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Abstract. Finite amplitude coherent structures with a reflection symmetry in the spanwise direction of a
parallel boundary layer flow are reported together with a preliminary analysis of their stability. The search
for the solutions is based on the self-sustaining process originally described by Waleffe (Phys. Fluids 9, 883
(1997)). This requires adding a body force to the Navier-Stokes equations; to locate a relevant nonlinear
solution it is necessary to perform a continuation in the nonlinear regime and parameter space in order to
render the body force of vanishing amplitude. Some states computed display a spanwise spacing between
streaks of the same length scale as turbulence flow structures observed in experiments (S.K. Robinson,
Ann. Rev. Fluid Mech. 23, 601 (1991)), and are found to be situated within the buffer layer. The exact
coherent structures are unstable to small amplitude perturbations and thus may be part of a set of unstable
nonlinear states of possible use to describe the turbulent transition. The nonlinear solutions survive down
to a displacement thickness Reynolds number Re∗ = 496, displaying a 4-vortex structure and an amplitude
of the streamwise root-mean-square velocity of 6% scaled with the free-stream velocity. At this Re∗ the
exact coherent structure bifurcates supercritically and this is the point where the laminar Blasius flow
starts to cohabit the phase space with alternative simple exact solutions of the Navier-Stokes equations.

1 Introduction

Transitional and turbulent flows take place in many tech-
nical applications such as the flow over an airplane wing
or around a car body. Getting a fundamental insight on
turbulent flows or understanding how a flow undergoes
transition to turbulence is of great significance since a
wide range of practical flows occur in non-laminar con-
ditions, and may lead to ideas on how to control it. The
boundary layer flow on a flat plate is of great fundamental
as well as practical importance. Ever since the pioneer-
ing experimental study of pipe flow by Reynolds [1] the
question of how a turbulent flow arises and sustains itself
is still not completely understood even though the past
two decades have witnessed progress on this subject. In
terms of dynamical system theory, in the end of the 19th
century Poincarè [2] established that chaotic dynamics is
generated by the interplay of locally unstable states and
the interweaving of their stable and unstable manifolds.
Some important steps on how a fluid flow becomes turbu-
lent were laid by the theories of Landau [3] and Hopf [4].
To describe the route to turbulence the linearly unsta-
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ble laminar flow is thought to go through an infinite well
defined sequence of bifurcations, or sudden changes, giv-
ing rise to increasingly complex states for increasing flow
speed. Later it was shown by Ruelle and Takens [5], see
also later extension by Newhouse et al. [6], that a strange

attractor arises after a small number of bifurcations. An
attractor can be a stable fixed point or a stable limit cy-
cle, and shows exponential sensitive dependence on initial
conditions [7]. An experiment on the Taylor-Couette flow
system confirmed the Ruelle-Takens scenario of the tur-
bulent transition [8]. Some early intuition about the dy-
namics of nonlinear systems was achieved by Lorenz [9],
simulating a flow using a highly truncated version of the
Navier-Stokes equations. Lorenz discovered that the flow
never positioned itself on a fixed point or ended up as a
periodic solution as t → ∞; instead the trajectories in
phase space never repeated themselves showing a chaotic
motion on a strange attractor (term later coined by Ru-
elle and Takens [5]). He realised that a small variation in
the initial conditions quickly gave rise to large changes
in the behavior of the flow at later times, a fact referred
to as “sensitive dependence on initial conditions”, and is
due to the nonlinearity of the governing equations. Al-
though the flow seemed chaotic it had structure in the
sense that starting from two different initial conditions the
flow would still traverse the same attractor. In numerical
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studies it has been shown that neighbouring trajectories
diverge exponentially, where the Lyapunov exponent de-
fines the rate of separation [10]. For the intermittent tran-
sition route to chaos [11] the attractor is a periodic orbit
as long as a parameter value, e.g. the Reynolds number
is lower than a critical value Rec. Going slightly past Rec

the flow is quasi-periodic with bursts of limited duration
that bring the flow off the periodic orbit. Finally for Re
considerably larger than Rec the flow is in a more or less
constant state of bursts which then defines a new flow dis-
tinct from the periodic motion at Re < Rec. The above
scenario is demonstrated on the Lorenz system in [11] for
increasing values of a control parameter.

In the past ten years the pipe flow configuration has
been subject to extensive studies, both numerical and ex-
perimental. To understand the turbulence transition the
pipe flow can be considered as a nonlinear dynamical sys-
tem where the state is governed by u̇ = N (u, Re), with N
being the remainder terms of the incompressible Navier-
Stokes equations. Since the laminar parabolic flow profile
is asymptotically stable to small perturbations [12,13] the
theory of the route to chaos cannot be used in the form
elaborated by [5]. The lower limit for triggering transi-
tion corresponds to Re ≈ 1800–2000, and at low Reynolds
numbers a finite amplitude perturbation suffices to trig-
ger transition, as shown by several experiments [14–17],
highlighting the nonlinear nature of the transition pro-
cess. Having earlier research findings on strange attractors
in mind, one might expect that above a certain flow rate a
turbulent attractor would appear and that the turbulent
dynamics would be maintained there permanently by the
appearance of fixed points or limit cycles such as unstable
nonlinear travelling wave solutions. On the other hand the
experiments by Darbyshire and Mullin [14] indicated no
distinctive boundary between initial perturbations lead-
ing either to laminar flow or turbulence. This suggests the
formation of a transient strange saddle (i.e. a chaotic sad-
dle or a non-attracting chaotic set), rather than a strange
attractor, i.e. the so-called chaotic saddle “leaks” and the
flow, after having spent some time in the neigbourhood of
this non-attracting chaotic set, can revert to a non-chaotic
attractor such as the laminar flow. By increasing the flow
rate, does the strange saddle go through some kind of
an inverse boundary crisis [7] and thus becomes a chaotic
attractor? There have been a number of suggestions to an-
swer this question; several studies have shown that there
is a threshold for the transition from transient to perma-
nent turbulent flow at 1750 < Re = Rec < 1870 [18, 19]
and recently Avila et al. [20] have argued that turbulence
becomes sustained at Re = 2040 ± 10.

The stability border in phase space, called the edge of
chaos, has received quite some attention recently; the edge
is that hyper-surface that separates initial conditions that
bring the flow to turbulence from those which decay to
the laminar solution. On this separatrix relative attractors
named edge states might exist and they are relevant to
understand the transition to turbulence. The edge states
can have various characteristics such as being a travelling
wave, a relative periodic orbit, a fixed point or a flow field

that holds chaotic dynamics [21–24]. The edge of chaos in
the Blasius boundary layer configuration has been studied
in [25,26] and [27] with spatially evolving flow simulations.

The laminar Blasius boundary layer flow over a flat
plate is defined by two velocity components U(x, y),
V (x, y), with x being the streamwise direction and y
normal to the wall. The study of the linear stability,
that is the asymptotic behavior of the least stable single-
mode perturbation as t → ∞ [28], of a parallel laminar
boundary layer has shown that two-dimensional Tollmien-
Schlichting waves (T-S waves) begin to amplify at Re∗ =
519.4 (based on the displacement thickness δ∗, free-stream
speed U∞ and the kinematic viscosity ν). The parallel flow
approximation is a valid approximation for sufficiently
large Re∗ since the wall-normal laminar flow component
V is of order 1/Re∗. The numerical simulation of the
complete Navier-Stokes equations of a small amplitude
wave (non-parallel effects accounted for) showed that lo-
cally parallel theory predicts Fourier amplitude functions
well [29]. It was shown that the non-parallel effects do not
fully account for the disagreement observed elsewhere on
the neutral curves between experimental and theoretical
parallel theory. Their results went along with the conclu-
sion of [30] therefore justifying the use of the parallel flow
assumption. The threshold for monotonic decay, shown to
be Re∗ = 17 [25], refers to the lower limit where short-
lived growth of disturbance energy is possible; the lower
limit of sustained turbulence is Re∗ = 390–400 [25, 31].
Apart from the mechanism of the linear exponential am-
plification of T-S waves there is a possibility of transient
growth whenever the nature of the linearised stability
operator is non-normal. This implies that even though
the linear asymptotic theory indicates that the system
is stable, short-lived growth of several orders of magni-
tude is possible that may trigger nonlinear effects (see
e.g. [32–36]). In most cases, the optimal disturbances,
yielding the maximum growth, are steady streamwise in-
dependent vortices, but when used as initial conditions
in numerical simulations they do not necessarily trigger
transition to turbulence in the most efficient way [37].

