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The interaction between a fluid flow and a transversely isotropic porous medium is
described. A homogenized model is used to treat the flow field in the porous region,
and different interface conditions, needed to match solutions at the boundary between
the pure fluid and the porous regions, are evaluated. Two problems in different
flow regimes (laminar and turbulent) are considered to validate the system, which
includes inertia in the leading-order equations for the permeability tensor through
a Oseen approximation. The components of the permeability, which characterize
microscopically the porous medium and determine the flow field at the macroscopic
scale, are reasonably well estimated by the theory, both in the laminar and the
turbulent case. This is demonstrated by comparing the model’s results to both
experimental measurements and direct numerical simulations of the Navier–Stokes
equations which resolve the flow also through the pores of the medium.
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1. Introduction
Flows in porous media are common in nature and in technical applications, with

velocities through the pores which range from very low values (e.g. flow in biological
tissues, ground water infiltration) to very large (e.g. canopy flow). When a fluid flows
in a porous medium, there is usually a strong separation of scales between the
macroscopic scale defined by the global size of the problem and the microscopic
length typical of the solid inclusions of the porous medium (cf. figure 1). Two
approaches are generally used to treat this type of phenomenon: the first one is to
implement a pore-scale numerical simulation of the flow in the medium, reproducing
closely the geometry of the solid skeleton. The second consists in an effective
macroscopic simulation where the microscopic structure is lost, but some auxiliary
problem is introduced to characterize the pore-scale behaviour. The first path has
been followed, for instance, by Breugem & Boersma (2005), Kuttanikkad (2009)
and Matsumura & Jackson (2014). One of the difficulties of this kind of analysis
is the computational cost of the simulation: the smaller is the ratio between the
microscopic and the macroscopic length scale, the larger is the resolution which must
be used to discretize the geometry of the skeleton. Such a big effort presents the
additional disadvantage of providing a solution to only a particular configuration of

† Email address for correspondence: alessandro.bottaro@unige.it

mailto:alessandro.bottaro@unige.it
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.66&domain=pdf


6 G. A. Zampogna and A. Bottaro

O

FIGURE 1. (Colour online) View of a generic porous medium within an elementary cell
V . Vf is the volume occupied by the fluid and Vs is that occupied by the solid, so that
V = Vf + Vs. Γ is the fluid–solid microscopic interface.

the porous medium. With the second choice we have a concise and rapid description
of the fluid behaviour, satisfactory from a macroscopic point of view. A precursory
idea of this method consists in assuming that simulating a fluid flowing through
a porous medium is the same as thinking of the coupled fluid–solid medium as a
continuum for which an effective conductivity, permeability or viscosity, different
from that of the fluid, can be defined. These effective medium approaches were
first postulated from an empirical point of view by Darcy (1856) and then modified
using analytical considerations (Brinkman 1949). Even if the equations were born as
empirical laws, several strategies have been developed in time in order to derive these
equations analytically, deducing the macroscopic behaviour from the local description
(see Davit et al. 2013, for a review). This procedure is called upscaling. Different
techniques are available for upscaling: they start from a representative elementary
volume (REV) and generate an equivalent macroscopic continuous model called the
homogenized model. One of the most used approaches is the volume averaging
method thoroughly described by Whitaker (1998). It consists in considering an
elementary cell representative of the porous structure (V in figure 1); the size of the
REV is of the order of the pore size. A fundamental assumption is that of periodicity,
over V , for the unknown quantities. Starting from the Navier–Stokes equations (NSE),
it is assumed that the solution (velocity and pressure fields) can be decomposed into
a mean part plus a fluctuation (Gray 1975). The fluctuation represents how much the
solution is far from its mean part and it must satisfy a zero average condition over
the REV, that is fundamental to deduce the effective equations. After substituting
the decomposition of the unknown fields inside the NSE, and considering the spatial
average of the equations over the REV, one obtains the momentum equation for the
mean flow, with forcing terms related to the fluctuations. In this way, the Darcy’s
law (Whitaker 1986), its Brinkman’s correction (Quintard & Whitaker 1994) and the
Forchheimer’s equation (Whitaker 1996) have been deduced theoretically.

Another strategy widely used is described by Mei & Vernescu (2010) and consists
in implementing a homogenization technique based on a multiple scale analysis.
The starting point of this technique is the same as the volume averaging method:
the NSE are taken to be valid over Vf in figure 1 and a proper expansion of the
unknown fields is assumed. If the convective term is sufficiently small (of the
order of the ratio between length scales) the resulting equations at leading order
are self-contained, i.e. there is no need to introduce a closure relation. Darcy’s,
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Brinkman’s and Forchheimer’s equations can be deduced analytically also in this
case. Both approaches briefly outlined above require closure relations when nonlinear
terms are present. Much work is present in the literature: in particular, Mei & Auriault
(1991) have examined the effect of weak fluid inertia in the porous medium, finding
that Forchheimer’s correction to Darcy’s law should be at least cubic (instead of
quadratic) for isotropic media. This has been confirmed by Firdaouss, Guermond &
Le Quéré (1997). The same occurs for orthotropic media (Skjetne & Auriault 1999).
Auriault (2009) investigated the domain of validity of Brinkman’s equation, finding
that it is valid for swarms of fixed particles or a fixed bed of fibres at very low
concentration and under precise conditions which depend on the separation of the
scale parameter ε = l/L, with l and L two different representative length scales.

Homogenization provides a point of contact between the microscopic and the
macroscopic worlds, and permits to transfer information from one point of view
to the other. In this, it differs from purely microscopic approaches such as those
by Jackson & James (1986), van der Westhuizen & du Plessis (1996), Tamayol
& Bahrami (2009) and Yazdchi et al. (2011), and it is also different from purely
macroscopic points of view, such as that by Battiato (2012) in which analytical forms
of the permeability are taken from the literature.

All the works and the methods cited up to now refer to the solution of the
flow deeply inside a porous medium, far from the boundaries. The problem of the
interface conditions between the pure fluid and the porous region is crucial and amply
discussed in the literature. Jäger & Mikelić (1996, 2000) spent much effort on this
problem, concluding, through functional analysis and introducing an auxiliary problem
based on homogenization, that the widely used condition of Beavers & Joseph (1967)
and its modification by Saffman (1971) have a mathematical justification. Beavers
& Joseph (1967) observed that the penetration of the velocity into the porous bed
extends over a length proportional to

√
K , with K the bed’s permeability. This is

equivalent to specifying a jump in the average velocity at the interface. More elaborate
conditions have also been proposed, simulating the flow inside the porous medium
with the Darcy–Brinkman equation, introducing an effective viscosity µe (which can
be evaluated experimentally, see Givler & Altobelli 1994), and imposing continuity
of the normal and tangential components of the stress tensor at the interface (Hill &
Straughan 2008). Another interface condition has been developed by Ochoa-Tapia &
Whitaker (1995) via the definition of the excess surface and bulk stress tensors to be
obtained from the governing equations holding in the porous and pure fluid regions.
This condition becomes, under certain hypotheses, the continuity of the effective
velocity and pressure over the macroscopic interface. Finally, a strategy often used
to couple two different media is the penalization method. It consists in solving the
NSE in the whole domain, with a forcing term added in the porous region to take
into account the presence of the structure. This forcing term is multiplied by the
characteristic equation of the porous domain and it goes to zero smoothly outside
of it. This approach has been pursued, among others, by Angot et al. (1999) and
Bruneau & Mortazavi (2008). Cimolin & Discacciati (2013) have shown that even
if the penalization method is stable and easy to implement, the comparison of the
solution against experimental data near the interface is not satisfactory.

