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a b s t r a c t

A minimal model is obtained for vortex-shedding from an aerofoil with a porous coating

of flow-compliant feather-like actuators, in order to better understand this passive way to

achieve flow control. This model is realized by linearly coupling a minimal-order model

for vortex-shedding from the same aerofoil without any such coating with an equation for

the poro-elastic coating, here modelled as a linear damped oscillator. The various

coefficients in this model, derived using perturbation techniques, aid in our under-

standing of the physics of this fluid–structure interaction problem. The minimal model for

a coated aerofoil indicates the presence of distinct regimes that are dependent on the flow

and coating characteristics. The models and the parametric studies performed provide

insight into the selection of optimal coating parameters, to enable flow control at low

Reynolds numbers.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The objective of this paper is to derive a minimal model for the vortex-shedding behind a symmetric aerofoil, a part of

which is covered with a poro-elastic coating of passive flow-compliant feathers, the aerofoil being oriented at an angle to the

free stream in a laminar flow regime. Such a minimal model is realized by linearly coupling the minimal-order model for the

vortex-shedding (expressed in terms of an integral quantity such as the lift coefficient) behind the same aerofoil without

such a coating (henceforth referred to as “smooth”), with an equation which describes the dynamics of the porous,

compliant coating, here modelled as a linear damped oscillator. The basic motivation for developing and studying a minimal

model in this manner is that, although numerical as well as experimental parametric studies for such a class of passive flow

control techniques involving shape-optimization have been performed in the recent past (including but not limited to

Bechert et al., 1997; Bakhtian et al., 2007; Favier et al., 2009; Brücker, 2011; Lam et al., 2012; Venkataraman and Bottaro,

2012; Igbalajobi et al., 2013; Brücker and Weidner, 2013), a theoretical model can help in better understanding the

underlying physics of this coupled fluid–structure interaction problem without the need for performing extensive time-

consuming computations and/or experiments. At this point, it is pertinent to note that some theoretical studies have also

been performed recently for fluid–structure interaction problems, but for simpler flow conditions (such as that of a potential

flow in a channel bounded by cantilever beams, Jang et al., 2013).
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Studies of this passive flow control technique were initially motivated from the “pop-up” of covert feathers present at the

roots of the wings of some birds, which automatically become active during flow regimes involving high angle of attack,

such as perching manoeuvres. In particular, many experimental studies, such as Bechert et al. (1997) and Bakhtian et al.

(2007), have proved the effectiveness of such feathers in applications including drag reduction and delay in stall angles.

Suitable implementations of such passive flow control techniques can also be potentially beneficial for technological

applications based on micro-aerial vehicles, where it is very crucial to balance aerodynamic performance and manoeuvring

capabilities on one hand against constraints of payload that typically also include flow control appendages. More generally,

several studies have also been performed for vortex-shedding behind cylinders (which are typical examples of bluff bodies),

particularly in the context of active flow control techniques such as regulated oscillations in the streamwise or cross-flow

directions (Xu et al., 2006; Perdikaris et al., 2009; Srikanth et al., 2011), to desirably manipulate the flow field in the vicinity

of the body.

The importance of reduced-order models, in particular for problems such as the one considered in this paper, is that they

have a two-fold advantage over their counterparts which rely on time-consuming computations. In such contexts, low-order

models become pertinent when very complex as well as computationally expensive numerical simulations of fluid flow, as

well as extensive parametric studies performed in the course of such studies would need more efficient, reliable and low-

cost replacements. Studies on developments of low-order models for cylinders which are free to move in one direction but

constrained in others have been performed in the past (Gaster, 1969), particularly vis-a-vis determining the conditions

under which vortex-induced vibrations can take place and thus, how they can possibly be controlled (Hartlen and Currie,

1970; Currie and Turnbull, 1987). Such theoretical models also yield useful insights into how and why the flow

characteristics change with different control parameters/coating properties and hence have the capability to predict

“optimal” parameters. This paper is in fact a first step towards addressing the issue of rigorously and theoretically

characterizing passive flow-control/actuator parameters which should as well as should not be used, to obtain favourable

modifications in the flow field.

This paper begins with a description of the minimal model for a coated aerofoil, starting with a derivation of the closed-

form expression for the solution of such a coupled system, in Section 2. Section 3 derives the expressions for the parameters

of the minimal model in terms of results from the full computational model, along the lines of what was done for the

minimal model for vortex-shedding behind a smooth aerofoil (Venkataraman, 2013). Section 4 presents an overview of

simulations performed with the full computational model, to arrive at the minimal model. In order to better understand the

physics, the first part of this section presents results from prototype simulations, obtained by considering the flow over a flat

plate, both aligned with the free-stream as well as oriented at an incidence angle to it. The second part of this section

presents results for the case of the symmetric aerofoil at an angle of attack to the free stream, and correlates the results for

the flat plate with those of the aerofoil, thus presenting reasons for developing the specific minimal model for the coupled

system. Section 5 compares the results from the full computational model for the aerofoil with those obtained from the

minimal model (as outlined in Sections 2 and 3), hence proving the effectiveness of the minimal model, while Section 6

presents parametric studies for qualitative changes in characteristics of solutions for the coupled system. Finally Section 7

summarizes the paper and lists some perspectives for future work.

2. Linear minimal model for coupled fluid–structure interaction: derivation of solution

To follow the simplest approach, we consider the reduced-order model for the feathery coating as a linear spring (where

each feather in the coating is taken to be a rigid beam (Venkataraman and Bottaro, 2012; Venkataraman et al., 2013),

described by a linear damped oscillator's equation

€θþc _θþω2
1θ¼ 0; ð2:1Þ

where ω2
1 is the (positive) stiffness constant of the linear spring and c is its damping coefficient. It must be noted here that

the oscillations of such a standalone linear spring asymptotically die out or amplify depending on whether c is positive or

negative. However when an external forcing is applied to such an independent oscillator (via a non-zero term on the right

hand side of Eq. (2.1)), its asymptotic dynamics will also depend on this external forcing.

Here θ is a variable that measures the dynamics of this poro-elastic coating and may possibly denote one of the

following:

1. If the coating is not strictly a “dense continuum” of feathers – each feather in this coating is sufficiently far apart from

its neighbour so as to not affect its dynamics and in turn, not get affected by this neighbour's dynamics (compare also

Brücker and Weidner, 2013) – then, θ can denote the angular displacement of each such feather about its angular mean/

equilibrium position θeq. Thus, interaction moments between neighbouring feathers (Favier et al., 2009; Venkataraman and

Bottaro, 2012) are not significant. Further, c and ω1 denote the dissipation constant and the spring constant respectively, for

each of these feathers. In this case, we postulate that the individual elements of the coating have synchronous dynamics.