The experimental study by [38] observed wavy unsta-
ble coherent structures in turbulent boundary layers, a
sign of a hidden regularity within turbulence. This sug-
gests that progress in the understanding of turbulence can
be achieved by searching for elementary nonlinear solu-
tions of small scale which are maintained within the flow.
This provides a connection to the self-sustaining process
(SSP) outlined by Waleffe [39]. The SSP has been used
several times for discovering numerical large-scale nonlin-
ear coherent structures (commonly called ECS for exact
coherent structures), mostly for systems that are linearly
stable, and covers various types of solutions in canoni-
cal flows such as steady states and TWS (for “travelling
wave solutions”) in various configurations [40–47]. Other
similar studies include [48] where the natural bifurcation
point of the system was used to initiate the bifurcation
into the nonlinear regime, and [49] and [50] where a ho-
motopy approach in a physical system was used to find
the ECS, rather than the SSP. The fact is that these so-
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lutions are believed to be unstable in general (see e.g. [51]
and [50]), with usually only a few unstable directions and
many stable ones, rendering it difficult to detect them in
experiments or direct numerical simulations. The insta-
bility causes the flow to bounce back and forth between
the nonlinear solutions possibly embedded in a chaotic
saddle. Similar transient flow structures have been de-
tected in experiments by [52, 53] showing their relevance.
On the other hand, in [51] a 5D and a 10D long pipe
in a turbulent state (Re = 2400) showed that recurrent
visits to travelling waves occurred for solutions with low
to intermediate wall shear stress and for no more than
10% of the time considered. In [54] it was found that the
currently known ECS in pipe flow sit in a less energetic
region between the laminar and turbulent flow, suggest-
ing that the ECS are important for the transitional phase
rather than the fully turbulent flow, at least for the pipe
flow configuration. The edge of chaos is highly related to
the turbulent transition, numerical studies of the edge in
pipe flow such as the one of Duguet et al. [24] observed
attracting travelling wave states embedded in this sepa-
ratrix, which actually turned out to be the asymmetric
TWS discovered by Pringle and Kerswell [55]. The same
was observed by Schneider et al. [23], although for the
plane Couette flow, where the edge-tracking technique
converged to a constant energy invariant solution. Usu-
ally the TWS are lower branch solutions of lower energy
than the corresponding higher amplitude solutions sitting
on the upper branch. Starting on either side of the sta-
ble manifold of the lower branch travelling wave the flow
would approach the turbulent state or alternatively re-
vert to laminar flow as shown by Wang et al. [56], hence
demonstrating the relevance of the TWS to the transition.
The experimental study of de Lozar et al. [57] shares the
same conclusion revealing two unstable travelling waves
in decaying pipe turbulence, and therefore suggesting that
the TWS are building block of turbulence transition. By
taking two different snapshots of the experimental flow
field as initial conditions they found two converged nu-
merical TWS corresponding to those named S1 and M1
in [44]. However, some of the waves on the upper branch
of [44] go against the hypothesis that the TWS are only
important for the transition phase by displaying very high
wall shear stresses, thus making them possibly interesting
also as descriptors for turbulence. The travelling waves
are relative equilibrium points in phase space at fixed
energy content. To get detailed knowledge of the physi-
cal mechanisms behind the maintenance of turbulence it
is probably preferable to focus on exact coherent struc-
tures in the shape of periodic orbits, such as those dis-
covered in [58] and [59]. Another example of these solu-
tions are those that sit on the edge of chaos, as studied
in [60] for the asymptotic suction boundary layer, which
show strong time-periodic bursts with a travelling-wave-
like behaviour. For the asymptotic suction boundary layer
at subcritical Reynolds numbers and in domains suffi-
ciently wide and long, Khapko et al. [61] observe three
edge state solutions (for different initial conditions) lo-
calised in the spanwise direction. They are periodic or-

bits going through recurring bursts, similar to the re-
generation cycle described in [39, 62, 63]. Bringing down
the length of the domain the localised edge states turn
chaotic. To further the understanding of turbulent patches
one needs localized exact numerical solutions. Spanwise lo-
calized states have previously been discovered by Schnei-
der et al. [64]. Continuing in the Reynolds number the
solution turned out to connect with the globally peri-
odic equilibrium state of [49]. In [65] streamwise local-
ized solutions are extracted from the Navier-Stokes equa-
tions, showing flow structures very similar to turbulent
puffs.

The aim of this paper is to search for three-dimensional
nonlinear exact coherent structures with the purpose to
find solutions that may have pertinence to the transi-
tion to turbulence. Relevant and similar studies to the
present one have been carried out by [66–68] and [69]
(with a compliant coating) which focused on nonlinear
two-dimensional solutions to the Blasius boundary layer
flow. In [68] the mapping out of the neutral surface was
followed up by a secondary stability analysis of the non-
linear solutions. Rotenberry [66] found that the minimum
Re∗ of the nonlinear Tollmien-Schlicting waves was about
510 slightly below the linear critical point at 519.4. To find
a key to the transition mechanism, with the hope to clarify
the bursting process, Ehrenstein and Koch [70] performed
a secondary stability analysis of the two-dimensional non-
linear equilibrium solutions. Other studies on the bound-
ary layer flow are due to Koch et al. [71]; they reported
three-dimensional nonlinear equilibrium states for the flow
over an infinite swept flat plate. The fact that the ECS
can reproduce key features of the transition to turbulence
could thus provide us with the essential elements for un-
derstanding the dynamics of chaotic flows. This can set
the basis for a dynamical-system-theory of turbulence [72]
with perhaps outlooks also on flow control.

The paper is organised as follows: in sect. 2 we present
the laminar flow, the equations governing the perturbation
that is imposed on the laminar flow, the numerical expres-
sion of the perturbation and various physical quantities. In
sect. 3 the results are presented using the self-sustaining
process outlined by Waleffe [39], resulting in ECS in the
shape of travelling wave solutions. Section 4 is concerned
with the linear stability of the travelling waves. Conclud-
ing remarks and discussion are provided in sect. 5.

2 Definitions

The flow over a flat plate in an isothermal incompressible
boundary layer at zero angle of incidence, zero free-stream
turbulence and zero pressure gradient is studied (cf. fig. 1).
The aim is to find three-dimensional nonlinear solutions of
the Blasius boundary layer flow using bifurcation theory.
The objective is to study the pre-transitional or transi-
tional behavior to find where in parameter space one can
expect to observe changes from the laminar profile to so-
lutions that might be related to the transition process. As
the uniform flow encounters the plate a laminar bound-
ary layer starts to grow. The leading edge is situated at
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Fig. 1. The laminar flow in a boundary layer. The boundary
layer thickness is denoted by δ99 and L is the distance from the
leading edge. At low Re, or equivalently at small x, the Blasius
flow is 2-dimensional; for sufficiently large Re (at x = L) the
contribution from the wall-normal component V (x, y) is small,
hence one can assume a local unidirectional flow.

x̂ = 0 and the plate is considered to be infinite in both
the x̂-direction and the ẑ-direction and located at ŷ = 0.
The infinite outer edge of the flow domain is truncated
to the computational domain ŷ = ŷmax. In cases with low
ambient turbulent fluctuations, transition may occur due
to the growth of Tollmien-Schlichting waves generated e.g.

by the interaction of acoustic perturbations with the lead-
ing edge or with surface inhomogeneities. Transition can
also be triggered by free-stream fluctuations of sufficient
amplitude where the initial growth of the flow structures
can be successfully explained by the mechanism of non-
modal or transient growth [73]. All free-stream parame-
ters are denoted by ∞ and dimensional variables by “ˆ”.
The unit vectors are i, j and k and the velocity vector is
defined as û = ûi + v̂j + ŵk represented by the stream-
wise, wall-normal and spanwise component, respectively,
the pressure as p̂, ν̂ the kinematic viscosity and time t̂.
The involved variables are non-dimensionalised using the
unidirectional free-stream speed Û∞, density ρ̂ and the

reference length scale δ̂0 = (x̂0ν̂0/Û∞)1/2. The Blasius

boundary layer thickness δ̂99 is defined as the distance
from the wall where the boundary layer flow is 99% of

the free-stream speed Û∞ (see fig. 1), and δ̂99 ≈ 5δ̂. We
non-dimensionalise in the following way:

u =
û

Û∞

, x =
x̂

δ̂0

, p =
p̂

ρ̂Û2
∞

, t =
t̂Û∞

δ̂0

.

(1)

The local Reynolds number is defined as Re = Û∞δ̂0/ν̂ =

(Û∞x̂/ν̂)1/2 and Rex = Û∞x̂/ν̂.

2.1 The laminar flow

We consider the laminar Blasius solution which is two-
dimensional and equal to Û(x̂, ŷ) = Û(x̂, ŷ)i+V̂ (x̂, ŷ)j ob-
tained from the well-known Blasius boundary layer equa-
tion

fηηη +
1

2
ffηη = 0, (2)

where f = f(η) and fη = df/dη, the boundary condi-

tions f(0) = 0, fη(0) = 0 and fη(ηmax) = 1. The non-
dimensional self-similar coordinate η accounts for both
the dimensional coordinates x̂ and ŷ and is defined as
η = ŷ[Û∞/(ν̂x̂)]1/2. The laminar flow components on ac-
count of f are

Û(x̂, ŷ) = Û∞fη,

V̂ (x̂, ŷ) =

(

Û∞ν̂

4x̂

)1/2

(ηfη − f) =
Û∞

2Re
(ηfη − f). (3)

It is also worth noting that the boundary-layer theory is
not valid near the leading edge since there the assumption
∂ŷ ≫ ∂x̂ is not correct. According to Munson et al. [74]
the theory is valid for Re above 30. In non-dimensional
form the laminar flow is represented as (U, V ); in this
study we use the parallel-flow approximation or V = 0,
i.e. a parallel laminar flow so that U = U(y)i = fη(y)i,
this implies a non-thickening boundary layer. The paral-
lel flow assumption is valid for Re sufficiently large, to
approximate the non-parallel Blasius flow. The validity
of this supposition is confirmed by the numerical simula-
tion of [29] and the experiments by [30]. A forcing term
(= −Re−1Uyy(y)) needs to be added to the streamwise
dimensionless momentum equation to account for the par-
allel base flow [66,67].

2.2 The perturbation

To search for three-dimensional solutions we superimpose
a perturbation u′ = (u′, v′, w′) and p′ on the parallel lam-
inar base flow. The total velocity vector is u = U i + ǫu′;
the governing equations for the perturbation are

u′

t + ∇p′ − 1

Re
∇2u′ + (U · ∇)u′

+(u′ · ∇)U = −ǫu′ · ∇u′, (4)

∇ · u′ = 0, (5)

where ǫ is an amplitude. In the free-stream we have the
physically realistic boundary condition of uniform con-
stant flow, u = (1, 0, 0); at the plate we have vanishing
velocity, u(t, x, y = 0, z) = 0. Since U is a function of
y we can assume periodicity and take u′ to be a travel-
ling wave separable in x, z and t. The disturbance is thus
expressed as

u′ =

NX
∑

b=−NX

NZ
∑

j=−NZ

ũ(bj)(y)eIjβzeIbα(x−ct) =

NX
∑

b=−NX

NZ
∑

j=−NZ

NY
∑

i=0

ûbjiTi(y)eIjβzeIbα(x−ct), (6)

with the Ti(y) the Chebyshev polynomial and the imag-
inary unit I =

√
−1, α and β are real wave numbers,

setting the wavelength λx = 2π/α and λz = 2π/β, and
yielding a periodicity of the perturbation as u′(x, y, z, t) =
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u′(x+2π/α, y, z, t) and u′(x, y, z, t) = u′(x, y, z+2π/β, t).
The eigenvalue c = cr + Ici is generally complex (forced
real for the nonlinear study where cr is the wave speed).
A time-independent problem is considered by viewing the
system in a frame of reference x − crt → X moving with
the wave speed cr, hence ∂t → −cr∂X . At the outer
edge of the computational domain y = ymax we impose

asymptotically decaying disturbances or ũ(bj)
y + (b2α2 +

j2β2)1/2ũ(bj) = 0, where b and j are the indices shown in
eq. (6). The ũ(0,0)(y) mode does not decay exponentially
to zero and is thus finite with zero gradient at y = ymax,
i.e. we impose for this particular Fourier component the
Neumann boundary condition dũ(0,0)/dy = 0 at y = ymax.
This asymptotic boundary condition was also imposed in
the two-dimensional study by Koch [68] for the Blasius
boundary layer; as a result the mean flow deviation ũ(0)(y)
was observed to be still finite at y = ymax. Knowing the
free-stream conditions given above, the base flow U needs
to act as a corrector to ensure unperturbed flow at the
outer edge of the domain. The base flow is therefore set
equal to