Summing up, the interface conditions can be essentially classified into three classes:
the first one involves pressure and velocities which are linked over the interface
directly (continuity or jump); the second one involves them indirectly, linking the
normal to the interface components of the stress tensor. The second class cannot be
employed if the equation to be solved in the porous medium is Darcy’s law. The
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FIGURE 2. (Colour online) View of the particular porous medium studied in this work.
The solution is assumed V-periodic, on the elementary cell defined by dashed lines.

third class includes all those methods which use a filter to go from the porous region
to the fluid region; a drawback of this latter approach is that there is no general
physical justification for the choice of the filter. Some authors (Breugem, Boersma &
Uittenbogaard 2004; Jamet & Chandesris 2009) have proven that the variation of the
permeability near the interface is not an intrinsic property of the porous medium, but
depends on the properties of the flow.

In the first part of the present paper, using a homogenization technique, a strategy
to develop models for flow through a bed of dense, rigid fibres is explained (figure 2).
Particular attention is paid to the flow regime, so that two models are deduced: a
classical one for Stokes’ flows and an original one which accounts for inertial effects.
For each regime two sets of equations apply: one microscopic and one macroscopic.
Solving both sets of equations, a complete description of the flow inside the porous
medium is obtained. In the second part of the work the models are validated on the
basis of numerical simulations which solve for the fluid flow through a real, porous
geometry (constituted by fibres), and against experiments of turbulent flows through a
canopy (Ghisalberti & Nepf 2004, 2006, 2009).

2. Multiple scale analysis
Let us focus, for the moment, only on the flow inside a porous medium, neglecting

the interface with the pure fluid domain. We consider an unbounded, rigid, porous
medium saturated by an incompressible Newtonian fluid of constant density ρ and
dynamic viscosity µ. The velocity and pressure fields in the fluid domain Vf are ruled
by the incompressible Navier–Stokes equations:

∂ui

∂xi
= 0, (2.1)

Re
∂ui

∂t
+ Reuj

∂ui

∂xj
=−1

ε

∂p
∂xi
+∇2ui, (2.2)

with ui = 0 on the solid–fluid interface Γ . The equations above have been rendered
dimensionless assuming that the global pressure gradient is balanced by the local
viscous term, i.e.

O
(
1P
L

)
∼O

(
µU
l2

)
, (2.3)
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which defines the pressure scale, and time is normalized by l/U, where l is a
microscale length which represents a characteristic dimension of the solid inclusions
and L is a macroscale associated to the global pressure gradient 1P. In this way the
ordering symbol ε is defined as

ε = l
L
� 1, (2.4)

and the Reynolds number, based on microscale length l and reference velocity U, is
Re=Ul/ν, with ν =µ/ρ the kinematic viscosity.

2.1. The expansion in ε
Since the structure of the medium defines two characteristic scales, we need to
introduce the fast (microscopic) and slow (macroscopic) variables x and x′ = εx with
the subsequent change in the derivative:

∂

∂xi
→ ∂

∂xi
+ ε ∂

∂x′i
, (2.5)

plus the expansion:
f = f (0) + εf (1) + · · · , (2.6)

where f represents a generic variable of the unknown field, function of (x, x′, t). This
choice highlights the dual nature of the problem, i.e. the partition between microscopic
and macroscopic aspects of the problem connected by the fundamental concept of
averaging (cf. the next section). Once we have substituted the expansion (2.6) into the
governing equations, grouping each term in orders of ε and considering only those of
order 0 and 1, we obtain the following equations defined over Vf :

∂u(0)i

∂xi
= 0, (2.7)

∂u(1)i

∂xi
+ ∂u(0)i

∂x′i
= 0, (2.8)

0=−∂p(0)

∂xi
, (2.9)

Re

(
∂u(0)i

∂t
+ u(0)j

∂u(0)i

∂xj

)
=−∂p(1)

∂xi
− ∂p(0)

∂x′i
+ ∂2u(0)i

∂xj∂xj
. (2.10)

Equation (2.9) yields p(0) = p(0)(x′, t), i.e. the leading-order term of the pressure
varies only over the macroscale (and time). Equation (2.10) contains the inertial
terms which may, or may not, be negligible depending on the order of magnitude of
the microscopic Reynolds number, Re.

2.2. Re=O(ε)
If the Reynolds number is of order ε, the left-hand side of (2.10) goes to higher order,
so that, following Mei & Vernescu (2010), the solution can be written formally as

u(0)i =−K ij
∂p(0)

∂x′j
, p(1) =−Aj

∂p(0)

∂x′j
+ p(1)0 (x

′, t), (2.11a,b)
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where K ij is a tensor, Aj is a vector and p(1)0 is an integration constant (with respect
to the integration variable x). Substituting (2.11) into (2.7) and (2.10) and simplifying,
it follows that the coefficients should satisfy the relations:

∂K ij

∂xi
= 0, −∂Aj

∂xi
+∇2K ij =−δij; (2.12a,b)

this is a forced Stokes problem with the unknowns K ij and Aj for i, j = 1, 2, 3 (in
principle a system of 12 equations and 12 unknowns) with boundary condition

K ij = 0 on Γ, (2.13)

plus periodicity over V for K ij and Aj. We note that the solution of (2.12), (2.13)
depends only on the microscopic spatial scale. Moreover, to ensure uniqueness of the
solution we can impose

〈Aj〉 = 0, (2.14)

for each j, where the volume average over a unit cell 〈·〉 is defined by:

〈 f 〉 := 1
V

∫
Vf

f dV. (2.15)

By taking the volume average of (2.11), noting that p(0) and p(1)0 do not depend on x
and using (2.14), we obtain

〈u(0)i 〉 =−Kij
∂p(0)

∂x′j
, with Kij = 〈K ij〉, (2.16)

〈 p(1)〉 = ϑp(1)0 , with ϑ = Vf

V
, (2.17)

where Kij is the dimensionless permeability tensor, the dimensional counterpart of
which scales like l2, and ϑ the porosity. Equation (2.16) is Darcy’s law, which is
a first-order approximation of the Navier–Stokes equations in ε. We thus have a
macroscopic problem formed by the volume average of (2.8) which, after application
of the spatial averaging theorem (Mei & Vernescu 2010), leads to

∂〈u(0)i 〉
∂x′i

= 0, (2.18)

plus (2.16), in which the tensor Kij, calculated through (2.12), appears. Darcy’s law
is based on the assumption that Re = O(ε). In view of the practical developments
of this work, we now want to understand how to treat the problem when Re is
not infinitesimal. One obvious extension consists in taking higher-order terms in
the expansion (2.6), as done in Mei & Vernescu (2010). This leads to Darcy–
Forchheimer’s equation, valid in the range ε < Re < 1. In § 2.3 an alternative is
proposed.
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FIGURE 3. (Colour online) Isocontours of K 11 in the microscopic domain for the case of
porous media made by packed spheres (a) and cylindrical fibres (b).

