
Minimal modeling for passive flow control via

a poro-elastic coating

Divya VENKATARAMAN1,∗, Amol MARATHE2, Alessandro BOTTARO1,

Rama GOVINDARAJAN3,†

1Dipartimento di Ingegneria Civile, Chimica e Ambientale, Universitá di Genova,
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Abstract.

Minimal models are obtained for vortex-shedding, both from a smooth aerofoil, and from an aerofoil
coated with a porous layer of flow-compliant feather-like actuators. The latter is a passive way to
achieve flow control. The minimal-order model for a smooth aerofoil is extracted by analyzing the
frequencies present in the flow over this aerofoil, and phenomena such as the presence of super-
harmonics of these flow frequencies and existence of limit cycle behaviour for this system. Next, the
minimal model for the poro-elastically coated aerofoil is realized by linearly coupling the minimal-
order model for vortex-shedding from the smooth aerofoil with an equation for the poro-elastic
coating, here modeled as a linear damped oscillator. The various coefficients in both of these
models, derived using perturbation techniques, not only lead to solutions from the models that
match very well with results from expensive and time-consuming computational models, but also
aid in our understanding of the physics of this fluid-structure interaction problem. In particular, the
minimal model for a coated aerofoil indicates the presence of distinct regimes that are dependent
on the flow and coating characteristics and in this process, provide insight into the selection of
optimal coating parameters, to enable flow control at low Reynolds numbers.

Key words: minimal model, passive flow control, poro-elastically coated aerofoil, low Reynolds
number, vortex-shedding, method of multiple scales.

1 Introduction

An objective of this paper is to derive a minimal-order model for the vortex-shedding
behind a symmetric aerofoil at an angle of attack to the free stream in a laminar
flow regime. One of the motivations behind extracting such a minimal model is that
it can then be coupled with any physical equation which describes the dynamics of
some flow control technique, such as the use of a poro-elastic layer of flow-compliant
feathers, an idea motivated from the automatic “pop-up” of covert feathers in birds.
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Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore (India).
†On lien from the Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore (India).
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The derivation of a low-order model for vortex-shedding behind an aerofoil without
such a flow-control coating, (henceforth referred to as “smooth”), is thus a crucial
preliminary step in characterizing the structural and physical parameters of this
coating, in order to obtain the desired modifications in the aerofoil’s aerodynamic
performance. The first part of this paper addresses the case of the smooth aerofoil,
while the second part considers the passive flow-control technique of using a poro-
elastic coating of compliant actuators over this aerofoil.
In the first part of this paper, in order to extract a reduced-order model for the phe-
nomenon of vortex-shedding behind an aerofoil, its characteristics are analysed - de-
riving motivation from earlier studies performed for vortex-shedding from cylinders.
Some signature of these characteristics is in fact contained in a quantity obtained by
globally integrating over the computational domain (Akhtar et al. (2009)) - such as
the lift and drag for this aerofoil. Here, a reduced-order model will be derived for the
non-dimensional lift coefficient. Further, this model is of the smallest possible order
that can accurately capture the dynamics of the lift coefficient, and thus, henceforth
such a model will be called a minimal-order model, or more simply, minimal model.
Once this minimal model is known, the various parameters in it for a specific case
(parametrized here by the angle of attack), are appropriately determined, so that
results from this model match well with the computational results for the same case.