U(y) = (1 + ǫK)fη(η) = Kpfη(η). (7)

The physical idea behind this is that the coefficient Kp

serves to ensure that the correct asymptotic boundary
condition is satisfied, i.e. to maintain the uniform flow at
y = ymax constant even in the presence of finite amplitude
perturbations [66–69]. We have Kp = 1 for purely laminar
flow and infinitesimal disturbances, while Kp is different
from unity in the presence of finite amplitude perturba-
tions. This is ensured by imposing the following equation
involving the b = j = 0-mode of the u-perturbation:

Kp + ǫũ(0,0)(y = ymax) = 1, (8)

and is simply derived from the given free-stream condi-
tion u = (1, 0, 0) at y = ymax. When the flow is no longer
laminar, the coefficient Kp has to change to a value dif-
ferent from 1 according to eq. (8) above. Using the above
formula for the base flow gives the perturbation equations

u′

t + ∇p′ − 1

Re
∇2u′ +

(

Kp
df

dη
· ∇

)

u′

+(u′ · ∇)Kp
df

dη
= −ǫu′ · ∇u′, (9)

∇ · u′ = 0. (10)

For the nonlinear approach we have, apart from the so-
lution coefficients ûbji, three additional unknowns (e.g.
c = cr, ǫ and Kp) in the system of nonlinear equations.
Hence we need to add three additional equations to close
the system; two of them set the phase of the solution, i.e.

ℜe

[

NY
∑

i=0

v̂1−1iTi(y = 3)

]

= 1, (11a)

ℑm

[

NY
∑

i=0

v̂1−1iTi(y = 3)

]

= 0. (11b)

The third equation is eq. (8) for Kp. Reality of the physical
solution implies that ûbji = û∗

−b−ji where ∗ here refers to
the complex conjugate, therefore only modes correspond-
ing to b ≥ 0 need to be considered (and j ≥ 0 when
symmetry is imposed in z), the others are recovered by
the complex conjugate. We use a collocation method in y
and a Galerkin method in x and z, leading to a set of ordi-
nary differential equations to be solved in y. The Galerkin
method has advantageous properties; rather than impos-
ing zero residual on each collocation point the error is
minimised in an integral sense over the whole domain (see
e.g. [75]). For example, in [46] a full Galerkin method in
all 3 coordinates had to be used in order to solve prop-
erly the Navier-Stokes equations. We use the collocation
points γk according to the Gauss-Lobatto distribution to
discretise the equations in the wall-normal direction

γk = cos

(

kπ

NY

)

, k = 0, 1, 2, . . . , NY. (12)

The equations are solved in the physical domain 0 ≤ y ≤
ymax where a mapping is used and the wall-normal coor-
dinate −1 ≤ γ(y) ≤ +1 is transformed as

yk = p
1 + γk

q − γk
. (13)

The above dependence between y and γ leads to du/dy =
(du/dγ)(dγ/dy). Furthermore p = yiymax/(ymax − 2yi)
and q = 1 + 2p/ymax, where yi and ymax are set to 8
and 40, respectively. This mapping then puts half of the
collocation grid points in the domain 0 ≤ y ≤ yi. The
energy E′ of the wavy part of the flow can be used to
measure the amplitude of the solution and is defined as

E′ =
Ê′

ρ̂Û2
∞

δ̂3
0

=
4ǫ2π2

αβ

∫ ymax

0

NX
∑

b=1

NZ
∑

j=−NZ

[

ũ(bj)ũ∗(bj)

+ṽ(bj)ṽ∗(bj) + w̃(bj)w̃∗(bj)
]

dy. (14)

Another way to measure the wave amplitude is to consider
a part of the solution spectrum, A3D, where the Fourier
indices (b, j) = (1, 1) are assumed to contain the major
part of the energy

A3D =

√

√

√

√ǫ2
NY
∑

i=0

|û11i|2 + |v̂11i|2 + |ŵ11i|2 , (15)

with û11i being the solution coefficients of eq. (6).
Experiments on turbulence have consistently shown

that the mean spanwise spacing z+ = ẑûτ/ν̂ between low

speed streaks is around 100 [38, 76, 77] with ûτ =
√

τ̂w/ρ̂
the friction velocity. When expressed in terms of the to-
tal mean velocity (integrated over x and z) um(y), the
spanwise spacing is

z+ =
2π

β

√

Re
dum

dy

∣

∣

∣

∣

y=0

, (16)
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where um is the solely y-dependent part of the total flow,
i.e. the Blasius flow plus that part of the perturbation be-
ing dependent on y only, i.e. um(y) = Kpf

′(η)+ǫũ(0,0)(y).
Turbulence intensities are measured often and represented
by the root-mean-square velocities defined for the u-
component as a function of the global coordinate y as

u2
rms(y) =

1

λxλz

∫ 2π/α

0

∫ 2π/β

0

(u − um)2dX dz. (17)

The measure of urms is computed by considering all spatial
fluctuations in both X and z. A similar way to measure the
turbulence intensity or the amplitude of the fluctuations
is to compute the root-mean-square velocities normalised
by the friction velocity ûτ

u+
rms(y) =

(

1

Re

dum

dy

)

−1/2

urms(y). (18)

The shape factor H is defined as

H =
δ̂∗

θ̂
(19)

and can be used to determine the state of the bound-
ary layer flow; δ̂∗ =

∫

∞

0
(1− û/Û∞)dŷ is the displacement

thickness and θ̂ =
∫

∞

0
(û/Û∞)(1−û/Û∞)dŷ is the momen-

tum thickness. Using the non-dimensionalised velocity we
arrive at

δ̂∗ = δ̂0

∫ ymax

0

(

1 − Kp
df

dη
− ǫũ(0,0)(y)

)

dy, (20)

θ̂ = δ̂0

∫ ymax

0

(

Kp
df

dη
+ ǫũ(0,0)(y)

)

×
(

1 − Kp
df

dη
− ǫũ(0,0)(y)

)

dy. (21)

For laminar flow H = 2.59 and for turbulent flow the
shape factor equals approximately 1.5. To convert the
Reynolds number from the present non-dimensionalised
system, to a system scaled by the displacement thick-

ness δ̂∗, one uses the formula Re∗ = (δ̂∗/δ̂)Re or Re∗ ≈
1.7208Re.

3 Results

3.1 Exact coherent structures

We search for three-dimensional nonlinear exact coherent
structures (ECS) having c = cr (i.e. ci = 0, see eq. (6))
with the aim to find solutions that may have relevance to
the turbulence transition. The solutions are local since we
have assumed a boundary layer flow that is locally parallel.
To confirm the code for the linear stability of the parallel
Blasius flow the results contained in [12,28,68] were repro-
duced, cf. table 1. Moreover the nonlinear two-dimensional
results contained in [66] have been reproduced. Analysing
the Navier-Stokes equations and the continuity equation

Table 1. The critical point reproduced using our linear sta-
bility code for the Blasius flow. The critical point presented
in [28] is Re∗ = 519.4 and c = 0.3965. In the present non-
dimensionalised system we arrive at Re = 301.649 which trans-
lates to Re∗ = 519.074 which also agrees with results presented
in [68] and [12]. For the 3D linear stability we reproduce the
eigenvalues contained in [28] on p. 507. Using the nonlinear
code for the above parameter values and bringing A3D (see
eq. (15)) to zero we arrive at the bifurcation point, a proof
of the consistency between the linear and nonlinear codes em-
ployed.

α β Re α∗ β∗ Re∗ c

0.17608 0 301.649 0.303 0 519.074 0.39645

one finds that the following reflect symmetry about the
line z = 0 is admitted:

Z : (u, v, w, p)(x, y, z, t) = (u, v,−w, p)(x, y,−z, t). (22)

Considering symmetry Z and no symmetry in y yields the
following expansion:











u′

v′

w′

p′











=

NX
∑

b=0

NZ
∑

j=0

NY
∑

i=0













ûbjiTi(γ(y)) cos jβz

v̂bjiTi(γ(y)) cos jβz

ŵbjiTi(γ(y)) sin jβz

p̂bjiTi(γ(y)) cos jβz













eIbα(x−ct)+c.c.,

(23)
where c.c. stands for complex conjugate and ûbji are
the unknown solution coefficients. The perturbation u′ in
eq. (23) can be decomposed into its steady x-independent

part Ũ(y, z) = (Ũ , Ṽ , W̃ ) (represented by the solution co-
efficients û0ji) and the x-dependent wavy part ŭ(x, y, z, t),
having the solution coefficients ûbji with b ≥ 1. The num-
ber of governing equations, i.e. the Navier-Stokes equa-
tions in their primitive form and the continuity equation
(the unknown functions being ŭ, v̆, w̆, Ũ , Ṽ and W̃ ), are
reduced following the steps outlined in [78] and [46]. This
leads to equations for the x-dependent wavy part ŭ of the
perturbation, i.e. the v̆- and w̆-component corresponding
to the part of the solution of Fourier index b ≥ 1, see
eq. (23). For the x-independent steady part (b = 0) of the
solution we arrive at equations for the streamwise streaks
Ũ(y, z) and the streamfunction ψ̃(y, z) with solution co-

efficients referred to as ψ̂0ji. The relations between the

streamfunction and the rolls (described by Ṽ and W̃ ) are

Ṽ (y, z) = ψ̃z(y, z) and W̃ (y, z) = −ψ̃y(y, z), where the
subscripts refer to differentiation with respect to y and z.
For the reduced system of equations the unknown func-
tions are v̆, w̆, Ũ and ψ̃. The function ψ(t, y, z) is defined

as ψ(t, y, z) = g(t)ψ̃(y, z); then considering the stream-

wise average (overbar) of eq. (9) and by taking i · ∇× (9)
we obtain

− ∂

∂t
∇2ψ = − 1

Re
∇4ψ + N (ψ) + i · ∇ ×

(

ŭ · ∇ŭ
)

