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The design of metamaterials based on triply periodic minimal surfaces (TPMS) is currently a very active
field of research. An upscaling approach is used here to study the flow in TPMS-based porous media,
with focus on the effects of advection. The effective medium permeability, function of the Reynolds
number Re of the flow through the pores, is numerically evaluated for varying porosity 6, for six types
of TPMS-based structures, namely Gyroid, I-WP, Schwarz P, Split P, Fischer-Koch S, and Neovius. Inertial
effects are found to be significant; for instance, the permeability is reduced by 15 — 50% (according to
the surface type) as Re increases from 0 to 50000, when 6 = 0.98.
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1. Introduction

Metamaterials are artificially engineered media, designed and
fabricated to attain unique properties (electromagnetic, acoustic,
mechanical, etc.) allowing them to offer novel functionalities,
often unachievable by conventional materials [1,2]. Recent ad-
vances in material science and manufacturing techniques have
opened up avenues for research on the development of cus-
tomized metamaterials for applications such as energy harvest-
ing [2], manipulation of sound waves [3], or thermal cloaking [4].
The use of triply periodic minimal surfaces (TPMS), i.e. periodic
structures which locally minimize their area subject to specific
boundary constraints, to form metamaterials, exemplifies the
integration between mathematics, applied physics, and manu-
facturing technology. TPMS-based structures are self-standing,
highly interconnected, possibly of high porosity, lightweight,
and manufacturable by 3D printing [5,6]; the unique topologi-
cal, acoustic, hydrodynamic, and mechanical features they may
exhibit render them multifunctional and promising for appli-
cations ranging from architectural structures [5] to biomedical
engineering [7,8] and to sound absorption [9].

In recent years, many researchers focused on the hydrodynam-
ics in porous structures consisting of TPMS-based cells; Schoen
Gyroid [6,10-12], Schoen I-WP [10,11], Schwarz P [6,10,11],
Schwarz D [10,12], and Fischer-Koch S [6,12] are examples of
minimal surfaces examined. Despite the analytical, numerical
and experimental studies already conducted on these patterns,
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a systematic analysis is still needed, especially beyond the linear,
Stokes-flow regime. In this work, seepage in TPMS-based porous
materials is targeted for upscaling, with advection included in the
analysis; the flow rate is eventually linked to the macroscopic
pressure gradient via a Darcy-like equation where an effective
permeability tensor is introduced. The upscaling procedure and
the geometries considered are described in the next section. In
Section 3, dependence of the permeability on the porosity and
the Reynolds number is investigated for six types of TPMS, and
the significance of inertial effects is highlighted. Summarizing
remarks are presented in Section 4.

2. Problem statement and upscaling procedure
2.1. Problem description and preliminaries

Steady, isothermal, incompressible, Newtonian flow through
a rigid, homogeneous porous medium formed by several TPMS-
based unit cells is considered (cf. Fig. 1). The conservation equa-
tions governing the spatial variations of the velocity, i;, and
the modified pressure (accounting also for conservative volume
forces), p, through the fluid domain are

au;
—Q = 0, ]
o (1
. Ol ap %1
U = —7—x 5 2
PUIa%, ax 0% 2

with p and u the density and dynamic viscosity of the fluid, re-
spectively. In addition, the no-slip boundary condition is defined
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Unit cell

Fig. 1. Sketch of the problem under study; right frame: gyroid-based unit cell.

at the interface g, between the fluid domain (8) and the solid
phase (o):

;=0 at Ag,. (3)

The problem is amenable to upscaling provided that the mi-
croscopic length scale, e.g. the pattern periodicity ¢, and the
macroscopic length scale L, which characterizes large-scale pro-
cesses, are well separated, i.e. ¢ = ¢/L < 1. We can then
define a fast, dimensionless spatial variable x; = X;/¢, related to
field variations occurring at the small-scale level, and a slow one,
X; = X;/L = € x;. Given that the volume of the averaging domain
is V. = Vg+V, (with the porosity 6 = Vg /V), the intrinsic average
and the superficial average of any property v, defined over the
fluid domain, are respectively defined as

1
Wf=—1[ vav, )

Vﬂ Vg

(4)

=i [ vav=owr
Vs
The microscopic velocity scale, vy, is related to the magnitude
of the external force driving the flow through the porous medium.
In the present framework, the macroscopic pressure gradient, M,
its magnitude, M, and a unit vector along its direction, eV, are
defined as follows:

- 13 M;
=1 (p) _ M
L aX M

If viscous forces within the pores balance the external forcing,

M= HM ,M (5)

i.e. MU#;f ~ M, the microscopic Reynolds number might be
deﬁneé as
me3
Re= 2" (6)
W