In the second part of the paper, a minimal model for a poro-elastically coated
aerofoil is realized by linearly coupling the minimal model for the vortex-shedding
behind a smooth aerofoil with an equation of a linear damped oscillator, here taken
to describe the dynamics of the porous, compliant coating. The basic motivation for
developing and studying a minimal model in this manner is that although numeri-
cal as well as experimental parametric studies for this flow control technique have
shown its effectiveness in applications such as drag reduction and delay in stall an-
gles in the recent past (including but not limited to Bakhtian et al. (2007), Favier et
al. (2009), Venkataraman & Bottaro (2012), Brücker & Weidner (2013)), a theoret-
ical model can help in better understanding the underlying physics of this coupled
fluid-structure interaction problem, without the need for performing time-consuming
computations and/or experiments and extensive parameter search to determine “op-
timal” control parameters. This paper is in fact a first step towards rigorously and
theoretically characterising passive flow-control/actuator parameters which should
as well as should not be used, to obtain favourable modifications in the flow field.
This paper begins, in§2, with an overview of facts in non-linear dynamics used to
develop the low-order model for the smooth aerofoil, followed by a highlight of the
characteristics of the aerofoil’s lift coefficient in this context. §3 outlines the devel-
opment of the minimal model for the smooth aerofoil while §4 derives its analytical
solution and in this process, determines the model parameters, so that results from
this model match with those from the computational model. From §5 onwards, the
second part of the paper begins which describes the minimal model for a coated
aerofoil, starting with a derivation of the closed-form expression for the solution of
such a coupled system (analogous to how this was achieved for the case of a smooth
aerofoil). §6 presents an overview of computations performed to arrive at the mini-
mal model. §7 compares the results from the computational model with those from
the minimal model, hence proving its effectiveness, while §8 summarises the paper
and lists some perspectives for future work.
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2 Limit cycles and vortex-shedding

2.1 Characteristics of limit cycles

When the present system of vortex-shedding from an aerofoil is compared with
generic non-linear dynamical systems exhibiting limit cycles, the following facts are
seen to be pertinent towards extracting the low-order model:
(i) The equation for the low-order model should be autonomous (i.e., the coefficients
of various derivative terms do not depend explicitly on time). It is important to note
here that only those autonomous equations with negative linear damping (which
allows small perturbations to grow) and at least one counter-acting positive non-
linear damping term (which will push large perturbations back to the equilibrium
state), are capable of producing limit cycles.
(ii) Once the flow parameters, such as the Reynolds number and, as in the present
case, the shape of the aerofoil and its angle of attack are fixed, the long time history
of the vortex-shedding from the body is periodic in the Reynolds number range of
our consideration (cf. figure 1(a)), and independent of initial conditions. Such a
system is said to be a self-excited oscillator.

2.2 Characteristics of vortex-shedding from aerofoil

In order to derive the minimal model for vortex-shedding behind an aerofoil, the
NACA0012 aerofoil is taken to be at an angle of attack of 10◦; the chord-based
Reynolds number is taken to be 1100. Details of the numerical approach and results
are provided in Venkataraman (2013). To develop a low-order model, the character-
istics of the lift coefficient for this configuration (obtained from the computational
model), in time and frequency domains, as shown in Figure 1, are considered.
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Figure 1: (Left): Time evolution of lift coefficient for an aerofoil at an incidence of 10◦ to
the incoming flow at Re = 1100; (right) Fourier spectrum of lift coefficient. Simulations
from Venkataraman & Bottaro (2012).

It can be seen from Figure 1(b) that after a peak at the fundamental frequency ωs
(which is in fact the frequency of vortex-shedding), there is a peak with substantial
amplitude at 2ωs (followed by a smaller peak at 3ωs). To account for such super-
harmonics of flow frequencies, a non-linear model consisting of at least one quadratic
non-linearity must be considered (Venkataraman (2013)).
However, an equation consisting of non-linearities of order at most two, and no
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higher-order non-linearities (such as cubic or higher), does not model a self-excited
oscillator, since for each new initial condition, the dynamics settles down to a new
closed orbit (hence showing the non-existence of a limit cycle).