Alternatively, Eq. (2.1) can also be interpreted to measure the dynamics of a single self-actuated movable flap, rather than

a cluster of feathers.

2. In the spirit of generalizing the study to a “dense” coating and also of developing a minimal model for this coupled

fluid–structure interaction problem, θ can be interpreted as the displacement of the fluid-coating interface from an

equilibrium position, as shown in Fig. 1. It is re-emphasized here that in this case, the structure model equation (2.1) does
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not govern the dynamics of the angular displacements of the individual feathers but the overall displacement of the coating

as a whole. Hence, again interaction effects can be neglected in the overall structure model.

When Eq. (2.1) is coupled with the minimal model for vortex-shedding behind a smooth aerofoil (as captured by the

aerofoil's lift and derived in Venkataraman, 2013), given by

€CL þω2CL%ω2 ~CL %μ _CL þαð _CL Þ
3%βð _CL Þ

2 ¼ 0; ð2:2Þ

where all the model parameters ω2, μ, α and β are positive (cf. Venkataraman, 2013), the coupled system is given by

€CL þω2CL%ω2 ~CL %μ _CL þαð _CL Þ
3%βð _CL Þ

2 ¼ ρ1θ; ð2:3Þ

€θþc _θþω2
1θ¼ ρ2ðCL%

~CL Þ; ð2:4Þ

where ~CL is the time-averaged mean value of the lift coefficient for the smooth aerofoil (Venkataraman, 2013), and ρ1 and ρ2

are constants enforcing a linear coupling between the fluid and structure systems, both of which could be either positive or

negative. It is interesting to note here that since the structure-to-fluid forcing is itself directly proportional to the

displacement of the coating interface θ via the coupling parameter ρ1, this parameter can be physically interpreted as

(a function of) the density/porosity of the feathery coating. That is, as the porosity of the coating decreases (or equivalently

its density increases), the magnitude of the structure-to-fluid forcing increases. Similarly, since the fluid-to-structure forcing

(i.e., right hand side of Eq. (2.4)) determines the qualitative nature of oscillations of the structure with its amplitude also

governed by the coupling parameter ρ2, this parameter can be physically interpreted as (a function of) the compliance of the

feathers in the coating. That is, compliance of the poro-elastic coating increases as the parameter ρ2 is increased.

It must also be noted here that although the structure model as well as the couplings between the fluid and structure

components are linear, the whole coupled system capturing vortex-shedding from a poro-elastically coated aerofoil

continues to remain non-linear, exactly as in the case of a smooth aerofoil. This is because the non-linearities in the

hydrodynamics (as in the left hand side of (2.3)) and consequently the fluid-to-structure forcing (in the right hand side of

(2.4)) are the drivers of the system – it is only the spring response (left hand side of (2.4)) which is linear.

As done before for the case of smooth aerofoil, this coupled system can be solved by the method of multiple scales (Van

Dyke, 1964; Strogatz, 1994; Rand, 2012), to find the general form of the solution, CL and θ, in terms of its model parameters.

Conversely, given the form of the solution (for instance from the computational data, as in the present case), it is possible to

find the parameters of the minimal model in terms of the numerical/physical characteristics of the results from the

computational model. In addition, it is also possible to make some inferences about “optimal” structure model parameters

that yield the desired behaviour for the solution of the coupled system.

Following the method used for the flow around a smooth aerofoil (Venkataraman, 2013), we consider the coupled

problem when the damping and nonlinearities for the fluid component, the damping/dissipation for the structure

component as well as the coupling between the fluid and structure parts are weak. Thus, by taking μ, α, β, c, ρ1 and ρ2 all

to be of OðδÞ (where δ is a bookkeeping parameter that measures how strong the non-linearity in the system is, δ{1), we

determine a second-order approximate solution in δ for the lift coefficient and the angular displacement of the reference

feather. The fact that all the fluid as well as structure damping terms and fluid–structure coupling terms are of OðδÞ which

physically means that all these damping and coupling effects are weak compared to the oscillation effects of the two stand-

alone fluid and structure components of this coupled fluid–structure system.

Eqs. (2.3) and (2.4) are solved by first transforming them into two complex-valued first-order equations, in variables ζ1

and ζ2. Then introducing the fast, slow and slower time scales, given by T0 ¼ t, T1 ¼ δt, and T2 ¼ δ2t, respectively, using the

expansions ζ1 ¼ Σ2
j ¼ 0δ

jζ1;jðT0; T1; T2ÞþOðδ3Þ;and ζ2 ¼ Σ2
j ¼ 0δ

jζ2;jðT0; T1; T2ÞþOðδ3Þ in these complex-valued first-order equa-

tions, and separating coefficients of like powers of δ yields three ordinary differential equations each for ζ1 (involving ζ1;0,

Fig. 1. Fluid-coating interface: (left) initial undisturbed configuration (i.e., without any forcing from the fluid), the vertical lines here denote a discrete

number of feathers spread uniformly in this coating; (right) disturbed configuration showing the displacement variable θ. Note here that the colour

gradient in this disturbed coating characterizes the non-uniform, time-varying porosity (i.e., darker shades denote clustering of feathers while lighter

shades stand for areas with a lower instantaneous concentration of feathers).
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ζ1;1 and ζ1;2) and ζ2 (involving ζ2;0, ζ2;1 and ζ2;2). Both these systems of equations can be solved for ζ1 and ζ2. The solutions

involve arbitrary functions A1ðT1; T2Þ and A2ðT1; T2Þ, in terms of the time scales T1 and T2 (but constant with respect to the

time scale T0), and to ensure bounded solutions (by eliminating secular terms), four solvability conditions are obtained

(involving ∂A1=∂T1, ∂A1=∂T2, ∂A2=∂T1 and ∂A2=∂T2). Finally using the polar transformations A1ðtÞ ¼ a1ðtÞe
ιγ1ðtÞ=2 and

A2ðtÞ ¼ a2ðtÞe
ιγ2ðtÞ=2 in the expressions for CL(t) and θðtÞ respectively, the following closed-form solutions for the modified

lift coefficient is obtained

CL tð Þ ¼ ~CL þ
δβ

2
a21 tð Þþa1 tð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
3

16
δαωa21 tð Þ%

δμ

4ω

" #2
s

sin ωtþγ1 tð Þþη1
% &

þ
δβ

6
a21 tð Þ cos 2 ωtþγ1 tð Þ

% &' (

þ
δα

32
ωa31 tð Þ sin 3 ωtþγ1 tð Þ

% &' (

þ
δρ1

ðω%ω1Þðωþω1Þ
a2 tð Þ cos ω1tþγ2 tð Þ

% &

; ð2:5Þ

while the fluid-coating interface solution reads

θ tð Þ ¼ a2 tð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
δ2c2

16ω2
1

s

sin ω1tþγ2 tð Þþη2
% &

%
δρ2

ðω%ω1Þðωþω1Þ
a1 tð Þ cos ωtþγ1 tð Þ

% &

; ð2:6Þ

where η1ðtÞ ¼ tan %1f16ω=½δð3αω2a21ðtÞ%4μÞ(g and η2ðtÞ ¼ tan %1f4ω1=cg.