, (24)

where N represents the nonlinear terms of ψ. Since the
mean flow averaged over X (= x − crt) is time-independ-
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ent, we look for the solution of the time-independent part
ψ̃(y, z) of ψ. The time derivative in eq. (24) is kept for pur-
poses that will be explained later on. Whether or not the
governing equations are in their primitive or reduced form,
they can be represented by the vector F . Then, for solv-
ing the equations iteratively, using the Newton-Raphson
method, one needs to construct the gradient of F , in vec-
tor form represented by the Jacobian matrix J . To solve
the equations we use the PITCON subroutine, based on a
Newton-Raphson technique, developed by Rheinboldt and
Burkardt [79, 80], and solves the Navier-Stokes equations
iteratively n = 0, . . . , N as shown below (cf. eq. (25)).
When mapping out nonlinear solutions in the continuation
parameter Ω the algorithm takes the previous converged
solution at Ω-∆Ω as an initial guess, steps forward in Ω
and restarts the iteration procedure as follows:

−F (x(n);Ω) = J(x(n);Ω) · dx(n). (25)

The solution coefficients ûbji in eq. (23) as well as the
unknown eigenvalues cr, ǫ and Kp make up the total

number of unknowns x(n) = [ûbji, cr, ǫ,Kp] in each it-

eration and are updated at each step by x(n+1) =
x(n) + dx(n) until convergence is reached. When con-
tinuing in, e.g. the Reynolds number Re, the vector
F = F (ûbji, cr, ǫ,Kp;Re) = {Fm}NV AR

m=1 , with J =
∑NV AR

k=1 ∂Fm/∂xk (m = 1, . . . , NV AR) is the Jacobian
matrix where x = {xk}NV AR

k=1 . The reduced system of
equations discussed above is preferable rather than us-
ing the Navier-Stokes equations in their primitive form.
First, because the unknown pressure is eliminated, and
second in terms of memory needed to store the Jaco-
bian matrix J in 64 bits double precision floating-point
format (see eq. (25)). For the reduced system, solving

for the functions v̆, w̆, Ũ and ψ̃, and a truncation of say
(NX,NY,NZ) = (4, 100, 10) the J has about 22000
columns and thus 220002 = 4.84 × 108 entries in total,
corresponding to about 3.6GB of memory storage for J .
When representing the governing equations in their prim-
itive form, thus solving for the functions ŭ, v̆, w̆, Ũ , Ṽ
and W̃ , using the same truncation as above would re-
quire about 1.94 × 109 entries and occupy about 14.5GB
of memory.

3.1.1 Search for ECS bifurcating from the Blasius flow

As a first attempt to discover nonlinear states, solution
curves were mapped out in parameter space representing
nonlinear three-dimensional finite amplitude waves bifur-
cating directly from the laminar Blasius flow. As an ini-
tial guess PITCON was supplied with the linear eigen-
modes of the stability analysis of the Blasius flow shown
in fig. 2. The nonlinear solutions computed turned out to
possess quite large values of the mean spanwise spacing
z+ (> 600), thus making them of little relevance since z+

should stay close to 100 according to experimental obser-
vations. Checking the solution coefficients closely it was
observed that they possessed a chess-board pattern which

0 1000 2000 3000 4000 5000
0

0.05

0.1

0.15

0.2

Re

α

Fig. 2. The stability of the Blasius flow. The figure shows
neutral curves (ci = 0) mapped out in α-Re space of selected
perturbations of spanwise wave numbers β = 0−0.20 indicated
in the figure, where β = 0 (the turquoise curve), β = 0.05
(yellow), β = 0.10 (green), β = 0.15 (red) and β = 0.20 (blue).
By increasing β the envelope of the linearly unstable solutions
is narrowed and pushed towards large Re, making it difficult
to find solutions for β > 0.20.

Fig. 3. The self-sustaining process according to [39].

alternated between zero and non-zero values of the ûbji

in eq. (23). A similar behaviour has also been reported
in [70, 81] and [82]. This approach has not been pursued
further.

3.1.2 Search for ECS using the self-sustaining process

The self-sustaining process (SSP) allows us to set arbi-
trary values of β. The main idea of the SSP is shown
in fig. 3; it is used to locate approximate solutions to
the Navier-Stokes equations. Each step is linear and con-
structs and partly fills up the full spectrum of coeffi-
cients (i.e. the ûbji) of eq. (23). The flow components
contained in the SSP are the streamwise independent
rolls of order Re−1 here represented by the streamfunc-

tion ψ
(n)
ssp(t, y, z) = ψ̃

(n)
ssp(y, z)eλt/Re defined by solving the

completely linearised eq. (24) (λ being the growth rate,
e.g. n = 1 is the least stable mode). The remaining flow

structures are the streamwise streaks Ũssp(y, z) of order
O(1) and neutral linear waves (i.e. c = cr) ŭssp(x, y, z, t)
of order O(Re−1). Putting together the flow components
makes up an approximate weakly nonlinear solution and
shows more or less where in parameter space the ECS is
located. The fully nonlinear solution is discovered by con-
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verting the SSP into a continuation procedure involving a
forcing function f(y, z) [42,43,46,55,78], i.e.

F = u′

t + ∇p′ − 1

Re
∇2u′ +

(

Kp
df

dη
· ∇

)

u′

+(u′ · ∇)Kp
df

dη
+ ǫu′ · ∇u′ − f = 0. (26)

For the case of the Navier-Stokes equations in primitive
variables, the f comes into play in the v-momentum and
the w-momentum: f = fv(y, z)j+fw(y, z)k. In the present
case the f(y, z) is used to force x-independent streamwise
rolls, initially in the absence of the nonlinear interactions
of the wavy part ŭ (see eq. (24)). In the reduced sys-
tem being solved the forcing replaces the left-hand side
of eq. (24) and is set equal to fAfψ(y, z) (its analytical
form yet to be determined with amplitude fA). The un-
derlying idea is that we want to replace the term on the
left hand side of eq. (24) by the forcing. In order to ap-
preciate the replacement of the ∇2ψt-term by the forcing
we imagine the fully linearised version of eq. (24) where
the forcing is supposed to take the place of the left hand
side. We assume the solution ψ = ψ̃(y, z)eλt/Re (λ being

an eigenvalue), arriving at λ∇2ψ̃(y, z) = ∇4ψ̃(y, z). The

forcing fψ(y, z) is then set equal to the term ∇2ψ̃(y, z)
and inserted into the left-hand side of eq. (24) with the
purpose of acting as a forcing of the unknown functions on
the right hand side. Setting an amplitude fA on fψ(y, z)
and marching from low to higher values of fA we generate
solutions of different amplitudes. The idea is to drive par-
ticular three-dimensional nonlinear structures with possi-
ble similarity to the flow structures observed in [38] or,
in this study, the edge state solution shown in fig. 6 of
Biau [25]. The solution of Biau resembles very much al-
ready known nonlinear solutions such as the flow states
on the edge of [83] for the flow in a square duct, or the
travelling wave discovered by Okino and Nagata [84] for
the same flow case, as well as that of [55] in the circular
pipe flow. To carry out an operation of driving particu-
lar solutions an analytical streamfunction is constructed
guided by the velocity field shown in fig. 6 of [25], and
then used for defining the forcing. The first step is to use
the continuity equation to determine a suitable function
for the x-independent rolls Ṽ (y, z) = Ṽ (y, z)j+W̃ (y, z)k,
which satisfies the no-slip boundary conditions at y = 0
and the asymptotic conditions at y = ymax. Then, using
the given relation between ψ̃(y, z), Ṽ (y, z) and W̃ (y, z) we
can define the streamfunction as

ψ̃(y, z) = −ℑm
(

y2 cos(b2y)e−βyeIβz
)

. (27)

We choose a cosine expression to define the dependence
in y where the constant b2 determines its periodicity.
Whether or not different values of b2 lead to different
limit states has not been tested; in this study we have set
b2 = 0.5. In order to satisfy both the Neumann and the
Dirichlet boundary conditions at y = 0 the term y2 is used;
the exponential e−βy sets the correct asymptotic decay in
the free-stream (see the discussion below eq. (6)). Finally,
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Fig. 4. Continuation in fA from a finite value to the points
where fA = 0 for (α, β, Re, b2) = (0.20, 0.45, 400, 0.5) and trun-
cation (NX, NY, NZ) = (3, 80, 10). The vertical axis ǫ mea-
sures the amplitude of the perturbation defined in the sentence
above eq. (4).

in order to accord with the imposed symmetry in eqs. (22)
and (23), we consider the imaginary part of the imposed
periodicity in z. Then, eq. (27) is used for representing

fA∇2ψ̃ which replaces the left-hand side of eq. (24) for
forcing the nonlinear solutions. Again the PITCON sub-
routine is used for finding the nonlinear solutions. We need
an initial guess to initiate the iterations that finally lead to
a converged nonlinear solution. The initial guess is found
in three steps in which the nonlinear interactions of the
wavy part ŭ are always neglected. First we force nonlinear
ψ̃(y, z) by fAfψ(y, z) as already explained above, with the

one difference that we now include the N (ψ̃)-terms. This

step gives us a solution for the rolls (0, Ṽ (y, z), W̃ (y, z)).