3 Development of a minimal model

3.1 Condition for existence of limit cycles

Considering that a third-order non-linearity is required in the model equation for
producing a limit cycle, a generic constant coefficient non-linear ordinary differential
equation, with all possible quadratic and cubic non-linearities, is taken:

d2x

dt2
+x = c

dx

dt
+α1x

2+α2x
dx

dt
+α3(

dx

dt
)2+β1x

3+β2x
2dx

dt
+β3x(

dx

dt
)2+β4(

dx

dt
)3 (3.1)

where c is the coefficient of linear damping, αi for i = 1, 2, 3, and βj for j = 1, 2, 3, 4
are the coefficients of quadratic and cubic non-linear damping terms, respectively.
For this system, a necessary (but not sufficient) condition for the existence of a limit
cycle is given below. This condition is obtained by using Lindstedt’s perturbation
method, the detailed derivation for which is present in Venkataraman (2013). This
necessary condition for the existence of a limit cycle imposes certain restrictions on
these coefficients, by means of deriving the following expression for the amplitude
A of the limit cycle:

A = 2

√
−µ

α2(α1 + α3) + β2 + 3β4

; (3.2)

(where µ is the second-order approximation to the linear damping coefficient c,
having the same sign as c), and observing that a limit cycle for this system will exist
only if the expression (3.2) for the amplitude A is real. Thus, if the linear damping
coefficient c (or equivalently its second-order approximation µ) is positive (so that
system (3.1) has negative linear damping), the quantity α2(α1 +α3) +β2 + 3β4 must
be negative to ensure the existence of a limit cycle.

3.2 Application to the case of vortex-shedding

Since the characteristics for aerofoil vortex shedding are dependent only on the flow
Reynolds number and the aerofoil’s angle of attack, and not on the initial conditions,
this system can be expected to exhibit a stable limit cycle. Based on the analysis
in the previous paragraph, it is possible to deduce which non-linear terms must be
present in the generic system (3.1) to yield limit cycles.
To simplify our analysis of how the non-linearities of different orders interact with
each other, and in order to develop a minimal-order model that accurately captures
the dynamics of vortex-shedding, only one of the terms of quadratic and cubic non-
linearities will be taken to be non-zero. From equation (3.2), it can be seen that
the coefficients β1 and β3 (corresponding to the non-linear terms x3 and xẋ2) do not
play any role for the amplitude A to be real. Hence, the two non-linear terms x3

and xẋ2 will be taken to be absent. The dependence of the existence of limit cycle
on the coefficients α1, α2, α3, β2 and β4 is summarised in table 1 (with the linear
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Case α1 α2 α3 β2 β4 Existence of limit cycle

1 1 0 0 -1 0 No

2 1 0 0 0 -1 No

3 0 1 0 -1 0 Yes

4 0 1 0 0 -1
Limit cycle exists only for ini-
tial conditions with ẋ negative
or zero.

5 0 0 1 -1 0 No

6 0 0 1 0 -1 Yes

Table 1: Dependence of limit cycle existence on the non-linearities in equation (4.1).

damping coefficient c fixed to 1).
From this table, it can be seen that only cases 3 and 6 yield limit cycles. Further,
from a comparative analysis of the phase portraits (i.e plots of ẋ versus x) for these
two cases (Venkataraman (2013)), it can be seen that the convergence to a limit
cycle is slightly faster in case 6, in which the non-linearities involved are ẋ2 and
ẋ3. Our physical system is one where the limit cycle is attained fairly quickly, i.e.
within a few oscillation time scales. Hence the equation taken to model the system
under consideration is:

d2x

dt2
+ x =

dx

dt
+ (

dx

dt
)2 − (

dx

dt
)3 (3.3)

It must be noted here that the coefficients of various terms in this equation need not
all have a magnitude of unity in general. These coefficients are selected appropriately
as detailed below, for the system under consideration.

4 Model parameters using the method of multiple scales

Denoting the variable being modeled as CL (the non-dimensional lift coefficient),
the model equation with all its unknown parameters can be written as:

(
d2

dt2
+ ω2)CL = µ

d

dt
CL − α(

d

dt
CL)3 + β(

d

dt
CL)2 + ω2C̃L (4.1)

where the parameters µ, α and β are all positive. The presence of an extra constant

ω2C̃L here accounts for the fact that the mean lift coefficient C̃L for an aerofoil is
non-zero.
To determine the parameters ω2, µ, α and β, the analytical form of the solution
for equation (4.1) is determined, which in turn is dependent on these parameters.
Once the closed-form solution is known, it is matched with the simulation results
(for instance, such as those shown in figure 1) to determine these model parameters.