Combining the solvability conditions corresponding to A1 with the polar transformation above for A1, the following

modulation equations arise:

_a1 tð Þ ¼
δ

2

μ

2
a1 tð Þ%

3

8
αω2a31 tð Þ

) *

; ð2:7Þ

_γ1 tð Þ ¼ %δ2
μ2

8ω
þ

3

16
μαωa21 tð Þ%

β2

6
ωa21 tð Þ

(

%
27

256
α2ω3a41 tð Þ%

ρ1ρ2

2ωðω%ω1Þðωþω1Þ

*

; ð2:8Þ

and likewise for A2

_a2 tð Þ ¼ %
δ

2
ca2 tð Þ; ð2:9Þ

_γ2 tð Þ ¼ %δ2
ιc2

8ω1
þ

ρ1ρ2

2ω1ðω%ω1Þðωþω1Þ

) *

: ð2:10Þ

Again under the initial assumption that CL(t) and θðtÞ both have reached their equilibrium states, Eqs. (2.7) and (2.9) can be

solved. This results in two possible values of a1: 0 and ð2=ωÞ
ffiffiffiffiffiffiffiffiffiffiffi

μ=3α
p

(exactly as in the calculations for the case of smooth

aerofoil, Venkataraman, 2013). Further, the only possibilities for steady-state condition for a2ðtÞ are c¼0 or a2ðtÞ ¼ 0. The

trivial solution of both a1ðtÞ ¼ 0 and a2ðtÞ ¼ 0 can be ruled out. The other three cases are the following:

Case 1 – Weak structure-to-fluid coupling: a1ðtÞ ¼ ð2=ωÞ
ffiffiffiffiffiffiffiffiffiffiffi

μ=3α
p

and a2ðtÞ * 0. The possibility of a2ðtÞ being identically zero

physically means that the dissipation constant c of the reference feather is allowed to be arbitrarily large, and hence, the

oscillations of the independent structure part die out almost instantly once a steady state is reached. As a result, for this case,

in the two-way coupled fluid–structure system, the dynamics of the structure part has exactly the same frequency as the

fluid part, this frequency being given by ωs;1 ¼ωþγ1 (as calculated below).

Also, the non-zero value of a1 forces the phase angle η1 to be π=2, and

_γ1 tð Þ ¼ %δ2
μ2

16ω
%

2β2μ

9αω
%

ρ1ρ2

2ωðω%ω1Þðωþω1Þ

( )

: ð2:11Þ

Further, as c-1, η2-0 and _γ2 ðtÞ-1. Thus, Eq. (2.5) degenerates to an equation similar in form to the equation for the lift

coefficient of a smooth aerofoil (cf. Venkataraman, 2013), but with a different ωs, while (2.6) simplifies to

θ tð Þ ¼ %
2δρ2

ωðω%ω1Þðωþω1Þ

ffiffiffiffiffiffi

μ

3α

r

cos ωs;1t
' (

; ð2:12Þ

where ωs;1 ¼ω%ðδμÞ2=ð16ωÞ%2ðδβÞ2μ=ð9αωÞ%ðδρ1Þðδρ2Þ=½2ωðω%ω1Þðωþω1Þ(.

It must be noted that with such a coating, the lift of the aerofoil CL(t), under steady-state conditions, displays exactly the

same characteristics in its dynamics (such as the presence of second and third super-harmonics of the fundamental

frequency ωs;1) as in the case when the aerofoil is not coated with any feathers (Venkataraman, 2013). However, the

displacement variable of the coating θðtÞ exhibits just one frequency, equal to the fundamental frequency ωs;1.
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Case 2 – Weak fluid-to-structure coupling: a1ðtÞ * 0 and c¼0. In this case, owing to the fact that the dissipation constant c

vanishes, a2ðtÞ, in its steady state, is allowed to be an arbitrary constant C0, either small or large. This case turns out to be

similar to case 1, where the dynamics of fluid and structure happens at the same frequency, now given by ωs;2 ¼ω1þγ2.

Also, since a1ðtÞ * 0, η1 ¼ tan %1f%4ω=ðδμÞg whose limit is π=2 as δ-0. Further, _γ1 ðtÞ ¼ %δ2fμ2=ð8ωÞ%ρ1ρ2=

½2ωðω%ω1Þðωþω1Þ(g. Besides, since c¼0, η2 ¼ π=2 and

_γ2 tð Þ ¼ %δ2
ρ1ρ2

2ω1ðω%ω1Þðωþω1Þ

) *

: ð2:13Þ

Thus, Eq. (2.5) simplifies to

CL tð Þ ¼ ~CL þ
δρ1C0

ðω%ω1Þðωþω1Þ
cos ωs;2t

' (

; ð2:14Þ

while Eq. (2.6) simplifies to

θðtÞ ¼ C0 cos ðωs;2tÞ; ð2:15Þ

where ωs;2 is given by ω1%ðδρ1Þðδρ2Þ=½2ω1ðω%ω1Þðωþω1Þ(.

In this case, it must be noted that both the dynamics of the lift CL(t) as well as the displacement variable of the coating

θðtÞ exhibit the same frequency ωs;2, and no super-harmonics are observed in either case.

Case 3 – Two-way coupling: a1ðtÞ ¼ ð2=ωÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ=ð3αÞ
p

and c¼0. In this case, Eq. (2.5) simplifies to

CL tð Þ ¼ ~CL þ
2δβμ

3αω2
þ

ffiffiffiffiffiffiffiffiffiffiffi

4μ

3αω2

r

cos ωs;1t
' (

þ
2δβμ

9αω2
cos 2ωs;1t

' (

þδ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ3

432αω4

r

sin 3ωs;1t
' (

þ
δρ1C0

ðω%ω1Þðωþω1Þ
cos ωs;2t

' (

; ð2:16Þ

while Eq. (2.6) simplifies to

θ tð Þ ¼ C0 cos ωs;2t
' (

%
2δρ2

ωðω%ω1Þðωþω1Þ

ffiffiffiffiffiffi

μ

3α

r

cos ωs;1t
' (

; ð2:17Þ

where ωs;1 and ωs;2 are given, as before, from cases 1 and 2 respectively. It is emphasized here that the last term in (2.16),

fδρ1C0=½ðω%ω1Þðωþω1Þ(g cos ðωs;2tÞ is precisely the component of the lift exclusively associated with the structural coupling.