2.2.1. Microscopic simulations
In order to solve (2.16), we first need to calculate the permeability tensor over

the normalized domain shown in figure 3. For both cases Re= O(ε) and Re= O(1)
an opensource solver based on OpenFOAM (www.openfoam.com) is used. A time-
marching solver is employed to reach a steady solution. The differential operators
are discretized using the finite volume method and the Gauss scheme is employed
to express the divergence, gradient and Laplacian operators; we have verified that the
results reported here are grid converged.

We have first computed the case of an isotropic porous medium formed by packed
spheres; our results for ˆK = 〈K 〉 match perfectly those obtained by Zick & Homsy
(1982) for varying values of the porosity ϑ (cf. figure 4). The values of Zick & Homsy
(1982) are Stokes flow results, obtained through the technique of integral equations,
for different packings of uniform spheres. The much-quoted Kozeny–Carman empirical
formula (Carman 1939):

ˆK = 1
5

(
Vs

|Γ |
)2

ϑ3

(1− ϑ)2 , (2.19)

is close to the theoretical findings only for ϑ around 0.5; in the formula, |Γ | is the
interface area and Vs the solid volume. A better fit through the data, to represent the
isotropic permeability as a function of the porosity, is given by:

ˆK = 1
5

(
Vs

|Γ |
)2

ϑ5/2

(1− ϑ)47/30
(2.20)

(dashed red line in figure 4), valid in the range 0.476<ϑ < 1.
The second step is to find the permeability of our particular porous medium and

its orthotropic structure reduces to two the components of the tensor to be computed:
K 11 and K 33 represent the longitudinal and transversal components of the permeability,
respectively. Once K 11 and K 33 are found, we have a pointwise solution inside the
elementary cell V; as before, we carry out the weighted integral of K ij over its
microscopic domain, as by (2.15), to obtain K11 and K33. The results are displayed

http://www.openfoam.com
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FIGURE 4. (Colour online) Permeability versus porosity for regular arrays of spheres:
homogenization theory (@ (red)), empirical law of Kozeny–Carman (—— (blue)),
theoretical results by Zick & Homsy (1982) (D (blue)).

in figure 5 against a set of theoretical and experimental data from the literature, with
close agreement for ϑ ranging from 0.3 to 0.9. Thanks to figures 4 and 5, one can
conclude that model (2.12) reproduces well the values of the permeability both in
isotropic and anisotropic cases. The homogenization technique is thus suitable from a
microscopic point of view and for low-Re flows, despite the fact that the permeability
components vary over a wide range of values, from O(10−4) to O(10−1) depending on
the porosity, an indication of the fact that l2 is the proper scale for the permeability
only at large porosities ϑ’s. This is confirmed by numerical solutions of (2.12), which
yield Kij→ δij for ϑ→ 1.

2.3. Re=O(1)
When Re is not small, (2.10) remains unaltered. We consider a steady solution of
(2.10) through a Oseen approximation of the advective term, i.e. we assume that

u(0)j
∂u(0)i

∂xj
≈Uj

∂u(0)i

∂xj
, (2.21)

where Uj is the mean fluid velocity vector through the medium defined via a spatial
average:

Uj := 1
VTot

∫
VTot

〈u(0)j 〉 dV, (2.22)

with VTot the whole macroscopic volume of the porous medium (fluid plus solid). We
can also define the mean fluid velocity vector through the pores as vp=U/ϑ and the
pore Reynolds number, Rep =Upl/ν, where Up is the scale of the pore velocity vp.

The Oseen approximation has been proposed for cases with Re�1 by Gustafsson &
Protas (2013), with satisfactory results. We adopt it here in order to maintain a linear
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FIGURE 5. (Colour online) Components of the permeability tensor versus porosity for
regular arrays of cylinders. The present results are represented by bullets, red for
K11 =K22, black for K33.

problem yielding (2.16). The choice of a global estimate of the velocity U, defined
via (2.22), is important to establish a two-way link between the microscopic and the
macroscopic set of equations. Hence, we can write the solution of the new linearized
equations as in (2.11) and search for K ij and Aj which satisfy

∂K ij

∂xi
= 0, −ϑRepv

p
l
∂K ij

∂xl
= ∂Aj

∂xi
− ∂

2K ij

∂x2
g

− δij, (2.23a,b)

with the same boundary conditions as those used in problem (2.12). For the definition
of vp to make sense, we need to implement an iterative method, as we will explain
in § 4.1. Finally, Darcy’s law has the same form as the canonical one (2.16), but
the permeability tensor arises from iterating between the macroscopic equation (2.16)
and the system (2.23) valid at the microscopic level. Thus, the permeability in this
case is no longer a simple material property, but depends on the Reynolds number
and the orientation of the velocity vector; it has been termed apparent permeability
by Edwards et al. (1990). In the simple case in which the fluid has a single main
direction of motion x1, with constant pore velocity, i.e. vp= (1, 0, 0), (2.23) becomes:

∂K ij

∂xi
= 0, −ϑRep

∂K ij

∂x1
= ∂Aj

∂xi
− ∂

2K ij

∂x2
g

− δij. (2.24a,b)

2.3.1. Effect of Rep on the apparent permeability
The procedure briefly outlined in § 2.3 for calculating the apparent permeability

at varying values of the pore Reynolds number is here validated against simulations
of the Navier–Stokes equations for the flow through regular arrays of cylinders
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FIGURE 6. Components of the apparent permeability as a function of the pore Reynolds
number. The arrows point in the direction of increasing values of ϑ , from ϑ = 0.4 to 0.8
in intervals of 0.1. Symbols in (a) refer to the results by Edwards et al. (1990).

arranged in a square lattice. The reference simulations by Edwards et al. (1990) are
two-dimensional (as such they furnish only the value of K11), and are carried out
with a finite element solver for Rep up to approximately 400 and porosities ϑ in
the range 0.4–0.8. The comparison between our solutions of (2.24) and the reference
values of K11 is shown in figure 6, as a function of the Reynolds number and
the porosity of the medium, together with our solutions for K33. The Oseen-based
approximations of the first component of the permeability tensor match satisfactorily
the reference values, providing confidence in the model developed, particularly for
larger porosities.

3. Interface conditions
The theory described thus far is based on the spatial homogeneity of the porous

medium and is not valid, in general, when homogeneity is broken by, e.g., the
presence of an interface with a different medium. We must thus pay particular
attention to the conditions to be imposed to transfer information from the pure fluid
region (denoted in the following by F with the corresponding unknown fields ·|F) to
the porous medium (denoted by P with the corresponding unknown fields ·|P) and
vice versa: near the actual physical interface a more or less thin buffer layer exists
where a matching must be enforced.

Several interface conditions are present in the literature and a recent review can
be found in Carraro et al. (2013). We have tested many of them comparatively;
all conditions contain a certain degree of arbitrariness and require the a posteriori
calibration of one or more parameters. We should also highlight the fact that a
‘double’ set of conditions is needed, one that links the fluid equations to Darcy’s law,
and the other which takes the results computed in P and transforms them into suitable
interface conditions for the Navier–Stokes solver. Among the different strategies that
we have tested, we outline and compare three of them.