Equation (4.1) will be solved by the method of multiple scales (Strogatz (1994),
Venkataraman (2013)). We consider the problem when the damping and nonlin-
earities are weak; that is, we take µ, α and β to be of O(δ), where δ << 1 is a
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bookkeeping parameter and in fact, measures how strongly non-linear the system is.
Thus in physical terms, δ translates to a parameter that measures the ratio between
the Fourier amplitudes corresponding to the fundamental frequency and its second
super-harmonic, a1 and a2 respectively (cf. Figure 1(b)).
The method of multiple scales is used to determine a second-order approximate so-
lution in δ for the lift coefficient CL(t) by introducing the fast, slow and slower time
scales given by T0 = t, T1 = δt, and T2 = δ2t. By following this procedure and
imposing an additional physical constraint that the amplitude of the oscillations of
CL(t) has attained saturation with a non-zero value, the following analytical form
is obtained for CL(t):

CL(t) = a0 + a1 cos(ωst) + a2 cos(2ωst) + a3 sin(3ωst) (4.2)

where a0, a1, a2, a3 and ωs are parameters of the limit cycle obtained for this case
(Venkataraman (2013)). These parameters can be determined in terms of the param-
eters of the minimal model ω, µ, α and β, when the latter are known. Conversely,
the parameters of the minimal model can be determined in terms of a0, a1, a2, a3

and ωs, when the exact form and characteristics of the limit cycle are known (such
as, from results of computational models, as in the present case).

5 Linear minimal model for coupled fluid-structure interac-
tion: derivation of solution

To follow the simplest approach, we consider the reduced-order model for the feath-
ery coating as a linear spring, described by a linear damped oscillator’s equation. In
the spirit of developing a minimal model for this coupled fluid-structure interaction
problem, the dynamics of the coating, expressed by the variable θ, is interpreted
as the displacement of the fluid-coating interface from an equilibrium position, as
shown in figure 2. Thus in this context, it must be noted that the structure model
equation governs only the overall displacement of the coating as a whole, and not
the dynamics of the angular displacements of the invidual feathers. Hence, inter-
action effects can be neglected in the overall structure model, thus explaining the
minimality of this model. When such a linear damped oscillator’s equation is cou-
pled with the minimal model for vortex-shedding behind a smooth aerofoil derived
earlier, the coupled system is given by:

C̈L + ω2CL − ω2C̃L − µĊL + α(ĊL)3 − β(ĊL)2 = ρ1θ (5.1)

θ̈ + cθ̇ + ω2
1θ = ρ2(CL − C̃L) (5.2)

where ρ1 and ρ2 are constants enforcing a linear coupling between the fluid and

structure systems (and C̃L was defined earlier in §4).
As done in §4, this coupled system can also be solved by the method of multiple
scales, to find the general form of the solution, CL and θ, in terms of the model
parameters. Conversely, given the form of the solution (for instance from the com-
putational data, as in the present case), it is possible to find the model parameters
in terms of the numerical/physical characteristics of the computations. In addition,
it is also possible to make inferences about “optimal” structure model parameters
that yield the desired behaviour for the solution of the coupled system.
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Initial equilibrium configuration 
of fluid-coating interface

Displaced “wavy” configuration 
of fluid-coating interface

Displacement variable

Figure 2: Fluid-coating interface : (left) - initial undisturbed configuration (i.e., without
any forcing from the fluid) - the vertical lines here denote a discrete number of feathers
spread uniformly in this layer; (right) - disturbed configuration showing the displacement
variable θ. Note here that the colour gradient in this disturbed layer characterizes the
non-uniform, time-varying porosity (i.e., darker shades denote clustering of feathers while
lighter shades stand for areas with a lower instantaneous concentration of feathers).