Then the rolls (represented by the streamfunction ψ̃), in

turn drive a x-independent streamwise flow Ũ(y, z) which
is superimposed on the Blasius flow for defining a new
base flow together with ψ̃(y, z). Performing a linear sta-
bility analysis of the new base flow, and locating a neu-
trally stable eigenmode ci = 0 at a certain combination
of the parameters (fA, Re, α, β, b2, ǫ), yields the starting
point necessary for embarking on the fully nonlinear ap-
proach, using the PITCON subroutine. Having found the
point where the forcing amplitude fA = 0, access is given
to the parameter space of the relevant system of equations
without the forcing. Figure 4 shows how fA is gradually
brought to zero by resolving eqs. (26), pointing out two
unforced nonlinear solutions at fA = 0. In order to get
an idea of the convergence of the two unforced solutions
in fig. 4 the decay of the energy in each combination of
the Fourier components b, j is shown in fig. 5. For a fixed
Fourier index b one sees a decay of up to 10 orders of mag-
nitude when comparing Eb,j=0 and Eb,j=NZ . Furthermore,
the energy contribution from the last mode in x, i.e. for
b = 3 = NX, is nearly negligible compared to that from
the b = 1-mode. The value of the phase speed cr converges
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Fig. 5. The decay of the energy content Ebj of each combi-
nation of the Fourier modes (b, j) of the wavy part of the per-
turbation, for b = 1, 2, 3 (= NX) and j = 0, 1, . . . , 10 (= NZ).
The solutions correspond to the fA = 0 situation (black circles)
in fig. 4, the upper plot shows the lower solution and the bottom
plot the upper solution. There is a decay of about 8 orders of
magnitude comparing Eb,0 and Eb,NZ , indicating convergence.

quickly for the lower solution in fig. 4, for a truncation of
(NX,NY,NZ) = (3, 120, 10) we have cr = 0.3934 and
comparing with a very low truncation (1, 80, 5) the differ-
ence in cr is only of order 10−4, thus giving confidence
that the used truncation is sufficient. A more extensive
analysis on the convergence of the solutions is shown later
on in fig. 9. The mean streamwise velocity field of the two
unforced solutions are shown in fig. 6 and can be used
to distinguish the solutions from each other when chang-
ing, e.g. α or β. The feature of the two velocity fields
shown might appear as essentially the same but the ve-
locity components have different amplitudes, as indicated
in the same figure. As mentioned earlier, the velocity field
of the edge state solution shown in fig. 6 of [25] has been
used as a target state for finding TWS in the present non-
linear study. The solution of [25] is a snapshot in time and
the underlying thought behind using it as a target state is

z

y

0 2 4 6 8 10 12
0

2

4

6

z

y

0 2 4 6 8 10 12
0

2

4

6

Fig. 6. The velocity field (averaged over x) of the two un-
forced solutions shown in fig. 4 at fA = 0 (black circles). The
contour levels represent the streamwise velocity u and range
between min(u) and max(u) in steps of 0.017, and the arrows
show the cross-stream velocity components. The color cod-
ing goes from most negative (dark) to most positive (light).
Top: the lower solution having (min(u), max(u)) = (−0.0620,

0.0394), (min(v), max(v)) = (−7.30 · 10−4, 8.32 · 10−4) and
(min(w), max(w)) = (−0.0011, 0.0011). Bottom: the upper so-
lution of higher amplitude having min(u) = −0.0851 and
max(u) = 0.0488, (min(v), max(v)) = (−8.54·10−4, 6.92·10−4)
and (min(w), max(w)) = (−0.0014, 0.0014). Both figures show
the mean flow in the shape of a four-vortex structure near the
wall.

to look into the relevance of the converged nonlinear trav-
elling wave solution to the time-dependent orbit of Biau.
That is, would the TWS be embedded in the same state
space traced out by the edge state? In [25] one finds a
streamwise averaged flow field having in total 4 vortices,
with two vortices on each side of the center of the flow
domain, near the plate and aligned on top of each other
diagonally in the wall-normal direction. This is similar to
what is shown in fig. 6 of the present study, giving some
confidence that the TWS is at least near the solution of
Biau. In the same figure we see the presence of vortices
associated with low and high speed streaks generated by
the lift-up process. In both Biau and the present study the
more energetic part of the velocity field is situated next
to the wall and inside the boundary layer, y < 5. The full
velocity field of the perturbation (still at fA = 0) with all
modes in x included is shown in figs. 7 and 8, presenting
the x-variation of the solutions. The upper solution has
a larger amplitude as can be seen from e.g. the absolute
values of min(u) and max(u) given in the caption. The
figures show a low-speed streak sandwiched between two
high-speed streaks near the wall. At this Reynolds number
the most energetic structure is the low speed streak in the
centre of the flow domain. A noticeable change with the
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Fig. 7. The full perturbation velocity field of the lower un-
forced solution of fig. 4. The figure represents 4 values of co-
ordinate x whose values are indicated at the top of each fig-
ure. The contour levels represent the streamwise velocity u

and range between (min(u), max(u)) = (−0.0651, 0.0492) of
the 4 values of x in steps of 0.01, and the arrows show the
cross-stream velocity components. The color coding goes from
most negative (dark) to most positive (light). The range in v

and w are: (min(v), max(v)) = (−0.0023, 0.0066) and (min(w),
max(w)) = (−0.0085, 0.0085).
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Fig. 8. The full perturbation velocity field of the upper un-
forced solution of fig. 4. The contour levels represent the
streamwise velocity u and range between (min(u), max(u)) =
(−0.0830, 0.0612) of the 4 values of x in steps of 0.0175, and the
arrows the cross-stream velocity components. The color coding
goes from most negative (dark) to most positive (light). The
range in v and w are: (min(v), max(v)) = (−0.0073, 0.0095)
and (min(w), max(w)) = (−0.0074, 0.0074).
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Fig. 9. Envelope in β of the nonlinear solutions for (α, Re,

b2) = (0.20, 400, 0.5) as function of ǫ and Kp (top) and as
function of c = cr and A3D (bottom). The arrows point
out to which vertical axis the curves belong. To demonstrate
convergence, solutions of different truncations are shown: red
solid curve and red solid-dotted curve correspond to (NX, NY,

NZ) = (4, 100, 5), black × (4, 120, 10), green ∗ (8, 120, 5). The
blue + (10, 120, 5) are added to show convergence on the upper
branch. As the figure shows, the value of Kp sits in the interval
1 < Kp ≤ 1.20. Even though the results of [68] for the Blasius
boundary layer accounts only for β = 0 at a slightly larger Re

the wave speed c is close to those indicated here.

streamwise distance x is the swirling motion of the vor-
tices near the z-boundaries of the periodic cell between
y = 0 and 3. Here one sees the rolls moving slightly back
and forth in the spanwise direction as we proceed down-
stream. The motion within that region corresponds also to
the more pronounced flow structure of the whole velocity
field (cf. fig. 6).

Having found a solution to the unforced system (fA =
0) at Re = 400 allows for an exploration of the parameter
space in α, β and Re. The perturbation equations (9) gov-
erning the boundary layer flow admit any spanwise wave
number β as opposed to e.g. the circular pipe flow that
only takes integer values. To map out the relevant so-
lutions in parameter space one can use any of the two
unforced solutions in fig. 4. Figure 9 shows the envelope
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Fig. 10. The mean velocity field of the perturbation with
symmetry Z for α = 0.20, Re = 400 for the following val-
ues of β: 0.5577, 1.0097, 1.4429 and 1.9090. All 4 solutions
correspond to a base flow with Kp ranging between 1.012 and
1.097 and truncation (NX, NY, NZ) = (8, 120, 5). The range
in z of each velocity field corresponds to the wavelength of
β = 0.5577 in order to show the same spanwise domain. The
contour levels represent the streamwise velocity u and range
between (min(u), max(u)) of each solution with a step of 0.017,
0.004, 0.005 and 0.008 between the contour levels according to
the order given above in β; the arrows are the cross-stream ve-
locity components. The color coding goes from most negative
(dark) to most positive (light). Properties of the solutions are
given in table 2.
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Table 2. Properties of the 4 solutions in β shown in fig. 10
for symmetry Z , (α, Re) = (0.20, 400) and (NX, NY, NZ) =
(8, 120, 5). The value of H for the laminar Blasius flow is 2.59.
The shown values of c are similar to those presented in the
study of [68].

β c z+ H Kp

0.5577 0.3939 131 2.5845 1.012

1.0097 0.3967 72 2.5848 1.013

1.4429 0.4042 51 2.5761 1.025

1.9090 0.4273 40 2.5321 1.097

in β of the solutions for Re = 400 and α = 0.20. The crit-
ical Re and α where Tollmien-Schlichting waves start to
amplify is approximately 302 and 0.18. Beyond that point
the flow is known to gradually develop a spanwise (z) de-
pendence in the course of transition. Therefore, to look
into various z-dependent solutions and to get an impres-
sion on how they change with the spanwise wave num-
ber β we fix Re = 400 and α = 0.20 and pick 4 values
of β from fig. 9. The chosen solutions are situated along
the lower branch in the same figure, i.e. that part of the
curve where Kp ≈ 1 and are shown in fig. 10, presenting
the mean flow field (averaged over x) of the perturbation.
The mean is shown in order to distinguish the solutions
with different β’s. Along the same branch (the lower) in
fig. 9 the value of z+ varies between 130 for the lower β
to 40 for the larger value. The value z+ = 100 charac-
teristic of turbulent flows is recovered for β ≈ 0.728. In
fig. 11 the variation of z+ with β is extracted from the
entire envelope of the solution curve shown in fig. 9, and
for two additional values of α. The curves for α = 0.16
and 0.20 are almost overlapping, at (α, β) = (0.20, 0.728)
and (α, β) = (0.16, 0.733) we have z+ = 100, while for
α = 0.33 the band of β’s forms a closed loop and z+ < 100
for all β. Figures 12-14 show the corresponding Fourier
components of the first x-dependent mode (b = 1) for
(α, β, z+) = (0.20, 0.728, 100) and (0.16, 0.733, 100). The
case (α, β, z+) = (0.33, 1.440, 67) is also included even
though its spanwise spacing seems too low to be relevant
for transition (at least on the basis of the spanwise spac-
ing of the near-wall structures). The thickness of the lam-
inar Blasius boundary layer corresponds to y = 5 and the
figure clearly shows that the Fourier modes are situated
within that distance, apart from the j = 0 component
that decays slower with y than the other modes. All three
solutions have values of c between 0.38 and 0.46, to be
compared to the value of a Tollmien-Schlichting wave at
the critical point of linear instability where c ≈ 0.40.