2.2. Upscaling procedure

We follow an upscaling approach similar to that developed
and validated by Valdés-Parada and Lasseux [13,14]; the problem
here is simpler than theirs, since only the homogeneous porous
region (far away from the external boundaries of the medium) is
considered, and since the no-slip condition applies at Ag,. The
reader is referred to the aforementioned references for details
about the model construction. Eventually, the upscaled velocity
vector can be expressed in terms of the macroscopic pressure
gradient, M, and the effective (also termed apparent) permeability
tensor, H, as follows:

iy

uw

() = M;, (7)
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and a dimensionless effective permeability, H; = I:IU/EZ, can be
introduced as
where # is a purely microscopic tensor (dependent on x; only),
available from the numerical solution of one ad hoc auxiliary
system of equations defined on a representative elementary volume
(REV). Such an adjoint problem, governing the spatial variations
of #y and h;,! is

37-[,']‘ .

— =0 in Vg, 9

ox 8 (9)

OHij oh; 9%y ,

— ReH e, = —— Sii in Vg, 10
“ox, 1 ax; + ax? + % P (10)

subject to

Hij =0 at Age, (11)

together with periodicity of the microscopic fields along x1, x3,
and xs. Additionally, since h; appears in the closure problem in
terms of its gradient only, we impose (h;)# = 0 for the problem
to be well-posed.

The closure problem renders the effective permeability, H,
dependent not only on the micro-structural details of the porous
medium (including shape of solid inclusions and porosity) but
also on the Reynolds number, Re, and on the direction of the
applied external forcing, e". This implies that Eq. (7) is a more
general version of Darcy’s equation. An extensive discussion on
the effects of inertia is provided by Lasseux et al. [15]. In the
limit Re — 0, the effective permeability, H, becomes identical
to the intrinsic permeability of the medium, K; then, the classical
Darcy’s law is retrieved.

2.3. Typical porous structures under consideration

Six types of triply periodic minimal surfaces are chosen for
the analysis; they are indicated and mathematically defined in
Table 1, and sketched in Fig. 2(left). Given that these surfaces are
triply-periodic over a dimensional distance ¢, cf. Fig. 1, which is
chosen here as the microscopic length scale, a 1 x 1 x 1 unit
cell is sufficient to describe each geometry in the microscopic
coordinates (x; = X;/{); in the absence of unsteadiness or flow
instabilities at large Re, the same unit block could be selected

1 The vector h, defined in the REV, plays the role of a Lagrange multiplier to
ensure that # is divergence-free.
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Table 1
Mathematical definitions of the TPMS under study. (x',y’,z') = 27 (x, y, 2).
Surface Formula

Schoen Gyroid cosx'siny’ + cosy'sinz’ + cosz’sinx' = 0

2 (cosx'cosy’ + cosy'cosz’ + cosz'cosx’)

Schoen 1-WP — (cos2x’ + cos2y’ + cos2z') =0

Schwarz P cosx' + cosy’ + cosz’ =0
1.1(sin2x'sinz’cosy’ + sin2y'sinx’cosz’

Split P +sin2z'siny’cosx’) — 0.2 (cos2x'cos2y’

~+c0s2y'cos2z’ + cos2z'cos2x’)
—0.4(cos2x’ + cos2y’ + cos2z') = 0
cos2x'siny’cosz’ + cos2y'sinz’ cosx’
+-cos2z'sinx'cosy’ = 0

Fischer-Koch S

Neovius 3 (cosx’ + cosy’ + cosz’) + 4 cosx'cosy’cosz’ = 0

as a periodic, representative cell for solving the closure problem
governing the microscopic fields (#;, hj).

A range of porosities (0.5 < 6 < 0.98) is covered in this
work; it is thus necessary to adjust the material thickness of the
chosen solid surface to obtain the chosen values of 6, as shown
in Fig. 2(middle). Geometries were modeled in MATLAB (Release
2021a) and exported in STL format [16,17]. The volumes occu-
pied by the fluid were then extracted, by subtracting the solid
inclusions from the cubic unit cells, as presented in Fig. 2(right),
and were meshed using polyhedral cells, with sufficient refine-
ment near Ag,. All simulations were performed using Simcenter
STAR-CCM+ (16.02.009-R8).

3. Numerical results and discussions

We start by considering external forcing in the X;-direction
such that the macroscopic pressure gradient reads M; = —MJ§jq,
Hin

M; this renders I:I,-l =

and Eq. (7) simplifies to (iI;)

02H;; = €?(H;) the only components of interest in the perme-
ability tensor. Since eV, the unit vector parallel to the direction
of the macroscopic pressure gradient, may now be expressed as

(e, e, e¥)=(—1, 0, 0), Eq. (10) governing the microscopic fields
can be written for #;; as follows:
0Hi dohy %M .
ReHyy—— = —— + 6; in Vg. 12
o1 oxe ox; 8x§ i1 B (12)

Should the macroscopic pressure gradient be directed along e =
(0, —1,0), the permeability components of interest would be
Hj = ¢?H; = €2(H;), and Eq. (10) would be recast for the fields
Hip as follows:

0Hiy dohy
Re ez Xy aX;
and similarly in case the pressure forcing were oriented along
X3. Eventually, based on the numerical simulations conducted,
it is found that the off-diagonal terms of H = (%), originating
from the aforementioned systems, vanish, and Hy; (for X;-forcing)
= H,, (for X;-forcing) = Hss (for X5-forcing). Such components
of interest of the effective permeability are, from now on, simply
termed H. For Re — 0 it is clearly H = K, i.e. the intrinsic
permeability of the isotropic medium is recovered.