It must, hence, be noted that only in case 1 (where there is weak structure-to-fluid coupling), this term vanishes, whereas in

the other two cases this term is non-zero.

Here, it can be seen that, in general, ωs;1 and ωs;2 are two distinct frequencies. Hence, in this case, the two-way coupled

fluid–structure interaction displays very rich dynamics, where for one frequency super-harmonics can be observed, while

for the other no such super-harmonics are present.

It must be noted here that in all the above closed-form solutions, the amplitude of oscillations of the structure

corresponding to the frequency ωs;1 (which in fact is the frequency obtained by modifying the coefficient ω in the equation

of the stand-alone fluid part in the coupled system, as can be seen from Eq. (2.12)) is of OðδÞ. However, the amplitude of

oscillations of the lift coefficient corresponding to this same frequency is of Oð1Þ. This phenomenon can be physically

interpreted in the form that the magnitude of the wavy displacement of the fluid–coating interface corresponding to this

primary frequency will understandably be of smaller order than the magnitude of oscillations of the lift coefficient, since it

has been assumed from the beginning that the fluid-to-structure coupling coefficient ρ2 is of OðδÞ. This observation further

justifies the appropriateness of modelling the dynamics of the poro-elastic coating by means of the vertical displacement of

the coating interface (rather than by the angular displacement of each feather in the coating), since the displacement of the

coating interface will always be typically less than the oscillations/displacements of individual feathers. Such a conclusion

based on order-of-magnitude analysis need not be true in general if, for instance, the magnitude of some coupling

parameter is increased from the present OðδÞ to Oð1Þ.

Table 1

Effect of change in coating parameters on characteristics of lift coefficient.

Case Resonant frequency conditions Non-resonant frequency conditions

1: Weak structure-

to-fluid

coupling

ffiffiffiffiffiffiffiffiffiffiffiffi

4μ

3αω2

r

dominates mean lift increase
Changes in coating parameters do not

directly affect lift characteristics

2: Weak fluid-to-

structure

coupling

Mean lift increase by OðδÞ when: (a) structure–fluid coupling parameter ρ1 increased;

(b) compliance is increased so that the amplitude of steady-state oscillations of

feather C0 is large

Lift fluctuations decrease if

δρ1C0

ðω%ω1Þðωþω1Þ
o

ffiffiffiffiffiffiffiffiffiffiffiffi

4μ

3αω2

r

3: Two-way

coupling

Same as case 2 Lift fluctuations increase avoided if

δρ1C0

ðω%ω1Þðωþω1Þ
o

ffiffiffiffiffiffiffiffiffiffiffiffi

4μ

3αω2

r
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In all the above three cases, we can have the possibilities of at least one of ωs;1 or ωs;2 being zero. It is important to note

that if ωs;1 is zero, then so is ωs;2 and vice-versa. This is because if ωs;1 is zero (in which case, ωs ¼

ðδρ1Þðδρ2Þ=½2ωðω%ω1Þðωþω1Þ(, where it must be recalled that ωs is the vortex-shedding frequency for the smooth aerofoil),

the right-hand side of the above condition must be of Oð1Þ, since ωs is itself of Oð1Þ. This is possible only if ω,ω1, which is

nothing but the resonant condition for the coupled fluid–structure system. Under this condition, it can be easily seen that

ωs;2 is also zero, since ω1 ¼ ðδρ1Þðδρ2Þ=½2ω1ðω%ω1Þðωþω1Þ( by similar order of magnitude analysis, as presented above. The

other possibility is the non-resonant condition, where both ωs;1 or ωs;2 are non-zero. A summary of the effects produced on

the characteristics of the lift coefficient (in the form of change in mean lift or change in lift fluctuations about this mean) is

presented in Table 1.

3. Structure and coupling parameters from results of computational model

The calculations in this section are analogous to those of the smooth aerofoil (Venkataraman, 2013). Thus, the aim in this

section is to derive mathematical expressions for the fluid parameters ω, μ, α, β; the structure parameters ω1 and c; and the

fluid–structure coupling parameters ρ1 and ρ2; in terms of the characteristics of the results from the full computational

model for the poro-elastically coated aerofoil, so that the best possible fit for the numerical data is obtained.

If one considers the most generic analytical form of the solution for the lift coefficient CL(t) and the displacement of the

fluid-coating interface θ, given by Eqs. (2.5) and (2.6), it can be seen that under steady state assumptions for the amplitudes

of CL(t) and θ, these equations reduce to Eqs. (2.16) and (2.17). Eqs. (2.16) and (2.17) are now re-written as

CLðtÞ ¼ ~CL þ l1 cos ðωs;1tÞþ l2 cos ð2ωs;1tÞþ l3 sin ð3ωs;1tÞþ l
0
1 cos ðωs;2tÞ; ð3:1Þ

θðtÞ ¼ θ1 cos ðωs;2tÞþθ01 cos ðωs;1tÞ; ð3:2Þ

where l1, l2, l3, l
0
1, ωs;1, θ1, θ

0
1 and ωs;2 are eight quantities which can be recovered from computational data, and depend on

the eight unknown model parameters ω, δμ, δα, δβ, δρ1, ω1, δc (or equivalently C0) and δρ2. Hence, solving these unknowns

yields the following two coupled quadratic equations for ω and ω1:

ðl
2
1l3%36l

3
3%6l

2
2l3Þω

2% l
2
1l3ωs;1ω% l

2
1l3ω

2
1þ l

2
1l3ωs2ω1 ¼ 0; ð3:3Þ

ð2θ1l1% l
0
1θ

0
1Þω

2
1%2ωs;2θ1l1ω1þ l

0
1θ

0
1ω

2 ¼ 0; ð3:4Þ

and the following six equations for the remaining parameters:

δμ¼
24l3ω

l1
; ð3:5Þ

δα¼
32l3

l
3
1ω

; ð3:6Þ

δβ¼
6l2

l
2
1

; ð3:7Þ

C0 ¼ θ1; ð3:8Þ

δρ1 ¼
ðω%ω1Þðωþω1Þl

0
1

C0
; ð3:9Þ

δρ2 ¼
%ωðω%ω1Þðωþω1Þθ

0
1

2

ffiffiffiffiffiffi

3α

μ

s

: ð3:10Þ

It must be noted here that Eqs. (3.5) and (3.6) involve ωwhile Eqs. (3.9) and (3.10) involve both ω as well as ω1, which can

be solved from the coupled system of quadratic equations (3.3) and (3.4).