As outlined in §4, we consider the coupled problem when the damping and nonlinear-
ities for the fluid component, the damping/dissipation for the structure component
as well as the coupling between the fluid and structure parts are weak. Thus, by
taking µ, α, β, c, ρ1 and ρ2 all to be of O(δ) (where δ is a bookkeeping parameter
measuring how strong the non-linearity in the system is, δ << 1), we determine a
second-order approximate solution in δ for the lift coefficient and the fluid-coating
interface. The fact that all the fluid as well as structure damping terms and fluid-
structure coupling terms are of O(δ) physically means that all these damping and
coupling effects are weak compared to the oscillation effects of the two stand-alone
fluid and structure components of this coupled fluid-structure system.
Equations (5.1) and (5.2) are solved, analogous to the case of the smooth aerofoil,
by introducing the fast, slow and slower time scales, given by T0 = t, T1 = δt, and
T2 = δ2t, respectively, and separating coefficients of like powers of δ (Venkataraman
et al. (2013)). The solutions involve arbitrary functions A1(T1, T2) and A2(T1, T2),
in terms of the time scales T1 and T2 (but constant with respect to the time scale T0),
and to ensure bounded solutions (by eliminating secular terms), four solvability con-

ditions are obtained (involving
∂A1

∂T1

,
∂A1

∂T2

,
∂A2

∂T1

and
∂A2

∂T2

). Finally using the polar

transformations A1(t) =
1

2
a1(t)eιγ1(t) and A2(t) =

1

2
a2(t)eιγ2(t) in the expressions for

CL(t) and θ(t) respectively, closed-form solutions for the modified lift coefficient and
coating interface are obtained. Combining the solvability conditions correspond-
ing to A1 with the polar transformation above for A1, the following modulation
equations arise:

ȧ1(t) =
δ

2

{
µ

2
a1(t)− 3

8
αω2a3

1(t)

}
, (5.3)

γ̇1(t) = −δ2

{
µ2

8ω
+

3

16
µαωa2

1(t)− β2

6
ωa2

1(t)− 27

256
α2ω3a4

1(t)− ρ1ρ2

2ω(ω − ω1)(ω + ω1)

}
;

(5.4)
and likewise for A2:

ȧ2(t) = −δ
2
ca2(t) , (5.5)
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γ̇2(t) = −δ2

{
ιc2

8ω1

+
ρ1ρ2

2ω1(ω − ω1)(ω + ω1)

}
. (5.6)

Again under the initial assumption that CL(t) and θ(t) both have reached their
equilibrium states, equations (5.3) and (5.5) can be solved. This results in two

possible values of a1: 0 and
2

ω

√
µ

3α
(exactly as in the calculations for the case of

smooth aerofoil). Further, the only possibilities for steady-state condition for a2(t)
are c = 0 or a2(t) = 0. The trivial solution of both a1(t) = 0 and a2(t) = 0 can be
ruled out. The qualitative characteristics of the solutions for the other three cases
are summarized in Table 2 (with further details in Venkataraman et al. (2013)). It

must be noted here that ωs,1 = ω − (δµ)2

16ω
− 2(δβ)2µ

9αω
− (δρ1)(δρ2)

2ω(ω − ω1)(ω + ω1)
and

ωs,2 = ω1 −
(δρ1)(δρ2)

2ω1(ω − ω1)(ω + ω1)
.

Case

Steady-state
amplitudes
of fluid and
structure, a1

and a2

Physical interpreta-
tion of steady-state
conditions

Features of fluid and struc-
ture steady-state solutions,
CL(t) and θ(t)

1 : Weak
structure-
to-fluid
coupling

a1 =

√
4µ

3αω2
;

a2 = 0.

Dissipation constant c
of the coating arbitrar-
ily large (i.e., energy
dissipation by the coat-
ing very large).

(a) Form of CL(t) similar
to that for smooth aerofoil,
given in equation (4.2), with
frequency distribution ex-
hibiting a unique frequency
ωs,1 and its super-harmonics;
(b) No super-harmonics of ωs,1
in spectrum of θ(t).

2 : Weak
fluid-to-
structure
coupling

a1 = 0 ;
a2 arbitrarily
large constant.