A. The first approach consists in solving Darcy’s equation in the porous region and
imposing

p(0)
∣∣

P = p|F + constant, (3.1)

at a fictitious interface positioned a small distance δ, which we call the penetration
depth, below the physical interface, in order to transfer information from the fluid
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region to the porous region. The presence of the constant term has no influence on
the solution of Darcy’s equation, since the pressure is always specified (both in P and
F) up to an arbitrary constant; the constant is however maintained, at least formally,
in (3.1) to highlight the fact that pressure may be discontinuous when crossing the
interface. More specifically, a pressure jump has been predicted by Marciniak-Czochra
& Mikelić (2012) and Carraro et al. (2013) when the porous medium is anisotropic or
in the presence of flow inertia (see also Sahraoui & Kaviany 1992), and it varies along
the interface direction. On the other hand, continuity of pressure across the interface,
up to the order of the pore size, was advocated by Ene & Sánchez-Palencia (1975).
We will come back to the pressure jump condition in § 4.6.

To have adequate conditions for the Navier–Stokes equation, we use

ui|F = 〈u(0)i 〉
∣∣∣

P
, (3.2)

applied at the same fictitious interface as above. Here ui|F is not averaged because it
is the effective velocity, computed over a grid in which each point corresponds to a
microscopic cell. Enforcing the continuity of both pressure and velocity below the real
interface has been proposed and tested by Le Bars & Worster (2006), with the scope
of accounting for inertia within the porous layer in the immediate vicinity of the fluid
domain. Le Bars & Worster (2006) have shown that this is essentially equivalent to
the interface condition of Beavers & Joseph (1967), which is applied at the physical
interface, and have estimated the distance δ to vary as

δ = c

√
K

ϑ
, (3.3)

where K represents the permeability (in their case a scalar since the medium is
isotropic) and c is a constant to be determined (c= 1 in their work). By enforcing the
conditions at δ, we are sufficiently far from the interface for the periodicity assumption
of homogenization theory to remain tenable.

B. The second approach (e.g. Kaviany 1995) consists in modifying Darcy’s equation
adding a viscous term through which we can impose continuity of the velocity and
the tangential and normal components of the stress tensor over the interface. We
note that Brinkman’s equation can be obtained from homogenization theory (Mei &
Vernescu 2010), adopting slightly different normalizations of the starting equations
on the assumption that the fibres are sufficiently sparse. The resulting equation, in
terms of the scales used in the multiple scale theory, is

〈u(0)i 〉 =−Kij
∂p(0)

∂x′j
+Kijε

2µe

µ

∂2〈u(0)j 〉
∂x′2k

, (3.4)

where µe is the (a priori unknown) effective viscosity of the homogenized medium.
In order to match the results at the interface with the fluid region F, we should scale
the pressure in Brinkman’s equation with ρU2, so that the newly normalized equation
reads:

〈u(0)i 〉 =−Kijε
2ReL

∂p
∂xj
+Kijε

2µe

µ

∂2〈u(0)j 〉
∂x2

k
, (3.5)

with ReL the macroscopic Reynolds number, ReL = Re/ε, with the primes ′ now
omitted from the name of the macroscale variable, x′i. We also omit the superscript
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(0) from the variable p in the porous domain. If µe were available we could impose
the following conditions at the fluid–porous interface:

(σijnj)ni

∣∣
F = (σijnj)ni

∣∣
P and (σijnj)ti

∣∣
F = (σijnj)ti

∣∣
P (3.6a,b)

to transfer data from the fluid domain to the porous medium P ruled by Brinkman’s
equation, plus (3.2) to go from the porous domain to the fluid domain. In (3.6), σij
is the stress tensor, ni and ti are, respectively, the unit vectors normal and tangent to
the interface. Such conditions can be written in the present case as(

∂u1

∂x3
+ ∂u3

∂x1

)∣∣∣∣
F

= µe

µ

(
∂〈u(0)1 〉
∂x3

+ ∂〈u
(0)
3 〉

∂x1

)∣∣∣∣∣
P

(3.7)

and (
−p+ 2

ReL

∂u3

∂x3

)∣∣∣∣
F

=
(
−p+ µe

µ

2
ReL

∂〈u(0)3 〉
∂x3

)∣∣∣∣∣
P

. (3.8)

We note that the stress from the pure fluid region F is transmitted to the
homogenized region P, and is distributed to both the inclusions (the fibres) and
the fluid contained within them.

C. The third interface condition tested consists in applying the same strategy as in
A with δ = 0, i.e. the matching is enforced precisely at the physical interface, but
the permeability components are driven smoothly to a large absolute value near the
interface, through a filter which forces the permeability to vary rapidly over a distance
of the order of ε. This strategy has been proposed by Chandesris & Jamet (2008)
and Jamet & Chandesris (2009); in the present case the filter is taken directly from
three-dimensional numerical simulation results with account of all individual fibres.

4. First validation case: laminar flow in a cavity
We first solve for the flow in a composite domain, in which there is both a pure

fluid region and a porous region formed by densely packed rigid fibres: the choice
of considering a lid-driven cavity, filled up to a certain height (each fibre is in length
0.33 times the side length of the square cavity) by the porous medium, as sketched
in figure 7, allows us to analyse the orthotropic character of the medium. In fact,
because of the non-negligible vertical velocity inside the porous region, we are able
to quantify how much K33 affects the fluid flow and we can impose and compare
different interface conditions. On the other hand, this case is more difficult than the
classical pressure-driven channel flow with porous walls studied by many authors
before.

The method used is classified as a domain decomposition method; it is an iterative
method based on splitting interface conditions, which play the role of transmission
conditions (cf. Quarteroni & Valli 1999), between the F and P regions. Searching for
a steady solution we formalize the numerical procedure with the following steps:

(i) We solve for the two-dimensional NSE in the F-region, expressed in dimension-
less form as:

∂ui

∂xi
= 0, (4.1)

∂ui

∂t
+ uj

∂ui

∂xj
=− ∂p

∂xi
+ 1

ReL
∇2ui, (4.2)
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Porous (P) region

Pure fluid (F) region

FIGURE 7. View of the macroscopic domain with the boundary conditions imposed when
solving Darcy’s equation in the P-region.

with initial interface condition u= 0; ReL is based on the characteristic dimension
of the cavity (L) which can be identified with the macroscopic length of the
homogenization technique, so that ReL = Re/ε. The solver developed and
validated in Zampogna (2016) is based on the fractional step method, using
fourth-order finite differences for the space discretization and a Crank–Nicolson
scheme for the time advancement (Perot 1993).

(ii) We take the divergence of (2.16) and use (2.18) to have in the P-region:

K11
∂2p
∂x2

1
+K33

∂2p
∂x2

3
= 0, (4.3)

plus homogeneous Neumann conditions on the solid walls. At the interface the
pressure is imposed (cf. (3.1)). If the Brinkman’s model is considered instead,
conditions (3.7) and (3.8) are used at the interface, together with no slip along
the walls, to solve for the equations in the porous domain and find the pressure
p|P and the velocity components (〈u(0)1 〉, 〈u(0)3 〉).

(iii) When using Darcy’s model we still need to compute the velocity in the porous
medium, using (3.5) with µe set to zero. For either models the final step of the
iteration procedure consists in enforcing condition (3.2) at the interface for the
subsequent solution in the F-region.