4. Overview of simulations

4.1. Prototype simulations: case of flat plate

Case A: Flat plate aligned with the free-stream. In order to relate the theoretical results obtained in Sections 2 and 3 to the

results from the full computational model for the symmetric aerofoil (presented in the second part of this section), the flow

configuration is initially taken to be simpler, and the flow over a flat plate, with rounded leading and trailing edges, aligned

with the free-stream is considered. The computational model employed here for the fluid domain is based on directly

resolving the continuity and momentum equations (for an incompressible flow regime) on a Cartesian grid in a two-

dimensional domain, with the use of the immersed boundary method. Neumann outflow boundary condition is used in the

D. Venkataraman et al. / Journal of Fluids and Structures 47 (2014) 150–164 155



streamwise direction so as to ensure that no extraneous frequency enters the domain inlet. The dynamics of the poro-elastic

coating is approximated from the dynamics of a discrete number of reference feathers homogeneously spread over the dense

coating. These reference feathers are taken to be rigid beams behaving as linear damped oscillators interacting with each

other via forces analogous to those in damped springs. Further details of the computations can be referred to in

Venkataraman and Bottaro (2012) and Venkataraman (2013). The plate considered for these prototype simulations is

shown in Fig. 2. The simulations developed here provide a good prototype flow for us to understand the mechanisms of lift

enhancement or drag reduction.

A flat plate at zero angle of attack without any poro-elastic coating has no mean lift because of symmetry of the flow

around it (which is also confirmed from simulations). To see what changes are introduced in the flow by using the poro-

elastic coating, the flat plate is coated with such flow-compliant feathers towards the end of its top side, whose dynamics

are approximated by a certain number of reference feathers, as shown by the schematic diagram in Fig. 2. As explained

before in earlier work (Venkataraman and Bottaro, 2012), since the rigidity moment dominates the angular dynamics of the

feathers, the dimensionless linear structure frequency is taken to be the dimensionless linear rigidity frequency (non-

dimensionalised by the time scale given by the ratio between the free-stream speed and the length of the flat plate, which in

this case is 1.65), and is given by 1=ð2π . 1:65Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Kr=Ml
2
c

q

, where Kr, M and lc are the rigidity modulus, mass and half-length of

each reference feather, with non-dimensional values 8.33, 5.5 and 8:5. 10%2, respectively (obtained by following the

normalization procedure in Venkataraman and Bottaro, 2012). In the present case, this dimensionless linear structure

frequency fs is 0.4594.

Fig. 3 shows the dynamics of the lift coefficient for this poro-elastically coated flat plate, while Fig. 4 shows the dynamics

of the four reference feathers that approximate the dynamics of the coating. Both these figures are shown in the time as well

as frequency domains.

From the left frame of Fig. 3, it can be clearly seen that with the present selection of structure parameters and their

placement on the flat plate, a large negative lift is produced. This is, in general, because these feathers introduce asymmetry

in the pressure distribution between the top and bottom surfaces of the flat plate. Thus, by arguments of symmetry, it can be

argued that if a poro-elastic coating with the same structure parameters was used only on the bottom side of the flat plate,

but over the same horizontal extent, then a large positive lift would be produced.

Again from the left frame of Fig. 3, it can be clearly seen that the poro-elastic coating introduces some periodicity in the

flow and makes the flow unsteady, by triggering vortex-shedding. From the right frame of Fig. 3, it can be seen that the

Fourier spectrum has a unique fundamental frequency (coinciding with the frequency of vortex-shedding) equal to 0.4947

along with all its super-harmonics.

Fig. 2. Placement of the poro-elastic coating on the horizontal flat plate, depicted by the reference feathers (shown here by the horizontal, black lines

towards the end of the top side of the flat plate).

Fig. 3. (Left) Time evolution of the lift coefficient for the horizontal flat plate with a poro-elastic coating over the end of its top side; (right) Fourier

spectrum of the lift coefficient shown in the left frame.

D. Venkataraman et al. / Journal of Fluids and Structures 47 (2014) 150–164156



The left frame of Fig. 4 illustrates that the first reference feather (which is closest to the leading edge of the plate) has

some oscillatory dynamics, while the other three reference feathers are always aligned with the free-stream (which is also

set as the initial condition for the angular dynamics of the reference feathers, while running the simulations). Further, from

the right frame of Fig. 4, it can be seen that the frequency distribution exactly concurs with that shown in Fig. 3. Thus, the

fluid and the structure parts oscillate with exactly the same frequency equal to 0.4947, which is slightly modified from the

inherent structural frequency equal to 0.4594, as calculated towards the beginning of this section. Hence, the dynamics of

the structure part dictates the dynamics of this coupled fluid–structure system, for this flow case.

Case B: Flat plate oriented at an angle to the free-stream. Now, a plate oriented at an angle equal to 101 to the free-stream is

considered. The left and right frames of Fig. 5 show a comparison of the dynamics of the lift coefficient for this plate without

and with coating.

From the solid black curve in the right frame of Fig. 5, it can be seen that the Fourier spectrum for a smooth, tilted flat

plate has a unique fundamental frequency (coinciding with the frequency of vortex-shedding) equal to 0.7831, along with all

its super-harmonics. This frequency is inherently associated with the characteristics of the flow over the plate. Now, when

this plate is covered with a poro-elastic coating (with exactly the same physical and structural parameters as for the case of

the horizontal plate), it can be seen from Fig. 5 that the lift oscillations have substantially decreased, together with a small

reduction in the mean value of lift. This can also be seen from the amplitude of the fundamental frequency, as shown by

comparing the blue and black curves in the right frame of Fig. 5. Further, by analyzing the dashed curve here, one sees that

there is a unique fundamental frequency, now equal to 0.7767, along with all its super-harmonics. This frequency is but a

mild modification of the vortex shedding frequency 0.7831 in the absence of coating. This frequency modification is the

result of energy being dissipated because of damping introduced by the coating, analogous to the frequency modification

arising due to the linear damping term in a single degree-of-freedom linear harmonic oscillator.