Dissipation constant c is
0 (i.e., no energy dis-
sipation by the coating
due to oscillations).

(a) Dynamics of coupled sys-
tem dictated by structure;
(b) Only one frequency ωs,2
(without any super-harmonics)
in spectrum of both CL(t) and
θ(t).

3 : Two-
way cou-
pling

a1 =

√
4µ

3αω2
;

a2 arbitrarily
large constant.

Dissipation constant
c = 0 (as for case 2).

(a) Dynamics of coupled sys-
tem combination of cases 1
and 2 (i.e., frequency spectra
of both CL(t) and θ(t) ex-
hibit frequencies ωs,1 and ωs,2) ;
(b) Super-harmonics of only ωs,1
seen, only in spectrum of CL(t).

Table 2: Cases of steady-state solutions dependent on coating parameters.

In all of the above three cases, we can have the possibilities of at least one of ωs,1 or
ωs,2 being zero. It is important to note that if ωs,1 is zero, then so is ωs,2 and vice-
versa, which by an order of magnitude analysis, is seen to be possible only if ω ∼ ω1
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(Venkataraman et al. (2013)), which is nothing but the resonant condition for the
coupled fluid-structure system. The other possibility is the non-resonant condition,
where both ωs,1 and ωs,2 are non-zero. A summary of the effects produced on the
characteristics of the lift coefficient (in the form of change in mean lift or change in
lift fluctuations about this mean), is presented in Table 3.

Case
Resonant frequency con-
ditions

Non-resonant frequency
conditions

1 : Weak structure-to-
fluid coupling

√
4µ

3αω2
dominates mean lift

increase

Changes in coating parame-
ters do not directly affect lift
characteristics

2 : Weak fluid-to-
structure coupling

Mean lift increase by O(δ)
when: (a) structure-fluid
coupling parameter ρ1 in-
creased; (b) compliance
increased so that steady-
state amplitude C0 of oscilla-
tions of the coating interface
is large.

Lift fluctuations decrease if
δρ1C0

(ω − ω1)(ω + ω1)
<

√
4µ

3αω2

3 : Two-way coupling Same as case 2

Lift fluctuations in-
crease avoided if

δρ1C0

(ω − ω1)(ω + ω1)
<

√
4µ

3αω2

Table 3: Effect of change in coating parameters on characteristics of lift coefficient.

6 Results from computational model: brief overview

In order to relate the theoretical results obtained in §2 and §3 to the results from the
computational model for the symmetric aerofoil, the flow configuration is initially
taken to be simpler. For this, the flow over a flat plate, with rounded leading and
trailing edges, first aligned with the free-stream, and then oriented at an angle of
incidence to it, is considered. As the next step, this tilted flat plate “morphs” into
a symmetric aerofoil, and the flow dynamics over this aerofoil is related with the
results for the simpler configuration (i.e., flat plate) as well as the theoretical results
in earlier sections. In this way, such computations provide a good prototype flow
for us to understand the mechanisms of lift enhancement or drag reduction. Details
of all these results are present in Venkataraman et al. (2013).
For the case of an aerofoil, various simulations were performed for a poro-elastically
coated aerofoil at 10◦ angle of incidence to the free-stream, with different structural
as well as physical parameters (such as the rigidity frequency, the length of refer-
ence feathers, the placement of the coating on the aerofoil, etc. - cf. Venkataraman &
Bottaro (2012)). It was observed that in none of these cases, the dynamics of either
the fluid or the structure systems (as captured by the quantities CL(t) and θ(t))
exhibited only one frequency without any super-harmonics (i.e., the characteristics
of case 2). Further, from the perspective of the dynamics of the fluid component,
the Fourier spectrum either showed one frequency with its super-harmonics, or two
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unrelated frequencies along with super-harmonics for only one of these (i.e., cases 1
and 3, respectively).
Hence, for the derivation of the model parameters in terms of the characteristics of
the simulation results (analogous to how this was done for the case of smooth aero-
foil), an illustrative case that corresponds with case 1 of §5 is selected. In this case,
the first half of the suction side of the aerofoil is poro-elastically coated. The angular
rigidity frequency ωr (which is also taken to be the dominant structure frequency)
is set to the value 2.8972, which is half of the fundamental frequency in the fluid
system ωf (which in turn is the frequency of vortex-shedding - cf. Venkataraman
(2013), Venkataraman et al. (2013)). The position of the reference control elements
on the aerofoil is shown in figure 3. Some aspects of the results from the computa-
tions for this case will be presented in §7, in the context of extracting parameters
of the minimal model, the results for which yield a good match with those from
computational model.
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Figure 3: Placement of the poro-elastic layer on the aerofoil, depicted by the position of
four reference feathers (shown here by the thick, black lines near the leading edge of the
aerofoil).