The two solutions at (α, β)=(0.20, 0.728) and (α, β) =
(0.16, 0.733) correspond both to a spanwise spacing of 100.
In terms of wall units in the normal direction y+ = ŷûτ/ν̂,
considering the same two solutions above, the main con-
tribution from the cross-flow and the streamwise flow
lies within the domain 0 ≤ y ≤ 3, which translates to
0 ≤ y+ ≤ 35. Thus, the ECS, if embedded in a turbu-
lent boundary layer, would be contained within the buffer
layer.
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Fig. 11. Variation of z+ as a function of β for symmetry Z

at Re = 400 and α = 0.16, 0.20 and 0.33. The horizontal line
corresponds to z+ = 100.
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Fig. 12. Fourier components of u (real and imaginary multiplied
by ǫ) of the nonlinear solution with z+ = 100 for (α, β, Re) =
(0.16, 0.733, 400). The truncation used is (NX, NY, NZ) = (8,

120, 8); it is more than adequate and corresponds to around
39000 unknowns, real and imaginary for ûbji. The value of H

is 2.578 and c = 0.384. The selected Fourier modes correspond
to b = 1 and j = 0, 1 and 2, as pointed out by the legends.

Search for travelling waves on the edge of chaos

Using any of the two unforced nonlinear solutions at
fA = 0 in fig. 4 as an initial guess we can map out so-
lutions in parameter space. To continue the comparison
to the time-dependent dynamics of the separatrix in [25]
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Fig. 13. Fourier components of u (real and imaginary multiplied
by ǫ) of the nonlinear solution having z+ = 100 for (α, β, Re) =
(0.20, 0.728, 400). The truncation used is (NX, NY, NZ) = (8,

120, 8). The value of H is 2.588 and c = 0.395. The selected
Fourier modes correspond to b=1 and j =0, 1 and 2, as pointed
out by the legends.

the travelling wave solutions of the present study were
mapped out in Re, α and β until a solution corresponding
to z+ = 100 was found. The parameter values used in [25],
based on the displacement thickness are Re∗ = 1000 with
a period in the streamwise and spanwise directions equal
to L∗

x = 17.5 and L∗

z = 10. This translates to Re = 581,
α = 0.209 and β = 0.365 in the present non-dimensional
system. At this Re the maximum amplitude of the fluc-
tuations of the edge state solution computed by [25] is
max[urms] = 0.09, fairly close to the reported turbulent
value of 0.13. At the same time one needs to take into
account the fact that the flow is still very close to the
laminar state. Having found a solution at Re = 581 and
z+ = 100, the ECS were mapped out in α and β to
search for ECS with a possible connection to the solu-
tion reported in [25]. The two extreme points of the curve
mapped out in the α-β-system correspond to ǫ → 0, where
ǫ is the amplitude presented in connection with eq. (4).
The closest we managed to get to the solution of [25]

is (Re, α, β) = (581, 0.195, 0.890) using a truncation of
(NX,NY,NZ) = (6, 100, 5), which is the point where the
solutions start to bundle up at the extreme point of the
curve mapped out in α and β. In the scalings of [25] this
corresponds to a streamwise length of L∗

x = 18.8 and a
spanwise length of L∗

z = 4.1. The shape factor H of the
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Fig. 14. Fourier components of u (real and imaginary multiplied
by ǫ) of the nonlinear solution having z+ = 67 for (α, β, Re) =
(0.33, 1.440, 400). The truncation used is (NX, NY, NZ) = (8,

120, 8). The value of H is 2.534 and c = 0.463. The selected
Fourier modes correspond to b = 1 and j = 0, 1 and 2, as pointed
out by the legends.

TWS at these parameter values is 2.57 whereas for the
results in [25] a periodic limit cycle is observed having
2.34 ≤ H(t) ≤ 2.56, indicating that both flow states are
fairly close to the laminar state, for which H = 2.59.
Other values to characterise this particular solution are
ǫ ≈ 2.8 · 10−5, the speed of the wave c = 0.387; the ampli-
tude of the mean flow integrated over x of the perturbation
|ux| = 0.068 and |vx| = 0.00093, where vx = vxj + wxk,
giving a ratio of the amplitude of the streamwise flow to
the vortices |ux|/|vx| of 73, i.e. a streak-dominated flow.
In [25] it is reported that max[urms] = 0.09, whereas the
fluctuation amplitude of the TWS corresponds to approx-
imately 0.04 (see eq. (17)). The max[urms] of the TWS is
low since we consider a solution where ǫ → 0. On the same
curve, the solution having the largest amplitude of urms(y)
reaches up to 0.06, but corresponds to a wave of longer
streamwise wave length. The conclusion is that the TWS
and the edge state solution have similar mean streamwise
spacing z+ (assumed), a good match of the wave length
in x but in the spanwise direction z the edge state has a
wave length that is longer than that of the travelling wave,
and the amplitude of urms(y) in [25] is larger. In terms of
the shape factor it seems that the trajectory on the sepa-
ratrix makes short-time visits to the values of the travel-
ling wave, but the fact that they have different spanwise
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Fig. 15. Max[urms] as function of β for α = 0.16, 0.209
and 0.33, plus the case z+ = 100, at Re = 581, and rep-
resented by curves 4-7. For the solutions discovered the re-
striction Kp ≤ 1.30 is imposed in order to put focus on so-
lutions considered more relevant, and is imposed on curves
5 (1.031 ≤ Kp ≤ 1.30) and 6 (1.277 ≤ Kp ≤ 1.30). The
interval in Kp of the remaining curves is 1.066-1.181 (curve
4) and 1.022-1.108 (curve 7). The target value is that com-
puted by [25], i.e. max[urms] = 0.09 for α = 0.209 and
β = 0.365. Curve 4 and 6 almost make it to that point hav-
ing max[urms] = 0.086 and 0.087 respectively. The TWS of
the same α as Biau only reaches as far as 0.07. For Re = 291
all solution curves stay in the interval 1.025 < Kp ≤ 1.047.
For this case the target value of max[urms] is 0.12, computed
by [25], and is not reached by any of the TWS considered with
the following values of α: 0.191, 0.200 and 0.209. The closest
to that of Biau is 0.07 for α = 0.200 and β = 1.332, see curve
2. For Re = 291 the max[urms] falls into the same region as the
nonlinear Tollmien-Schlicting waves computed by [68] of the
Blasius boundary layer, although therein β = 0.

periodicity renders the match not completely convincing.
Since the edge state solution is situated close to the lami-
nar flow it is not evident that z+ should equal 100. To get
an idea of the dependence of max[urms] on α and β (keep-
ing Re = 581) we remove the restriction on z+ with the
hope of bringing the TWS closer to the point in parameter
space where the edge state of [25] is situated. In this case
a larger part of the parameter space is available and we
can thus bring the TWS to α = 0.209 which gives us the
aimed value of the streamwise length of the perturbation.
Considering α = 0.16, 0.209 and 0.33 and mapping out
the solutions in β we find that it is still not possible to let
the TWS survive at β’s as low as 0.365, which defines the
spanwise domain set in the study of Biau. For the same α’s
the minimum values of β are 0.81, 0.92 and 1.38. Since, for
certain cases, the value of Kp can become too large (> 2,
where Kp = 1 for the laminar flow) we consider only fairly
low values, or Kp ≤ 1.30. Figure 15 presents the envelope
of β showing values of the max[urms] for the 3 chosen val-
ues of α, and the case z+ = 100 (for which also α changes
along the shown branch). The case Re = 291 is also
presented in the same figure, but will be discussed later
on. For (α, β) = (0.16, 1.98) and (α, β) = (0.33, 3.02) at

Table 3. Properties of a selection of the travelling wave so-
lutions (top 4 rows) shown in fig. 15 compared to the time-
dependent edge state solution of [25] (bottom row), all at
Re = 581. The urms refers to its maximum value. The wave
speed c of the TWS is, in the order of appearance from top
to the fourth row: 0.387, 0.399, 0.390 and 0.469. The values
shown of the travelling wave solutions are those that are the
closest to the max[urms] computed by [25] (row 2 and 4) and
has the turbulent value z+ = 100 imposed (1st row), or has
the same value of α (row 3) as the edge state solution of Biau.

α β urms Kp z+ ǫ H

0.195 0.890 0.039 1.039 100 2.8 · 10−5 2.57

0.160 1.976 0.086 1.181 48 5.3 · 10−4 2.47

0.209 1.265 0.070 1.299 79 4.0 · 10−4 2.50

0.330 3.018 0.087 1.296 33 1.2 · 10−3 2.50

0.209 0.365 0.090 N/A N/A N/A 2.34-2.56

Re = 581 the target value of max[urms] = 0.09 computed
by [25] is practically reached, having max[urms] = 0.086
and 0.087, but had to be terminated at these points in
parameter space due to less convincing convergence for
the first case and Kp being larger than 1.30 for the sec-
ond parameter combination. The velocity field averaged
over x of Biau is not known for this Re, the solution of
α = 0.33 is a rather feature-less 4-vortex flow not show-
ing any characteristic isolated patches of high- and low
speed streaks lying side-by-side near the wall, while the
solution at α = 0.16 is a more interesting 6-vortex flow
with Kp reasonably low (= 1.181), but still does not show
any characteristic streamwise flow structures next to the
plate. The solution having exactly the same value of α as
Biau (= 0.209) displays a velocity field with 8 vortices,
with the flow dominated by low-speed streaks situated at
both extremes of the spanwise domain. For this Re none of
the TWS can be brought down to the same spanwise wave
number as Biau. Table 3 presents a compilation of the 3
solutions discussed above at Re = 581 together with the
results of [25]. A second solution is also presented in [25]
at Re∗ = 500 with a period in the streamwise and span-
wise directions equal to L∗

x = 30 and L∗

z = 10, which
translates to Re = 291, α = 0.122 and β = 0.365 in our
non-dimensionalised system. Judging from fig. 4 therein
the time-dependence of the shape factor H seems rather
chaotic for L∗

x = 30. A periodic solution is also computed
in [25] at the same Re and β, but for L∗

x = 17.5, equal-
ing α = 0.209. The shape factor of the periodic orbit is
2.26 ≤ H(t) ≤ 2.49. For the symmetry imposed in this
study we were not able to bring the ECS down to Re = 291
keeping z+ = 100. A way to improve the match is to sim-
ply remove the restriction z+ = 100, doing this, and using
as a starting point the very first solution discovered at
(α, β,Re) = (0.20, 0.45, 400), see fig. 6, we manage to con-
tinue the solution down to Re = 291 for β = 0.85. Having
found this point in parameter space we proceed by map-
ping out the solutions in β for Re = 291 and α = 0.20
fixed, finding the envelope in β (0.747 ≤ β ≤ 1.335) shown
in fig. 16. As is evident from the figure the value of β is
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Fig. 16. Envelope of the spanwise wave number β for Re = 291
and α = 0.20 for truncation (5, 80, 5). The lowest value of β is
0.747. The lower curve shows ǫ as a function of β, the values
of Kp are given by the upper curve. A truncation of (7, 100, 7)
is used to confirm the solution curve (squares). The solutions
at β = 0.751, 0.850, 0.961, 1.100, 1.252 and 1.321 are chosen
for searching for the length of the streamwise domain L∗

x used
in [25], i.e. the equivalent α. These values of β will later be
used for locating optimal values of α for rendering it possible
to lower the Reynolds number as much as possible, cf. fig. 19.