Fig. 6 shows the dynamics of the four reference feathers approximating the coating, both in the time and frequency

domains. From the left frame of Fig. 6, it can be seen that the dynamics of the reference feathers become progressively more

violent (that is, more oscillatory in nature) as they approach the end of the top side of the flat plate. This can also be seen

from the right frame of Fig. 6, which shows the frequency distribution. Further, in each of the cases of the four reference

feathers, sharp amplitude peaks can be seen at values of 0.7767, followed by smaller peaks at its super-harmonics. This is

Fig. 5. (Left) Comparison of the time evolutions of the lift coefficient for the flat plate at an incidence of 101 without (solid, black curve) and with (blue

dashed curve) a poro-elastic coating; (right) comparison of the Fourier spectra of the lift coefficients shown in the left frame – the legends (colour codes)

are same as for the left frame. (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this paper.)

 

Fig. 4. (Left) Time evolution of the angular displacement of the reference feathers, corresponding to the case shown in Fig. 3 (i.e., for the horizontal flat

plate). The blue dashed curve shows the dynamics of feather 1 (closest to the leading edge of the plate) while the solid, black curve shows the dynamics of

feathers 2, 3, and 4 (progressively farther away from the leading edge), all of which are seen to be identical; (right) Fourier spectrum of the angular

displacement of feather 1. (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this paper.)
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exactly the same frequency obtained from the Fourier spectrum of the lift coefficient, shown in Fig. 5. Hence, the dynamics

of this coupled system is governed by that of the fluid part.

The fluid component that governs the dynamics of the coupled system need not always be the case. The magnitude of

the effect can vary, essentially with the characteristics of the coating. However, the case considered in the present section

gives useful insight into how structure parameters can be selected to modify the dynamics of the coupled system in desired

ways. As will be outlined in the next sub-section, which presents results for a poro-elastically coated aerofoil, the influence

of the coating can be strong enough to show its presence in both the frequency spectra of the lift coefficient as well as the

dynamics of the coating (i.e., the dynamics of the fluid part and the structure part), an instance of this being the presence of

damped peaks corresponding to the structure frequency.

4.2. Case of symmetric aerofoil

Various simulations were performed for a poro-elastically coated aerofoil at 101 angle of incidence to the free-stream,

with different structural as well as physical parameters (such as the rigidity frequency, the length of reference feathers, and

the placement of the coating on the aerofoil – cf. Venkataraman and Bottaro, 2012). It was observed that in none of these

cases, the dynamics of either the fluid or the structure systems (as captured by the quantities CL(t) and θðtÞ) exhibited the

characteristics shown in case 2, i.e., the case in which the Fourier decomposition of the dynamics (of both fluid as well as

structure) showed exactly one frequency ωs;2 without any super-harmonics. Further, from the perspective of the dynamics

of the fluid component, all the simulation results from the computational model could be classified into cases 1 and 3

(as explained in Sections 2 and 3). That is, either the case was that the dynamics of the fluid system showed a fundamental

frequency ωs;1 and its super-harmonics and the structure system showed the same fundamental frequency (such as the

coated flat plate case presented in the previous sub-section), or the dynamics of the fluid and structure systems showed two

unrelated frequencies ωs;1 and ωs;2 along with super-harmonics of the frequency ωs;1.

The left frame of Fig. 7 shows the steady-state time evolution of the lift coefficient of the aerofoil CL(t) for three cases of

coatings, for each of which the angular rigidity frequency ωr (which is also taken to be the dominant structure frequency) is

set to the value 2.8972, which is half of the fundamental frequency in the fluid system ωf (which in turn is the frequency of

Fig. 7. (Left) Time evolution of the lift coefficient for aerofoil at 101 angle of attack, with poro-elastic coating where the rigidity frequency ωr is set equal to

half the frequency of vortex-shedding; (right) Fourier amplitudes corresponding to the time signals shown in the left frame. This figure shows three cases

of placements of the poro-elastic coating on the suction side of the aerofoil: (a) last 30% of the suction side (green dotted curve); (b) first 70% of the suction

side (blue dashed curve); and (c) first 50% of the suction side (red solid curve). The black dash-dotted curve shows the reference case, i.e. aerofoil without

any coating. (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this paper.)

Fig. 6. (Left) Time evolution of the angular displacement of the reference feathers, corresponding to the case shown in Fig. 5 (i.e., for the flat plate at an

incidence of 101). The black solid, blue dashed, red dotted and pink dash-dotted curves show the dynamics of feathers 1, 2, 3 and 4, respectively; (right)

Fourier spectra of the angular displacement of the reference feathers, shown in the left frame – the legends (colour codes) are same as for the left frame.

(For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this paper.)
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vortex-shedding – cf. Venkataraman, 2013, Venkataraman et al., 2013). Three cases of placements of the coating have been

illustrated here, where the suction side is covered on the first 50%, the first 70%, and the end 30% of its length.

At this point, it must be noted that the lift coefficients of a flat plate as well as an aerofoil, both at an incidence of 101,

either without or with coating, are within the same range of time-averaged mean values. However the vortex-shedding

frequencies in both these cases are different (being around 0.75 and 0.9). This difference (which can also be seen from the

frequency spectra of both – as shown in the right frames of Figs. 5 and 7) is possibly intrinsic to the differences in the shape

of the two bodies.

The right frame of Fig. 7 shows the Fourier decomposition for these three cases. In each of these cases, a sharp peak at

certain unique frequencies is observed, followed by peaks with amplitude of smaller magnitudes at twice and thrice these

frequencies. In addition, for the case in which the end 30% of the aerofoil's suction side is poro-elastically coated (i.e., the

green dotted curve), a small damped frequency peak can also be seen at another frequency equal to 0.3087 (corresponding to

the angular frequency of 1.9396). Thus, in this case the coating is strong enough to show its presence in the coupled

dynamics. Also, this case corresponds to case 3 (i.e., when the dissipation constant of the reference feather c is zero, and the

lift has a non-zero steady-state amplitude), while the other two cases correspond to case 1 (i.e., when the reference feather

has zero steady-state amplitude for its angular displacement, and the lift has a non-zero steady-state amplitude), both these

cases explained in detail in Section 2.