7 Comparison with simulation results

7.1 Case of smooth aerofoil

From Figure 1(b) which shows the Fourier spectrum of the lift coefficient, one gets
the following values for the fundamental frequency ωs, amplitudes corresponding to
the fundamental frequency a1, twice the fundamental frequency a2, and three times
the fundamental frequency a3:

ωs = 2π × 0.9222 = 5.7944 ; a1 = 0.02119 ; a2 = 3.46× 10−4 ; a3 = 1.9× 10−5.
(7.1)

With these input values, we get the following values of the model parameters for
equation (4.1):

ω = 5.8039 ; δµ = 0.1249 ; δα = 11.0102 ; δβ = 4.6234. (7.2)
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Again substituting these parameters in the model equation (4.1) and by numerically
solving it, we can compare this solution with the computational results, as done in
Figure 5(a).

7.2 Case of poro-elastically coated aerofoil

This section highlights some aspects of the computational results for a poro-elastically
coated aerofoil shown in figure 3, and with coating parameters as explained in §6.

  

L

0 0.5 1 1.5 2 2.5 310-6

10-5

10-4

10-3

10-2

10-1

Fo
ur

ier
 am

pli
tud

e o
f C

 

 

Dimensionless Frequency
0 0.5 1 1.5 2 2.5 310-6

10-5

10-4

10-3

10-2

10-1

Dimensionless frequency

 

 

Fo
ur

ier
 am

pli
tud

e o
f a

ng
ula

r 
dis

pla
ce

me
nt 

of 
re

fer
en

ce
 fe

ath
er

Figure 4: (Left) Fourier spectrum for the time signal of the lift coefficient for aerofoil at
10◦ angle of attack, with poro-elastic coating where the rigidity frequency ωr is set equal
to half the frequency of vortex-shedding; (right) Fourier spectrum for the time evolution of
the angular displacement of the reference feather nearest to the trailing edge. This figure
shows the case where the poro-elastic layer spans 50% of the suction side.

The left frame of figure 4 shows the Fourier decomposition for the time evolution
of the lift coefficient for this aerofoil, while the right frame shows the Fourier de-
composition for the time signal of the angular displacement of a reference feather
closest to the trailing edge. In these, a sharp peak at a certain unique frequency
is observed, followed by peaks with amplitude of smaller magnitudes at twice and
three times these frequencies. Hence, this case corresponds to case 1 (i.e., when the
coating interface has zero steady-state amplitude for its displacement, and the lift
has a non-zero steady-state amplitude), with the fluid and structure systems both
oscillating at the same frequency ωs,1.
From the left and right frames of figure 4, one gets the following values for the
fundamental frequency ωs,1, amplitudes of the lift coefficient corresponding to the
fundamental frequency and its second and third super-harmonics l1, l2 and l3 respec-
tively; and amplitude of the angular displacement of the reference feather (closest
to the trailing edge) φ

′
1 corresponding to the fundamental frequency:

ωs,1 = 2π × 0.9039 = 5.6794 ; l1 = 0.0245 ; l2 = 4.459× 10−4 ; l3 = 8.123× 10−6 ;

φ
′

1 = 0.01003.
(7.3)