not close to the one used in [25] of 0.365. Choosing six
values of β = 0.751, 0.850, 0.961, 1.100, 1.252 and 1.321
we investigate the possibility of bringing the streamwise
wave number α to the target values used in Biau [25] (i.e.
α = 0.122 and 0.209). At this Re the range in α is narrow
over the whole range of β’s and therefore the lower target
value of α = 0.122 is not reachable, the lowest turned out
to be 0.191, while it is possible to bring α to the larger
target value of 0.209. To see whether or not these two val-
ues of α (and the solution at α = 0.20) render the flow
close to that of Biau in terms of the max[urms] we keep
the Re fixed to 291 and α fixed to 0.191, 0.20 and 0.209,
and map out the solutions in β. Looking back to fig. 15
one finds the max[urms] of the whole envelope in β for the
three values of α. It is clear that the TWS of the preset
symmetry do not make it to the target value or the max-
imum urms = 0.12 of [25], and do not survive down to the
same spanwise wave number used by Biau (= 0.365). The
TWS nearest to the target value of max[urms] is situated
at 0.07 for (α, β) = (0.200, 1.332) whose 4-vortex velocity
is rather featureless and do not match well that by Biau.
The resulting velocity fields averaged over x for the same
α and β = 0.75 and 0.93 (close to the lower limit in β, see
fig. 16) are shown in fig. 17 and show a more characteristic
velocity field with low- and high-speed streaks composed
of 8 and 4 vortices respectively. Even though the two se-
lected TWS are both of low amplitudes and do not match
well the root-mean-square velocities of the chaotic dynam-
ics on the separatrix, nor the shape factor of the periodic
orbit, the spatial distribution of the TWS in terms of the
streaky flow has some resemblance to the chaotic state
shown in fig. 6 of Biau. Table 4 shows a comparison be-
tween the TWS of the present study and the edge states
of [25] at Re = 291.
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Fig. 17. Two velocity fields of the perturbation at Re = 291
and α = 0.20. Top: the 8-vortex flow at β = 0.75 with an
amplitude of the flow averaged over x equal to |ux| = 0.037 and
the cross-flow |vx| = 3.13·10−4. For this flow we have the shape
factor H = 2.578 and the mean spanwise spacing between the
streaks z+ = 83. Bottom: increasing only slightly the β to
0.93 the flow changes to a 4-vortex flow with a shape factor of
2.577, z+ = 67 and mean flow amplitudes equal to |ux| = 0.054
and |vx| = 9.80 · 10−4. Both flow states are of low amplitude
and do not reach that of [25] in terms of the maximum of the
root-mean-square velocities of the rather chaotic dynamics on
the separatrix (max[urms] = 0.12) or the span of shape factor
2.26 ≤ H(t) ≤ 2.49 of the periodic orbit. Dark/red patches
correspond to negative flow and the bright ones to positive
flow away from the laminar flow.

Table 4. Properties of a selection of travelling wave solutions
(top 3 rows) shown in fig. 15 compared to the edge state solu-
tion of [25] (row 4 and 5) at Re = 291. The 4th row corresponds
to the seemingly chaotic flow, where the span of H is read off
from fig. 4 of [25] and the 5th row is the periodic orbit. The
wave speed c of the TWS is, from the first to the third row:
0.428, 0.442 and 0.442.

α β urms Kp z+ ǫ H

0.191 0.823 0.055 1.027 76 8.8 · 10−6 2.58

0.200 1.332 0.070 1.047 47 1.6 · 10−5 2.56

0.209 1.249 0.065 1.042 50 2.6 · 10−5 2.57

0.122 0.365 0.120 N/A N/A N/A 2.12-2.46

0.209 0.365 N/A N/A N/A N/A 2.26-2.49
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Fig. 18. Turbulence intensities represented by the root-mean-
square velocity fluctuations max[u+

rms] and max[v+
rms] nor-

malised by the friction velocity ûτ according to eq. (18). The
figure shows the same envelope of the spanwise wave number β

at Re = 400 and α = 0.20 shown in fig. 9 and for the envelope
in β of the solutions of various α’s at Re = 291 and 581 shown
in fig. 15. The legends give the value of the Re and the α. The
square symbol � represents several solutions of a very short
envelope.

In laboratory experiments turbulence statistics or in-
tensities are often measured in terms of the maximum
of the root-mean-square velocities normalised by the fric-
tion velocity ûτ , see eq. (18). We here use the max[u+

rms]
and max[v+

rms] to represent the nonlinear TWS, each flow
state is a point in fig. 18 for the Reynolds numbers con-
sidered so far, i.e. Re = 291, 400 and 581. The figure
shows statistics of the solutions for which convergence
could be confirmed with a higher truncation, and also,
having Kp ≤ 1.30. The maximum of the root-mean-square
velocities of the TWS presented here is situated more or
less in the same region as that of the simulation of turbu-
lence of [85], having (max[u+

rms],max[v+
rms]) ≈ (2.6, 1.1),

and the compilation of several works in [86] showing
root-mean-square velocities of equilibrium states and pe-
riodic orbits of various flow configurations. The present
TWS, of the imposed symmetry and for the given val-
ues of α, are mildly streak-dominated (i.e. max[u+

rms] >
max[v+

rms]) and never reach as high max[u+
rms] as the par-

ticularly strongly streak-dominated twofold rotationally
symmetric travelling waves of pipe flow [43, 51, 87] at
(max[u+

rms],max[v+
rms]) ≈ (7, 0.9).

Search for the minimum Reynolds number

To find the global minimum point in Re of the travelling
waves the search starts from the already known solution
at Re = 291. In this way we get an indication of where the
Blasius flow is a global attractor and from where it starts
to cohabit the phase space with the travelling wave solu-
tions. We use again as starting points the same six values
of β extracted from the solution curve shown in fig. 16 and
map out the solutions in α to find the point that yields the
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Fig. 19. Envelope in α for Re = 291 and β = 0.751, 0.850,
0.961, 1.100, 1.252 and 1.321. The points corresponding to
max[A3D] of each curve are used as starting points for finding
which combination of α and β minimises the Reynolds number.

largest value of the A3D, see eq. (15) and fig. 19. Having
found the maximum point in A3D of each curve we choose
those combinations of α and β to continue in Re with the
aim to reach the lowest possible value. In this manner we
find that the min[Re] = 288.1 for (α, β) = (0.200, 0.961),
where the solution is still three-dimensional, cf. fig. 20. A
small difference in Re of approximately 0.20 is seen for the
solutions of the other combinations of α and β at slightly
larger Re, hence indicating that Re = 288.1 is a good es-
timate of the minimum Reynolds number. Based on the
displacement thickness this translates to Re∗ = 495.8 and
(α∗, β∗) = (0.344, 1.654). Whether other forcings would
bring the Re to an even lower value remains to be estab-
lished. In other flow configurations, such as the circular
pipe flow, turbulence is maintained at around Re = 2000
whereas the lower limit known so far of the travelling wave
solutions extend to more than half of that at Re = 773,
computed by [55]. In a similar fashion and knowing that
the lower limit of sustained turbulence for the Blasius
boundary layer flow is around Re = 232 (or Re∗ = 400)
according to [25] and [31] it is possible that the given
min[Re] = 288.1 may not necessarily be the absolute min-
imum. For the solution at the Reynolds number defined
as min[Re] we have ǫ = 5.22 · 10−6 giving an amplitude
of the mean flow of the perturbation averaged over x of
|ux| = 0.037 and |vx| = 2.66 · 10−5, while the amplitude
measure of the wavy part is A3D = 2.84 · 10−5. At this
point the solution is still three-dimensional but close to the
laminar flow with the shape factor H equal to 2.574 and
the correction coefficient Kp = 1.031. Starting from this
solution the flow bifurcates supercritically towards larger
Re. Figure 21 shows the 4-vortex velocity field averaged
over x representing the flow at Re = min[Re]. Since the
flow is still three-dimensional at this subcritical Re one
might wonder how it relates to the laminar Blasius flow.
This leads one to think of a possible connection to optimal
perturbations. Since these states are initial optimal states
at t = 0, computed to produce maximum energy growth at
a predetermined time T , it is speculated that they evolve
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Fig. 20. Search of the min[Re] by considering various fixed
combinations of α and β, using a truncation of (NX, NY,

NZ) = (5, 80, 5). The numbered curves 1-6 correspond to
the following combinations of α and β: 1 (0.2004, 0.9613),
2 (0.1994, 0.8500), 3 (0.2015, 1.1006), 4 (0.2026, 1.2515), 5
(0.1945, 0.7505) and 6 (0.2031, 1.3210). For α = 0.2004 and
β = 0.9613 the curve can be brought down to Re = 288.1
as shown, which is the minimum value found. For this combi-
nation of α and β and beyond a certain point the Re hardly
changes, after more than 200 solutions from this point onwards
the continuation is terminated since Re changes only on its
third digit. In this way we finally arrive at the point we define
as the minimum point in Re, or min[Re] = 288.1. The solution
curve 1 is confirmed at a few Re using a higher truncation of
(7, 100, 7) represented by the black dots.

in time towards the attracting TWS possibly embedded
in the edge of chaos. Looking at the known linear opti-
mal perturbations of [36] at Re∗ = 610, a flow charac-
terized by a counter rotating 2-vortex state in the cross-
sectional plane is found, having a certain dependency on
the streamwise direction x. This has some similarity to the
present x-dependent TWS also represented by a 2-vortex
flow and likewise situated within a periodic box at the
same Reynolds number. However, the linear optimal state
is localised in z which the TWS is not. Looking at the
known nonlinear optimal perturbations of [88] the match
is quite poor with the optimal solution again being local
in z. The edge state solution in the similar study of the
asymptotic suction boundary layer by [60] suggests of a
travelling wave like behaviour. The flow studied therein
corresponds to Re∗ = 400 (based on the displacement
thickness) which shows an edge state periodic in time,
and the velocity field averaged over the streamwise dis-
tance has some resemblance to the TWS shown in fig. 21.
However, their edge state solution has a shift-and-reflect
symmetry while our TWS obeys a reflect symmetry along
z = 0. To summarise the discussion of the flow at the low-
est Reynolds number, table 5 presents some information
of this particular solution showing, in particular, that the
amplitude of the streamwise root-mean-square velocity is
less than 6% of the free-stream velocity.

z

y

0 2 4 6 8 10 12
0
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4
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Fig. 21. The velocity field averaged over x at the lowest Re =
288.1 at (α, β) = (0.200, 0.961). The velocity field corresponds
to two periods in z and has some resemblance to the time-
periodic edge state solution of [60] for the asymptotic suction
boundary layer.