The left frames of Fig. 8 (both top as well as bottom) show the steady-state time evolution of the angular displacement of

a certain reference feather for the three cases of coating shown in Fig. 7. From the right frames of Fig. 8 (both top as well as

bottom), which show the Fourier decompositions of the top-left and bottom-left frames of Fig. 8, it can be clearly seen (from

the red solid curve) that, for this rigidity frequency, when the extent of the coating is only over the first half of the suction

side (i.e., an area over which there is possibly not much interaction of the poro-elastic coating with the vortex-shedding

from the trailing edge), the fluid and the structure systems oscillate at the same unique frequency ωs;1. However, when the

extent of the coating either crosses or shifts to the later half of the suction side, the dynamics of both the fluid and structure

systems become progressively richer, with the appearance of new frequencies, such as the damped frequency peak ωs;2 of

value equal to 1:9396 ð ¼ 2π . 0:3087Þ respectively for the blue dashed and green dotted curves appearing because of the

structure part.

5. Comparison with results from computational model

From all the simulations performed with the computational model for the symmetric NACA0012 aerofoil with different

characteristics of coating, super-harmonics of some fundamental frequency were seen at least in the time evolution of the

lift coefficient. However, only in case 2 presented in Section 2, it can be clearly seen that the closed-form solution for the lift

coefficient does not exhibit any super-harmonics. Hence, for the derivation of the parameters of the minimal model in terms

Fig. 8. (Left) Time evolutions of the angular displacement of (top) the reference feather near the middle of the suction side, and (bottom) the reference

feather nearest to the trailing edge, for the cases shown in Fig. 7 (i.e., for an aerofoil at 101 angle of attack with different placements of the poro-elastic

coating); (right) respective Fourier amplitudes corresponding to the time signals shown in the left frames.
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of the characteristics of the results from the computational model (just as it was done for the case of smooth aerofoil, cf.

Venkataraman, 2013), two illustrative cases that correspond to cases 1 and 3 of Section 2 are selected. In these two cases, the

first 50% and the first 70% of the suction side of the aerofoil are poro-elastically coated, and various aspects of the results

from the computational model are shown by the red solid and blue dashed curves in each of the frames in Figs. 7 and 8. The

position of the reference control elements on the aerofoil, for the first case, is shown in Fig. 9.

It can be clearly seen from the red solid curve in the right frame of Fig. 7 that, for the lift coefficient, after a peak at the

fundamental frequency ωs;1 (which is also the unique frequency present in the coupled system), there is a peak with

substantial (but smaller) amplitude at 2ωs;1 (followed by a further smaller peak at 3ωs;1). Hence, as mentioned before, this

figure shows a clear correspondence with case 1 explained in Section 2, i.e., the case of weak structure-to-fluid coupling.

From the right frame of Figs. 7 and bottom-right frame of Fig. 8, one gets the following values for the fundamental

frequency ωs;1, amplitudes of the lift coefficient corresponding to the fundamental frequency and its second and third super-

harmonics l1, l2 and l3 respectively; and amplitude of the angular displacement of the reference feather (closest to the

trailing edge) ϕ0
1 corresponding to the fundamental frequency:

ωs;1 ¼ 2π . 0:9039¼ 5:6794; l1 ¼ 0:0245; l2 ¼ 4:459. 10%4;

l3 ¼ 8:123. 10%6
; ϕ0

1 ¼ 0:01003: ð5:1Þ

From this value of ϕ0
1 and the known value of the length of the feather, one can evaluate the vertical displacement of the

coating interface θ01 ¼ 8:551. 10%7. Further, ωs;2, l
0
1 and θ1 vanish. Substituting these values in Eqs. (3.3)–(3.10), we get the

following values of the parameters for Eqs. (2.3) and (2.4)

ω¼ 5:6907; δμ¼ 0:0453; δα¼ 3:106;

δβ¼ 4:4571; ω1 ¼ 0; δρ1 ¼ 0; δρ2 ¼ %1:13. 10%3: ð5:2Þ

It must be recalled that for this case, the dissipation constant c of the reference feather is allowed to be arbitrary, and hence

can be taken to be arbitrarily large, in line with the physical consideration that the steady-state amplitude a2 of the stand-

alone structure part of the coupled system is zero. Such a large value of c is also in line with the fact that the spring constant

of the feather/poro-elastic coating ω1 is zero, which physically means that once the feather is displaced from its initial

equilibrium position (for instance, in the process of an initial transient), the intrinsic “spring-like” restoring force is not

strong enough to bring the feather back to its equilibrium position. A physical example of visualizing this situation could be

the case in which the feathers eventually align with the free-stream (and hence, the coating has zero displacement in the

steady-state). Finally these values of c and ω1 are also in line with the fact that the structure-to-fluid coupling parameter

δρ1 ¼ 0, implying that the structure-to-fluid coupling is weak. This conclusion can be easily reconciled with, because the

stand-alone structure oscillator understandably would not have any effect on the stand-alone fluid oscillator in the long run,

since its steady-state amplitude (given by a2 as in Section 2) is zero.

Thus, substituting the values obtained in Eq. (5.2) and by numerically solving it, we can compare this solution with the

results from the full computational model, as done in Fig. 10. It can be seen that the results from the computational model

and results from the minimal model agree well with each other, in the time as well as frequency domains.

As a second illustration, the case where the first 70% of the suction side of the aerofoil is poro-elastically coated is

considered – the position of the reference control elements on the aerofoil is shown in the left frame of Fig. 11. It must be

noted here that, from the left frame of Fig. 7, the lift coefficient for the poro-elastically coated aerofoil not only has reduced

fluctuations about its mean but also has a higher value of time-averaged mean, as compared to the reference case of an
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Fig. 9. Placement of the poro-elastic coating over the first 50% of the suction side of the aerofoil, depicted by the position of four reference feathers (shown

here by the thick black lines near the leading edge of the aerofoil).
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aerofoil without any coating. From the blue dashed curves shown in the right frames of Figs. 7 and 8, one can deduce that

this case shows a correspondence with case 3 explained in Section 2, i.e., the case of two-way coupling. Analogous to the

first illustrative case, from the frames of Figs. 7 and 8, one can extract the values of the frequencies ωs;1 and ωs;2, amplitudes

of the lift corresponding to these two frequencies (i.e., l1, l2, l3 and l
0
1); and amplitudes of the angular displacement of the

reference feather (closest to the trailing edge) for these two frequencies ϕ0
1 and ϕ1. With these input values substituted in

Eqs. (3.3)–(3.10), we recover the values of the parameters for Eqs. (2.3) and (2.4). Substituting these values in the coupled

system (Eqs. (2.3) and (2.4)) and by numerically solving it, we can compare this solution with the results of the minimal

model, as done in the right frame of Fig. 11.

It can thus be seen that for this case also, the results from the computational model and those from the minimal model

agree well with each other. Finally, it must be recalled that for this case, the dissipation constant c of the reference feather is

0, in line with the physical consideration that the steady-state amplitude a2 of the stand-alone structure part of the coupled

system is non-zero.