From this value of φ
′
1 and the known value of the length of the feather, one can

evaluate the vertical displacement of the coating interface θ
′
1 = 8.551× 10−7. With

these input values, we get the following values of the parameters for equations (5.1)
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and (5.2):

ω = 5.6907 ; δµ = 0.0453 ; δα = 3.106 ; δβ = 4.4571 ; ω1 = 0 ; δρ1 = 0 ;

δρ2 = −1.13× 10−3.
(7.4)

It must be recalled that for this case, the dissipation constant c of the reference
feather is allowed to be arbitrary, and hence can be taken to be arbitrarily large.
This is in line with the physical consideration that the steady-state amplitude a2 of
the stand-alone structure part of the coupled system is zero.
Thus, substituting the values obtained in equation (7.4) and by numerically solving
it, we can compare this solution with the simulation results, as done in figure 5(b).
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Figure 5: Comparison of model and simulation results of lift coefficient for: (left) smooth
aerofoil and; (right) aerofoil with the poro-elastic coating shown in figure 4. The dashed
curve (blue online) shows the results from the computational model while the solid curve
(red online) shows results from the minimal models.

It can be seen that the results from the computational model and those from the
minimal model agree very well with each other, for both smooth as well as poro-
elastically coated aerofoils. It can also be easily verified that the steady-state solu-
tions are independent of the initial conditions (Venkataraman (2013)). All of these
results indicate the effectiveness of the minimal models for vortex-shedding, behind
smooth as well as coated aerofoils.

8 Conclusions

In the first part of this paper, a minimal model for vortex-shedding behind an
aerofoil at an angle of incidence to the free-stream has been developed. For this,
the characteristics of the lift coefficient of the aerofoil (which is an integral quantity
that contains the signature of the characteristics of vortex-shedding) are analysed.
The Fourier spectrum of the lift coefficient for this configuration reveals amplitude
peaks at a fundamental frequency (equal to the frequency of vortex-shedding), and
its second and third superharmonics, in decreasing order of amplitudes. To account
for such dynamical features, a non-linear model with exactly one quadratic and
one cubic non-linearity is developed, by analyzing which non-linear models with
quadratic and cubic non-linearities have trajectories converging to (unique) limit
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cycles, independent of initial conditions. For this non-linear model, suitable model
parameters are determined (by deriving the analytical solution using the method
of multiple scales, and then comparing it with the computational results), which
yields a good match between the solutions obtained from the minimal model and
computations.
In the second part of this paper, a minimal model for the lift coefficient of the aerofoil
considered before, but now with a poro-elastic coating on a part of its suction side,
has been developed. For this, the minimal-order model for a smooth aerofoil has been
linearly coupled with a linear damped oscillator for the dynamics of the poro-elastic
layer. For this coupled non-linear model, a closed-form expression for its limit cycle
is derived in terms of generic (unknown) fluid, structure and coupling parameters
(similar to the analysis done for the case of smooth aerofoil). In the course of
this analysis, three physical cases could be segregated, based on the possibilities
of whether the steady-state amplitudes of the stand-alone fluid oscillator and the
stand-alone structure oscillator was zero or not. The closed-form expressions for
all these cases yielded conditions on resonant and non-resonant regimes of fluid
and structure frequencies, thus giving an insight into possible selection of structure
and coupling parameters that are capable of rendering, for instance, reduced lift
fluctuations as compared to the case of the smooth aerofoil.
Several simulation results for coated aerofoils, with different extents and placements
of coating over the suction side, conducted in the course of this study, are seen
to fall in one of the two cases from the above possibilities. From this, the fluid,
structure and coupling parameters, that yield matching of trajectories obtained
from the minimal model and computations, are determined (analogous to how this
was done for the case of smooth aerofoil). All of the above observations indicated
the effectiveness of the minimal model for smooth as well as coated aerofoils.
Possible extensions of this work can be to formulate progressively non-linear models
for the structure and coupling parts, to be able to trust the effectiveness of such
a poro-elastic coating, for more complex configurations as well as for different flow
regimes.
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