Table 5. Properties of the travelling wave solution at Re =
288.1, (α, β) = (0.200, 0.961) for a truncation of (NX, NY,

NZ) = (5, 80, 5). The values of the root-mean-square velocities
refer to their maximum.

z+ urms vrms u+
rms v+

rms c

65 5.71 · 10−2 2.47 · 10−2 1.657 0.716 0.434

4 Floquet analysis of the ECS

To get insight into the relevance of the ECS found here
their linear stability is studied using Floquet theory, which
is a useful tool for classifying and computing various types
of instabilities. The information sought for is merely to
extract from the stability analysis whether or not the
ECS are unstable. Below we present the general secondary
perturbation u′ superimposed on the nonlinear (X, y, z)-
dependent base flow uECS consisting of the Blasius flow
(Kpf

′(η)) plus the ECS (see eq. (23)). We consider the
flow in a moving frame of reference where the ECS is
steady. According to [89] the linear perturbation imposed
on the nonlinear base flow has the following general ex-
pression:

u′(x, t) = e−Iϑt
NX2
∑

m=−NX2

NZ2
∑

n=−NZ2

ũ(mn)(y)

×eI(nβ+ξ)zeI(mα+ζ)X , (28)

where x = (X, y, z) and ũ(mn)(y) is represented by NY2

Chebyshev polynomials. We are interested in the tempo-
ral growth of u′, hence we set both ξ and ζ real while ϑ is
complex in general. The ECS is unstable for ϑi > 0. Since
turbulent flow have shown to correspond to z+ = 100 [76]
we perform a linear stability analysis of the previously
mentioned solutions at (α, β,Re) = (0.16, 0.733, 400) and
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Fig. 22. The energy content E′

b as a function of the Fourier
modes b = 0, 1, 2, . . . , NX with (α, β, Re) = (0.16, 0.733, 400)
for the solid line; (0.20, 0.728, 400) dashed line and (0.200,
0.961, 288) circles. The dominant mode is the x-independent
component, i.e. the Fourier mode b = 0.

(0.20, 0.728, 400) having that particular value of z+, plus
the solution at min[Re] = 288 having α = 0.200 and
β = 0.961. Those solutions have fairly low values of α, i.e.

a slow development in x, they are situated on the lower
branch in the wave amplitude A3D(β) system (i.e. the
amplitude measure of the wavy X-dependent part of the
perturbation) shown in e.g. fig. 9. In this stability analy-
sis we use as a base flow the Blasius flow plus the mean
ECS integrated over X. This is justified in fig. 22 show-
ing a comparison of the energy content E′

b of each Fourier
mode b of the ECS. The ratio of the energy between the
mean flow integrated over X (i.e. the b = 0 component)
and the wavy part (i.e. the sum of the energy contribu-
tion E′

b from each Fourier component b = 1, 2, . . . , NX)
is approximately 40 for the α = 0.16-solution, 20 for the
solution at α = 0.20 and 10 for the solution at Re = 288.
This implies that the majority of the energy is contained
in the x-independent part (i.e. the Fourier mode b = 0).
Having this in mind we perform a linear stability analy-
sis of the (y, z)-dependent flow or the Blasius flow plus
the X-independent part of the ECS, thus also simplify-
ing the numerical representation of u′ keeping NX2 = 1
and ζ = 0. Parameters with subscripts 2 refer to the sec-
ondary perturbation in order to distinguish them from
those of the ECS. The range studied in the streamwise
wave number α2 is 0.12, 0.20 and 1, with β kept invariant
with ξ = 0 (i.e. we do not look for detuned solutions).
The two base flows having z+ = 100 are found to be
weakly unstable for α2 = 0.20, with only one unstable
direction, which goes along with the stability character-
istic of computed TWS in other flow configurations. The
solution at Re = 288 is found to be stable for all perturba-
tions considered. Tables 6 and 7 present the eigenvalues
ϑ of the two unstable base flow solutions, starting with
the largest growth rate ϑi and then in descending order.
The rather simple globally periodic TWS can serve as a
platform from where more complex flows (such as peri-
odic orbits) can take off. Unstable periodic orbits are be-

Table 6. Linear secondary stability results of the ECS with
(α, β, Re) = (0.16, 0.733, 400) for ξ = 0 and ζ = 0. Two trun-
cations are used to confirm convergence; the eigenvalues be-
low correspond to the highest resolution (NX2, NY2, NZ2) =
(1, 100, 6). For α2 = 0.20 there is a weakly unstable mode with
positive growth rate ϑi = 0.00076.

α2 ϑ

0.20 0.07573 + 0.00076i

0.08486 − 0.01757i

0.12089 − 0.01941i

Table 7. Linear secondary stability results of the ECS with
(α, β, Re) = (0.20, 0.728, 400) for ξ = 0 and ζ = 0. Two trun-
cations are used to confirm convergence; the eigenvalues be-
low correspond to the highest resolution (NX2, NY2, NZ2) =
(1, 120, 8). For α2 = 0.20 there is a weakly unstable mode with
positive growth rate ϑi = 0.00082.

α2 ϑ

0.20 0.07673 + 0.00082i

0.08466 − 0.02004i

0.04664 − 0.02481i

lieved to be the skeleton of chaotic dynamics according to
the periodic orbit theory [72,90]. The application of cycle
expansions on various low-dimensional chaotic dynamical
systems has been tested in the past by e.g. [91] and re-
cently on two-dimensional turbulence by [59], where exact
recurrent flows were extracted from numerical simulations
and then used as building blocks to successfully reproduce
turbulence statistics.

5 Conclusions

Applying the parallel flow assumption of the laminar Bla-
sius flow, nonlinear exact coherent structures of a preset
symmetry, (u, v, w, p) = (u, v,−w, p) as z → −z, are dis-
covered and mapped out in the streamwise and the span-
wise wave number space for a few values of the Reynolds
number. One value of Re is set close to the critical value
for linear instability of Tollmien-Schlichting waves in or-
der to look into the presence of alternative solutions in
phase space, and two different Reynolds numbers are cho-
sen to look into the relevance of nonlinear travelling waves
to the edge state computed by Biau [25]. There are other
solutions to search for, such as those corresponding to the
shift-and-reflect symmetry, (u, v, w, p) = (u, v,−w, p) as
x → x + π/α and z → −z, used several times in other
canonical flows. This is left out for future studies. In this
study we have determined a new limit in phase space
where nonlinear travelling wave solutions, consisting of
4-vortices, set in at Re = 288 or Re∗ = 496 (based on
the displacement thickness) having an streamwise root-
mean-square velocity of up to 6% of the free-stream ve-
locity. To put this solution in comparison to other al-
ready known limits we have the threshold for monotonic
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decay at Re∗ = 17, the lower limit of sustained tur-
bulence at Re∗ = 400 and the critical Reynolds num-
ber for growth of linear Tollmien-Schlichting waves at
Re∗ = 520. At the computed subcritical minimum point
the three-dimensional exact coherent structures identified
bifurcate supercritically. Some of the selected states pre-
sented herein possess the same spanwise spacing as ex-
perimental turbulence and are found to be unstable to
small amplitude perturbations through a Floquet analy-
sis. Computing the shape factor H it is realised that the
solutions are not turbulent but are close to the laminar
state. Their values of H match better the time-periodic
edge state structures computed in the transitional study
of Biau [25]. Fixing the mean streamwise spacing z+ to
100 and the Reynolds number to the same value as Biau
it is found that the solutions compare well in the stream-
wise wave length but poorly in the spanwise direction,
giving H = 2.57 for the travelling wave presented here.
Removing the restriction of z+ = 100 the TWS compare
better, in terms of turbulent statistics, to Biau and also
to TWS computed for other flow configurations. The in-
stability of the exact coherent structures reported herein
makes them interesting from a dynamical system point of
view where transition to turbulence can be interpreted as
a walk in phase space among unstable solutions. Whether
or not the discovered solutions are of importance should
be tested through numerical simulations and laboratory
experiments. The numerical work could consist in using
the ECS and its unstable manifold as an initial condition
and then march the Navier-Stokes equations forward in
time to examine the flow trajectory. Another reason for
testing the solutions using a time-stepper would be for
verifying the parallel flow assumption used here and the
use of the correction coefficient Kp for ensuring the correct
asymptotic behaviour of the solutions in the wall-normal
direction. Attaining a better knowledge of the ECS and
its unstable directions and their role in phase space, i.e.
the possible connections with the laminar or the turbulent
state, might lead to ideas on how to relaminarise the flow
by forcing a trajectory onto the laminar unstable manifold
of the ECS. Since the present study is the very first step
in the study of the transition to turbulence in the Blasius
boundary layer, further numerical work needs to be car-
ried out. The next step would be to increase the family
of nonlinear solutions of the Navier-Stokes equations. The
travelling waves are interesting and offer glimpses of states
visited by chaotic flows [52,57]; however, one does not see
the bursting phenomenon (i.e. strong erratic ejections of
low-speed fluid from the region next to the plate) by solely
looking at the TWS. To do this one needs to search for
generic periodic orbits.
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