It can also be easily verified that the steady-state solution is independent of the initial conditions (Venkataraman, 2013). All

these results indicate the effectiveness of the reduced-order model for vortex-shedding behind a poro-elastically coated aerofoil.

6. Parametric studies for regime changes of coupled system

From the closed-form solution derived for the limit cycle of the dynamical system (2.3)–(2.4), it is possible to illustrate

the ranges of structure model parameters and the three regimes of weak fluid-to-structure, weak structure-to-fluid and two-

way couplings. In this paper, the space which is analyzed is three dimensional and parametrized by the stiffness constant of

the coating ω1, structure-to-fluid coupling parameter ρ1 and fluid-to-structure coupling parameter ρ2. The latter two

parameters can be interpreted as (functions of) density and compliance of the coating, as outlined in Section 2.

Instances of prediction of these parameter regimes are illustrated in this section. For instance, ωs;2 (i.e., the frequency that

occurs owing to the structure oscillator (given by equation (2.4))), as a function of the coupling parameters ρ1 and ρ2 shown

here in Fig. 12, shows a behaviour that is symmetric about the rays y¼x and y¼ %x. Further there is a very steep gradient in

the magnitude of ωs;2 far away from the origin, but as the values of the coupling parameters approach the origin, this

Fig. 11. (Left) Placement of the poro-elastic coating over the first 70% of the suction side of the aerofoil, depicted by the position of reference feathers

(shown here by the thick black lines starting from the leading edge of the aerofoil); (right) comparison of results from minimal model and computational

model, for the lift coefficient. The blue dashed curve shows the results from computational model (Venkataraman and Bottaro, 2012) while the red solid

curve shows results from the present minimal model. (For interpretation of the references to colour in this figure caption, the reader is referred to the web

version of this paper.)

Fig. 10. Comparison of results from minimal model and computational model, for the lift coefficient in (left) time and (right) frequency domains. This case

corresponds to the first 50% of the suction side of the aerofoil being poro-elastically coated. The blue dashed curve shows the results from computational

model (Venkataraman and Bottaro, 2012) while the red solid curve shows results from the present minimal model. (For interpretation of the references to

colour in this figure caption, the reader is referred to the web version of this paper.)
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gradient becomes very shallow. A direct consequence of such a behaviour is that the regime of weak structure-to-fluid

coupling (which also contains parameters for which ωs;2 is zero) is a very small region, as also highlighted in Fig. 12. A similar

analysis of the amplitude l
0
1 (i.e., the amplitude in the lift coefficient corresponding to the frequency ωs;2) as a function of the

spring constant of the poro-elastic coating ω1 and the structure-to-fluid coupling parameter ρ1 reveals a behaviour that is

symmetric about the vertical (y-)axis. The magnitude of this amplitude sharply drops as the parameter values of ðω1; ρ1Þ

approach the horizontal (x-)axis. Such a behaviour again highlights that the regime of weak structure-to-fluid coupling is a

very narrow band, as in Fig. 13.

7. Conclusions

In this paper, a minimal model for vortex-shedding behind a symmetric aerofoil at an angle of incidence to the free-

stream, with a poro-elastic coating on a part of its suction side, has been developed in terms of the unsteady lift coefficient.

Fig. 13. Dependence of the amplitude l
0
1 on the spring constant of the feather ω1 and the structure-to-fluid coupling parameter ρ1, as given by Eqs. (2.16)

and (3.1), when the fluid–structure coupling parameter ρ2 is fixed to the value %1:13. 10%3 (as given by Eq. (5.2)). The star shows the parameters at

which the minimal coupled model yields the solution that matches with the computational results for the case of weak structure-to-fluid coupling, as

shown in Fig. 10.

Fig. 12. Dependence of the frequency ωs;2 on the coupling parameters, ρ1 and ρ2 respectively, as given in Section 2, when the coefficient of restoring force

ω1 is fixed to the value 10%4 (i.e., close to 0 as given by Eq. (5.2)). The star shows the parameters at which the minimal coupled model yields the solution

that matches with the computational results for the case of weak structure-to-fluid coupling, as shown in Fig. 10.
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To achieve this, the minimal-order model for the vortex-shedding behind a smooth aerofoil has been linearly coupled with a

linear damped oscillator for the dynamics of the poro-elastic coating.

For this coupled non-linear model for the lift coefficient, a closed-form expression for its limit cycle is derived in terms of

generic (unknown) fluid, structure and coupling parameters (similar to the analysis done for the case of smooth aerofoil). In

the course of this analysis, three physical cases could be segregated, based on the possibilities of whether the steady-state

amplitudes of the stand-alone fluid oscillator (as captured from the dynamics of the lift coefficient) and the stand-alone

structure oscillator (as captured from the dynamics of fluid-coating interface) were zero or not, and various permutations of

these possibilities. For each of these three cases, the expressions for model parameters in terms of the computational

features were derived. These closed-form expressions yielded conditions on resonant and non-resonant regimes of fluid and

structure frequencies, thus giving an insight into possible selection of structure and coupling parameters that are capable of

yielding, for instance, reduced lift fluctuations, as compared to the case of the smooth aerofoil.

Several simulation results for coated aerofoils, with different extents and placements of coating over the suction side, are

presented, and all these solutions from the full computational model are seen to fall in one of the two cases of possible

values for steady-state amplitudes. Based on this observation, the various characteristics of the periodic solution obtained

from the computational model are compared with the corresponding characteristics of the closed-form solution for the limit

cycle obtained from the minimal model. From this, the fluid, structure and coupling parameters, that yield matching of

trajectories obtained from the minimal model and computational model, are determined. All the above observations

indicated the effectiveness of the minimal model for poro-elastically coated aerofoils.

During the course of this research, the following problem areas were identified as potential topics for future work:

(a) The minimal model for the poro-elastic coating is purely linear (although it reproduces results very well from the

computational model and provides valuable insights in selecting optimal parameters for the coating).

(b) The structure–fluid and fluid–structure coupling terms considered here are linear.

One consequence of considering a linear minimal model for the structures, as summarized above, is that interaction

effects between neighbouring reference feathers are neglected in an average sense (by employing the structure model to

study the dynamics of only the fluid-coating interface), or the case where all feathers are sufficiently far apart, to be able to

meaningfully visualize a scenario with identical and synchronous dynamics for each structural element. Hence, possible

extensions can be made to formulate progressively non-linear models for the structure and coupling parts, to more

realistically approximate such a poro-elastic coating and to also be able to trust its effectiveness for different flow regimes.
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