4.1. Double interactions for the Re=O(1) case
The scheme of the Re= O(ε) case remains unchanged also when Re= O(1), except
for one point. In this case the permeability tensor cannot be computed before starting
the macroscopic simulation but must be computed each time that Darcy’s velocity
is updated because K ij depends directly on the magnitude and direction of the mean
velocity inside the porous medium (cf. 2.23). A guessed value of K ij is thus chosen
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FIGURE 8. Spatial convergence study for the DNS in the case of ReL= 100. The different
grids are built with the software snappyHexMesh (http://www.openfoam.org/version2.3.0/
snappyHexMesh.php).

to initialize the iterative procedure and a reasonable choice is to use the permeability
of the Stokes flow case. After each solution in the P-region, the mean velocity
components are computed with (2.22) and used to estimate the permeability for the
successive time step.

4.2. Direct numerical simulations
In order to compare the different interface conditions and assess which of them fits the
problem analysed in this work, three-dimensional direct numerical simulations (DNS)
of the incompressible NSE in the real geometry, accounting for all fibres (50 for the
simulations presented here, so that ε= 0.02), are performed with OpenFOAM. Also in
this case all the operators (divergence, gradient and Laplacian) are discretized using
the finite volume method, with the Gauss linear scheme. A Crank–Nicolson scheme
is used to march in time.

In the transverse direction (x2) the size of the domain is taken equal to ε (in
dimensionless terms) and periodic boundary conditions are enforced. The numerical
mesh needed to have grid-converged solutions is formed by over 8 million cells;
figure 8 provides an example of a convergence test for a measure (the PDF of the
permeability components) introduced further in (§ 4.3).

An example of a DNS result (for Re = 100) is shown in figure 9, where a slice
of the steady converged solution at x3 = 0.25 (thus within the porous medium) is
shown, through isocontours of the first velocity component, near the solid boundaries
and around x1 = 0.5. The figure also shows a cut through the numerical grid.

With the results from the DNS we can:

(i) evaluate the components of the permeability tensor and verify the results of
homogenization theory;

(ii) test the different interface conditions and, for example, calibrate the constant c
in the definition of δ (3.3);

(iii) validate the unknown fields at a macroscopic level, verifying the appropriateness
of the homogenized equations.

http://www.openfoam.org/version2.3.0/snappyHexMesh.php
http://www.openfoam.org/version2.3.0/snappyHexMesh.php
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FIGURE 9. (Colour online) Zoom of the macroscopic domain of the DNS inside the
porous medium with ϑ = 0.8. Slice of the cavity at x3 = 0.25. Only few cylinders (out
of 50) are shown inside and at the extremities of the cavity. The colours and the white
curves in (a) represent the x1-component of the velocity field and its isocontours. In (b)
a cut through the grid is shown.

To compare the DNS results with the two-dimensional simulations described in
the previous section we must extract in a proper way the averaged values of the
fields: the whole domain is thus decomposed into elementary cubic cells of size ε3

and all fields are averaged over each microcell using the definition (2.15); in this
way two-dimensional fields are obtained from the DNS results and, in particular,
we have a sampling of the solution in the porous medium (in the case of a layer
of N filaments of height 0.33 we have a Cartesian grid, with velocity components
and pressure centred in the cell, composed by 0.33 N2 elements in P). Using the
grid built, the pressure gradient is computed with fourth-order finite differences. In
the internal region of the porous medium, assuming that Darcy’s approximation is
valid (i.e. 〈uDNS〉 = 〈u(0)〉 and 〈 pDNS〉 = p(0)), Kij is computed using (2.16), using the
same scalings which have led to (3.5). Finally, we need to account for the influence
of the boundary layers at the solid walls and at the interface, and for the presence
of isolated regions in which the pressure gradient becomes negligibly small; thus,
the values of K DNS

ij (superscript DNS is used to indicate that the value has been
estimated on the basis of the full simulations) are evaluated on the basis of their
probability density functions (PDF). To compute the PDF we divide the values of
Kii in a number of intervals such that each one of them has an extent equal to 10 %
of the value of Kii for which we find the maximum of the PDF.

4.3. The components of the permeability tensor
The complete simulations have been performed for Reynolds numbers ReL varying
from 1 to 1000, for fixed value of ε = 0.02 and ϑ = 0.80. The a posteriori treatment
of the DNS results within the porous medium permits to extract the value of the
permeability components over each elementary cubic cell, yielding the probability
density functions displayed in figure 10.
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FIGURE 10. Probability density function of K11 and K33 for different values of ReL.
The apparent permeability is computed a posteriori applying Darcy’s law to the averaged
solution of the DNS. (a) ReL = 10, (b) 100, (c) 1000.

It is immediately apparent that the PDF pinpoints sharply the values of K11 and K33
for ReL up to 100, whereas for larger ReL’s the two components of the permeability
display a broader variability. The peak values are nonetheless well defined and are
reported in table 1, against corresponding results from the homogenization theory.
The latter have been computed including inertial terms in the equations, with the
same Up found in the direct simulations of the full geometry. The values of the
permeability components from the DNS are approximately 40 % larger than those
calculated from the system (2.12), (2.13); in absolute terms, the difference is of order
ε, consistent with the theory. We will see (figure 21) that something similar occurs
also in another flow case, under turbulent conditions. In the narrow range of pore
Reynolds number considered here, the full simulations do not allow us to extract
a clear trend of how the permeability varies, whereas the theory indicates a slow
decrease of both components with Rep.

The disagreement between theory and direct simulations appears to be relatively
mild, when seen in the scale of figure 6, but nonetheless deserves to be clarified, since
it occurs also for flow cases (ReL = 1) in which the motion of the fluid through the
pores is clearly ruled by Stokes’ equation. We believe that, on the one hand, the flow
geometry plays a role here, since the two sidewalls constrain the fluid, forcing it to
recirculate; a much better agreement would have been obtained had we considered a
pressure-driven channel flow, as done by many authors (Le Bars & Worster 2006; Hill
& Straughan 2008; Battiato 2012). On the other hand, we would expect a closer match
between the DNS results and the theory had we pushed the asymptotic development
to third order, modifying Darcy’s equation with a Forchheimer term, as described
by Mei & Vernescu (2010). This is indirectly supported by one direct simulation at
ReL= 100, conducted with 200 fibres (instead of 50) – for which the small parameter
ε of the expansion is small (and equal to 0.005), for the same porosity coefficient
ϑ = 0.80 – which yields values of the apparent permeability closer to the theoretical
ones in table 1.
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FIGURE 11. (Colour online) Streamlines in the composite domain. (a,b) Represent the
solution for ReL = 100; (c,d) display results for ReL = 1000. In all cases the porosity
is ϑ = 0.80. (a,c) Show solutions of the homogenized model, (b,d) are the DNS results.
Representative velocity profiles will be later displayed along the vertical line x1 = 0.5.

In the following, the results from the three-dimensional numerical simulations
will be compared to results from the coupled two-dimensional Navier–Stokes/Darcy
equation, where in the latter model the values used for the apparent permeability are
those of the direct numerical simulations.

