Results for the permeability tensor Kij are shown in Figure 7. The
solid skeleton has an orthotropic structure, i.e., it has two planes of symmetry: it has been shown that, for
this kind of structure, the permeability has a diagonal form and, in particular K115K33. Conversely, the

apparent permeability has a structure which
depends on the flow intensity and direction. In the
cases studied in this work, the flow is directed along
x 5 x1, so that only RelUO

1 is different from zero. In
this case, the symmetry of Kij is lost only in one
direction (cf. Figure 7) and Kij is diagonal, with
entries decreasing with the increase of the Reynolds
number. The values of Kij for two sample cases are

Table A1. Dimensionless Permeability for Fixed Porosity
(#50:96), in Case of Stokes Flow and for the Conditions of
Case Ha

K11 K13 K22

Rel UO
1 50 5:371 � 1022 0 1:074 � 1021

Rel UO
1 5764 3:896 � 1022 0 4:677 � 1022

aWhen inertia is present we have K11=K2250:833.
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shown in Table A1 (porosity #50:96 and Rel UO
1 5764 deduced by experiment H in Ghisalberti and Nepf

[2004]).
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