4.4. The macroscopic fields
A representative comparison between the DNS results and those from the model
system is displayed in figures 11 and 12 in terms of the streamlines of the flow
and the pressure field, respectively. In the model system we have enforced interface
conditions A (cf. § 4), with δ= ε/5, i.e. we have used the penetration depth δ that, as
we will show, yields the best agreement between the model and the direct simulations.
The results are very close to one another and, in particular, the complex behaviour
of the flow within the porous domain appears to be correctly captured by Darcy’s
equation (with a tensorial permeability). Also the pressure field of the homogenized
model matches that of the DNS with the constant term of (3.1) appropriately chosen.

It is significant that the model problem requires a CPU time of the order of 30
minutes using one 2.0 GHz IntelrXeonr processor and less than 2 Gb of RAM to
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FIGURE 12. Isocontours of the pressure field in the composite domain. Panels (a,b)
represent the solution for ReL = 100; (c,d) display results for ReL = 1000. In all cases
the porosity is ϑ = 0.80. Panels (a,c) are the solutions of the homogenized model, (b,d)
are the DNS results.

reach convergence, whereas each DNS, on the same computer, needs a CPU time of
over 500 h and more than 8 Gb of RAM, running in parallel on 16 processors. It
is also noticeable that for different interface conditions the results are qualitatively
similar, and all the model solutions look ‘correct’, with minor differences noticeable
(corresponding images are not shown for reasons of space). This statement, however,
justifies a closer look at the interface.

4.5. Focus on the interface
To assess the quality of the interface conditions we focus on x1 = 0.5. The first
condition (A of § 3) yields the results displayed in figure 13, for ReL = 100. A value
of δ between 0 and ε/5 provides a good match with the DNS results in the F-region
and at the interface, whereas increasing δ above ε/2 yields values of both velocity
components near the interface which progressively overestimate the ‘true’ values.
Within the porous domain (x3 6 0.25), the difference between the solutions computed
for varying δ’s and the DNS is negligible.

When ReL is equal to 1000, an excellent agreement with the DNS results is achieved
for δ = ε/5, as shown in figure 14. It is important to note that a poor choice of
δ (e.g. δ > ε) degrades the solution also in the fluid region F, as figure 14 clearly
demonstrates. As far as interface condition A is concerned, we observe an increase of
the penetration depth, δ, with Rep, as one would intuitively expect.
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FIGURE 13. View of the macroscopic profile of u1 and u3 (lower panels) for x1 = 0.5
(middle of the cavity) for the DNS and four choices of δ (ReL = 100). Two zooms are
highlighted at the interface. Interface strategy: A.

We now turn to interface condition B. Brinkman’s equation has been discretized
and directly matched to the Navier–Stokes results in the F-region; the velocity profiles
obtained at x1= 0.5 are compared to the reference profiles in figure 15, for ReL= 100
and different values of the effective viscosity. As µe approaches zero, the Darcy limit
is recovered; the upper value of µe/µ considered is 30, close to that determined
experimentally by Givler & Altobelli (1994). Furthermore, even the theoretical
value, µe/µ = (1 − ϑ)−1 = 5, deduced on the basis of volume averaging theory by
Ochoa-Tapia & Whitaker (1995), has been tested. The immediate observation is that
a value of the effective viscosity, which is either too large (30) or too small (0.3),
degrades significantly the solution in the F-region, as a direct consequence of the
poor estimation of the velocity in the proximity of the interface. Conversely, when
µe is a few times larger than the dynamic viscosity of the fluid, i.e. it is close to
the theoretical approximation, the solution appears to behave better when compared
to the DNS, although close inspection of the fields within the porous region (not
shown) show differences between the model solution and the ‘exact’ result which are
larger than those found with interface strategy A. This negative aspect of Brinkman’s
model, coupled to the fact that the effective viscosity is not available a priori, is
somehow tempered by the fact that Brinkman’s equation has been used here in
a system for which the fibres are not sufficiently sparse, as prescribed by Mei &
Vernescu (2010). A similar conclusion on the poor performance of Brinkman’s model
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FIGURE 14. View of the macroscopic profile of u1 and u3 (lower panels) for x1= 0.5 for
the DNS and four choices of δ (ReL = 1000). Interface strategy: A.

in handling porous–fluid interfaces has also been reported by Sahraoui & Kaviany
(1992), Kaviany (1995) and James & Davis (2001).

Results from the last interface condition (C) are displayed in figures 16 and 17;
here the permeability varies as the macroscopic interface (at xITF

3 =0.33) is approached.
Whereas this is physically reasonable, it is unknown how the permeability should be
taken to vary. In this specific case we use the DNS results to define the shape of
the filter to apply on K . The permeability inside the porous medium is recovered
using Darcy’s law, as explained in the previous section. Here, we need a value of
permeability for each x3 in the porous zone. It is sampled for each x1 in the cavity
and then a mean value along the x1 direction is extrapolated (solid and dotted lines of
figure 16). It is clear that up to a distance d=O(ε) from the interface, the value of
Kii is constant; then it increases. In particular we observe that for the case ReL= 100
shown in figure 16 the component K11 has d1= (5/2)ε, while for K33 it is d3= (3/2)ε.
This seems to indicate that K −1

ii is proportional to di; in table 1 this trend is further
explored for varying ReL’s. The distance di (i= 1, 3) defines an interfacial layer whose
thickness decreases slowly with the increase of the Reynolds number ReL. In this it
differs from the protrusion height δ of approach A. The agreement at the interface
between the homogenized solution and the solution of the DNS is however not very
good (cf. figure 17) and this is likely due to the fact that near the interface Darcy’s
law is inappropriate and a model which accounts for inertia is needed.
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FIGURE 15. View of the macroscopic profile of u1 and u3 (lower panels) for x1= 0.5 and
four choices of µe/µ (ReL = 100). The images on the right highlight the degradation of
the solution with increasing µe, in particular close to the interface. Interface strategy: B.
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FIGURE 16. Inverse of the filtered permeability for the cases ReL = 100. The two lines
(dotted and solid) arise from the DNS and are x1-averaged values; d1 and d3 are the
lengths over which the components of permeability vary near the interface positioned in
x3 = 0.33.

4.6. The pressure jump at the interface
The availability of the DNS renders it possible to assess the presence of, and
quantify, the pressure jump across the physical interface. Arguments for the existence
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FIGURE 17. Macroscopic profile of u1 and u3 (lower panels) for x1= 0.5 computed using
the filtered permeability shown in figure 16 (ReL = 100) and compared to the case in
which the permeability components are maintained constant throughout the porous zone.
Two zooms over the interfacial zone are highlighted on the right. Interface strategy: C.

of a pressure jump have been put forward, using homogenization theory coupled
with a boundary layer analysis near the interface, by Marciniak-Czochra & Mikelić
(2012) for the Stokes flow over an anisotropic porous bed. Similarly, a pressure slip
at the interface has been reported by Sahraoui & Kaviany (1992) in the presence of
flow inertia; analytical arguments to quantify the pressure slip are given by Carraro
et al. (2015) in the case of forced infiltration. The condition of Marciniak-Czochra
& Mikelić (2012) in dimensionless form, reads:

−[p] = pP(x1, ITF−)− pF(x1, ITF+)= C
ReL

∂u1

∂x3
(x1, ITF), (4.4)

with the first term above representing the pressure jump across the interface,
positioned at x3 = ITF and C a constant which depends only on the porous bed
geometry. We have evaluated precisely this jump on the basis of the DNS, by
averaging the microscopic data, both in F and P, over cubic unit cells of size ε3.
Thus, the pressure in the pure fluid is evaluated at x3 = ITF+ = ITF + (ε/2), and
the average pressure in P is evaluated at x3 = ITF− = ITF − (ε/2). The left panel of
figure 18 displays |ReL[p]| along the interface at the three values of ReL considered;
the right panel of the same figure reports a shear parameter defined as:

S= ∂u1

∂x3
(x1, ITF)+ ∂u3

∂x1
(x1, ITF). (4.5)
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FIGURE 18. (a) Pressure jump across the interface at three values of the Reynolds number.
(b) Shear parameters S at the interface. Both panels are based on DNS results.

In our simulations (∂u3/∂x1)(x1, ITF) at the interface is typically two orders of
magnitude smaller than the (∂u1/∂x3)(x1, ITF) term, which thus dominates the
parameter S. Comparison of the two panels makes it clear that, in the presence of
inertia, a simple constant C cannot be found to satisfy the pressure jump condition,
which is thus unsuited for use in the present case. Henceforth, although the pressure
jump is present, condition (4.4) cannot be readily enforced.

5. Second validation case: turbulent canopy flow

In this section we want to demonstrate that the model formed by (2.16), (2.24) plus
the equations in the pure fluid domain and the interface conditions are adequate also to
simulate a turbulent canopy flow. This kind of flow has been widely studied in the past
since it develops very often in nature (a recent review is provided by Nepf (2012)).
Much literature (theoretical and experimental) is present to understand the mechanisms
which induce the creation of a quasi-parallel mixing layer and the formation of honami
and monami waves over canopies. Raupach, Finnigan & Brunet (1996) and Finnigan
(2000) have classified the different structures which characterize the flow, on the basis
of the geometrical properties of the canopy (e.g. its density) and the parameters of the
mixing layer.

In order to understand if the closure adopted for the Re = O(1) case in (2.24)
makes sense we have used the experimental data of Ghisalberti & Nepf (2004) where
a fully developed turbulent flow of water over a submerged layer of vertical rigid
fibres is studied. The setting of the problem is sketched in figure 19; the porosity
ϑ in the experiments ranges from 0.96 to 0.99 and ε is approximately 0.2 (defined
as the ratio between the diameter of the fibres and the height of the water column).
The measurements of the mean velocity inside the canopy and the driving term are
available so that the permeability K11 can be estimated a posteriori using Darcy’s law
which, in this case, can be written in dimensional variables as

〈u(0)1 〉 =K11
g sin α
ν

, (5.1)

where ν= 0.94× 10−6 m2 s−1 is deduced using Reml in table 1 of Ghisalberti & Nepf
(2004) and α is the slope of the inclined system. The use of (5.1) in the lower zone
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0

h

FIGURE 19. Setting of the experiments of Ghisalberti & Nepf (2004). Water flows over
a layer of rigid cylindrical fibres. The whole system is slightly inclined at an angle α so
that the fluid motion is driven by gravity.

of the canopy, termed ‘wake zone’, is justified on physical grounds since, as noted by
Ghisalberti & Nepf (2009), such a region is ‘governed by a simple balance of drag
and hydraulic gradient, much like classical porous medium flow’.

Figures 20 and 21 display results for the microscopic permeability field K 11 within
the elementary volume, and the averaged values K11 for variable pore velocity. The
grey band represents the range of permeability K11 computed using the homogenized
model (2.24) for the corresponding porosities of each experiment. The experimental
values are in reasonably good agreement with the homogenized values; discrepancies
are of the same order as those shown in figure 6 and table 1.

We now consider the problem from a macroscopic point of view. Observing the
sketch of the velocity profile in figure 19 it seems reasonable to impose continuity of
the streamwise velocity at a distance δ (the penetration depth) below the top of the
canopy. This is the fictitious interface and (5.1) is thus applicable for x3 ∈ [0, h− δ].
Since we are dealing with a fully developed turbulent flow, in the region above the
fictitious interface (x3 ∈ [h− δ, x∞3 ]), after using the Reynolds decomposition for the
velocity (i.e. ui = Ui + u′i) plus temporal averaging (·), the streamwise momentum
equation reads:

∂u′1u′3
∂x3
= g sin α. (5.2)

Thus, the turbulent stress balances the hydraulic gradient in the upper zone (termed
the ‘exchange zone’), whereas the viscous term can be neglected. Assuming a
constant mixing length model, such as that proposed by Ghisalberti & Nepf (2004),
the Reynolds stress can be written as

−u′1u′3 =
(

cl∞δ
∂U1

∂x3

)2

, (5.3)
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FIGURE 20. (Colour online) Horizontal component of the permeability K 11 within a unit
cell, for varying ϑRep= 0, 50, 500, 1500. Increasing Rep, the value of K 11 is reduced and
the distribution initially loses symmetry with respect to the vertical mid-plane through
the cylinder, to eventually regain it because of periodicity for ϑRep above 500. Here
ϑ = 0.975.

where l∞δ is shown in figure 19, c is a constant and their product is a ‘mixing length’.
Substituting (5.3) into (5.2) and solving for the mean flow it is found:

U1(x3)=U1(h− δ)+ 2
3

√
g sin α
cl∞δ

[(x∞3 − h+ δ)3/2 − (x∞3 − x3)
3/2]. (5.4)

The condition at the fictitious interface yields U1(h− δ)=〈u(0)i 〉(h− δ)=K11(g sin α/ν).
As we can observe from figure 22 the proposed solution fits the experiments with
the unique value of c= 0.086. Summing up, we can make the following two points:

(i) The values of the permeability deduced from the experiments slightly overestimate
those evaluated via homogenization theory (cf. figure 21), and this is possibly due
to the fact that in the experiments by Ghisalberti & Nepf (2004) the parameter
ε is approximately 0.2, a value which is not much smaller than one.

(ii) The agreement between the experimental and theoretical velocity profiles in
figure 22 confirms that the interface condition A of Le Bars & Worster (2006) is
suitable in this turbulent case. Moreover, for the four experiments analysed, the
order of magnitude of δ estimated from (3.3) matches that used here. However,
if c in (3.3) were a simple constant, considering the trend of K11 in figure 21, δ
would decrease for increasing values of Rep, contrary to observations (cf. the inset
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FIGURE 21. Horizontal component of the permeability K11 versus ϑRep of (2.24) from
the measurements by Ghisalberti & Nepf (2004). Since the permeability is deduced
from experimental data, the vertical and horizontal bars represent the uncertainty of the
measurements which is approximately 10 % for each value. The grey band represents the
range of permeabilities calculated by the homogenized model for finite Reynolds numbers
for 0.96 6 ϑ 6 0.99.

in figure 22). Thus, the ‘constant’ c in (3.3) should be rendered an increasing
function of Rep for δ to increase monotonically with the increase of the pore
velocity (at each given value of θ ).

6. Conclusions

A homogenization approach has been used to study the flow over and through a
orthotropic porous medium. The work is developed essentially from two points of
view: the microscopic and the macroscopic ones. The microscopic equations provide
a characterization of the particular geometry of the porous medium, resulting in an
estimate for the components of the permeability tensor; only two diagonal components
of this second-order tensor are present in the particular medium considered since
the terms relative to the plane normal to the fibres’ axes are equal. This result
can be easily confirmed analytically (Milton 2004). Since we are interested in the
macroscopic field, the permeability tensor is averaged over the elementary cell and
the values K11 and K33 are compared with values from the literature, obtaining
good agreement. A new correlation for the (scalar) permeability K of an isotropic
medium is also provided as a function of the porosity ϑ of the medium, correcting
the classical relation by Kozeny–Carman.

In the presence of inertia within the porous region, an approach to estimate the
permeability is proposed, based on the Oseen linearization of the equations in the
unit cell, plus an iterative approach which alternates between the microscopic and
the macroscopic regions. With this technique, the apparent permeability from the
theory approaches the values found in experiments and DNS, with the correct trend
as a function of the pore Reynolds number. The theoretical values do not precisely
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FIGURE 22. Analytical velocity profiles, in dimensional variables, against experimental
results by Ghisalberti & Nepf (2004, 2006, 2009) for turbulent flow over a layer of rigid
fibres. The symbols represent the velocity measurements (with uncertainty of 5 %) for
cases B, H, I and J of table 1 of Ghisalberti & Nepf (2004). The analytical solution, (5.4),
is represented by the solid lines. Two horizontal grey lines, which appear overlapped in the
scale of the figure, represent the physical interface h (in dimensional terms h= 0.139 m
for case B and h= 0.138 m for the other cases). In the inset the values of δ, which define
the fictitious interface at x3 = h− δ, are shown for the corresponding cases. The dashed
line is drawn to guide the eye. In the four experiments we have used the following values
for l∞δ : I: 0.202 m @: 0.245 m E: 0.279 m D: 0.286 m. Furthermore, the microscale l
(used to normalize δ in the inset) is equal to 5.06 cm in experiment B (with ϑ = 0.99)
and 2.83 cm in the other cases (for which ϑ = 0.96).

match those available from experiments or DNS because the fibres considered here
are neither sufficiently slender nor packed densely enough for the first-order equations
of the multiple scale approximation to be fully adequate. To improve this, one could
possibly push the multiple scale theory up to higher order.

The coupling of the flow problem within the porous medium with that in a pure
fluid region neighbouring it is particularly important and different interface conditions
have been evaluated. All of them contain some degree of arbitrariness and parameters
which must be tuned. The main conclusion here is that Darcy’s law provides a good
approximation of the velocity inside the porous medium, also when inertia in the flow
within the P-region is non-negligible. The interface condition of Le Bars & Worster
(2006), which is an extension of the one by Beavers & Joseph (1967), is found to
be the most suitable, both in the case of laminar and turbulent flow. The penetration
depth δ which needs to be imposed satisfies the order estimate of Le Bars & Worster
(2006), for fixed pore Reynolds number. When ϑRep increases also δ increases, and
this should be accounted for when selecting δ in the model.
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Conversely, the use of Brinkman’s correction to Darcy’s law should be avoided
when the porosity is not large since, on the one hand, the value of the effective
viscosity µe is uncertain and, on the other, results with this model appear to
systematically overestimate the velocity near the interface between the fluid and
the porous domain.

Finally, also a condition which employs permeability components which vary as
the interface is approached do not appear adequate. The distance over which the
permeability approaches the infinite value of the pure fluid region has been estimated
to be of order ε on the basis of DNS, and depends mildly on Reynolds number, for
the range considered which spans three orders of magnitude. The use of permeability
components which change smoothly (even according to DNS results) is, however, not
sufficient in a coupled NSE–Darcy system to represent inertial effects within a small
porous layer adjacent to the pure fluid region, and this suggests the inclusion of a
Forchheimer term in a thin-layer interface model (Firdaouss et al. 1997).

Future work will focus on the flow of fluid over and through a bundle of flexible
fibres.
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conditions for the forced infiltration of a viscous fluid into a porous medium using
homogenization. Comput. Meth. Appl. Mech. Engng 292, 195–220.

CHANDESRIS, M. & JAMET, D. 2008 Jump conditions and surface-excess quantities at a fluid/porous
interface: a multi-scale approach. Trans. Porous Med. 78, 419–438.



34 G. A. Zampogna and A. Bottaro

CIMOLIN, F. & DISCACCIATI, M. 2013 Navier–Stokes/Forchheimer models for filtration through
porous media. Appl. Numer. Maths 72, 205–224.

DARCY, H. 1856 Les Fontaines Publiques de la Ville de Dijon. Victor Dalmont.
DAVIT, Y., QUINTARD, M., BELL, C. G., BYRNE, H. M., CHAPMAN, L. A. C., KIMPTON, L. S.,

LANG, G. E., OLIVER, J. M., PEARSON, N. C., WATERS, S. L. et al. 2013 Homogenization
via formal multiscale asymptotics and volume averaging: How do the two techniques compare?
Adv. Water Resour. 62, 178–206.

EDWARDS, D. A., SHAPIRO, M., BAR-YOSEPH, P. & SHAPIRA, M. 1990 The influence of Reynolds
number upon the apparent permeability of spatially periodic arrays of cylinders. Phys. Fluids
2 (1), 45–55.

ENE, H. I. & SÁNCHEZ-PALENCIA, E. 1975 Equations et phénomènes de surface pour l’ écoulement
dans un modèle de milieu poreux. J. Méc. 14, 73–108.

FINNIGAN, J. J. 2000 Turbulence in plant canopies. Annu. Rev. Fluid Mech. 32, 519–571.
FIRDAOUSS, M., GUERMOND, J. & LE QUÉRÉ, P. 1997 Nonlinear correction to Darcy’s law at low

Reynolds numbers. J. Fluid Mech. 343, 331–350.
GHISALBERTI, M. & NEPF, H. M. 2004 The limited growth of vegetated shear layers. Water Resour.

Res. 40 (7), 1–12.
GHISALBERTI, M. & NEPF, H. M. 2006 The structure of the shear layer over rigid and flexible

canopies. Environ. Fluid Mech. 6 (3), 277–301.
GHISALBERTI, M. & NEPF, H. M. 2009 Shallow flows over a permeable medium: the hydrodynamics

of submerged aquatic canopies. Trans. Porous Med. 78 (2), 309–326.
GIVLER, R. C. & ALTOBELLI, S. A. 1994 A determination of the effective viscosity for the Brinkman–

Forchheimer flow model. J. Fluid Mech. 258, 355–370.
GRAY, W. G. 1975 A derivation of the equations for multi-phase transport. Chem. Engng Sci. 30

(2), 229–233.
GUSTAFSSON, J. & PROTAS, B. 2013 On Oseen flows for large Reynolds numbers. Theor. Comput.

Fluid Dyn. 27 (5), 665–680.
HILL, A. A. & STRAUGHAN, B. 2008 Poiseuille flow in a fluid overlying a porous medium.

J. Fluid Mech. 603, 137–149.
JACKSON, G. W. & JAMES, D. F. 1986 The permeability of fibrous porous media. Can. J. Chem.

Engng 64 (3), 364–374.
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