Sample numerical results of #1; computed with Eq. (12) are
presented in Fig. 3, showing the effects of changing the porosity
from 0.7 to 0.98 at Re = 0 (left and middle columns), and how
the field (at & = 0.98) is affected by the inclusion of inertia (Re =
50000, right column). Inspection of the figure, with attention
directed to the levels defined on the color bars, reveals that values
of #1; increase as the medium becomes more porous, while a

327{;‘2
ax2

+ 6ip in Vﬂ. (13)
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Fig. 2. The TPMS-based unit cells examined. From left to right: triply-periodic
minimal surface; solid frame of finite thickness (6 = 0.8); volume occupied by
the fluid.

decreasing trend for #; is observed when Re goes from Re = 0
to Re = 50000, for all geometries studied.

The behavior of the effective permeability, H, with the poros-
ity, 0, is presented in Fig. 4, under Stokes flow conditions (Re =
0; H = K) and in the presence of inertia (Re 50000). It
is notable that: (i) H increases with the increase in 6, where
second-degree polynomial functions (solid lines) perfectly fit the
numerical results (symbols) for all the structures considered; (ii)
the effective permeability consistently decreases with advection.
These two findings are consistent with the earlier observations
on Fig. 3, with reference to values of the microscopic constitutive
field ;. From a quantitative perspective, Schwarz P-based struc-
tures exhibit the largest permeability (beyond 6 = 0.7) out of
the patterns examined, with K at & = 0.98 equal to six times the
value of the corresponding Neovius-based structure. At the largest
porosity, all media are found to be two orders of magnitude less
permeable, at Re = 0, than the case of in-line spheres [18], for
which £ 2~ 0.17 at 6 = 0.98.

To highlight the role played by advection, the effective-to-
intrinsic permeability ratio, H/K, is plotted in Fig. 5 as function
of Re at different values of 6; the effective permeability decreases
monotonically with the increase of the Reynolds number and
exhibits a stronger sensitivity to Re at larger values of 6.
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Fig. 3. Contours of #1; on the y = 0.5 plane for different TPMS-based unit cells. Effect of porosity and Reynolds number.
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Fig. 4. Effective permeability H as function of the porosity 0, for six types of TPMS-based porous structures, at two different values of Re.

Finally, the model was validated against full simulations, in (cf. Fig. 1). The following parameters, yielding Re = 50000, are
which the full Navier-Stokes equations (including transient chosen: £ = 0.1 m, x = 0.001 Pa s, p = 1000 kg m~3, inlet-to-
terms) are solved in a domain consisting of 4 unit cells in X outlet pressure drop equal to 0.02 Pa. Results of the volumetric
(direction of the external forcing) and 2 cells in both y and Z flow rate are presented in Table 2 for sample structures; almost
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Fig. 5. Effective-to-intrinsic permeability ratio for variable 6 and Re = 0 — 50000.

Table 2

Validation for 6§ = 0.9; volumetric flow rate Q computed by “full” Navier-Stokes
simulations (yielding steady solutions for all cases examined) against “model”
results with Darcy’s law (using either the intrinsic or the effective permeability).

Parameters of interest Geometry
Gyroid I-WP Schwarz P
Permeability K (Re =0) 34.12 24.34 44.96
[mm?] H (Re = 50000) 18.49 17.41 27.41
“model”, Re = 0 4.094 2.921 5.395
Q [lit/min] “model”, Re = 50000 2219 2.089 3.289
“full”, Re = 50000 2.222 2.101 3.303

perfect agreement with Navier-Stokes solutions is obtained when
the effective (instead of the intrinsic) permeability is used in
Darcy’s law (7), highlighting the validity of the model.

4. Conclusions

An upscaling procedure was used to study the flow through
TPMS-based porous media, with conditions departing from
Stokes’. Dependence of the average velocity on the macroscopic
pressure gradient is properly described by a Darcy-like equation,
with an effective permeability, H, strong function of the Reynolds
number. A closure problem was numerically solved through a
1 x 1 x 1 representative elementary volume (REV) to evaluate H
for sample TPMS (Table 1), varying the parameters. Inertial effects
play a significant role in the seepage, especially at large porosities.
For instance, permeability of Gyroid-based structures is almost
halved as Re goes from 0 to 50000 at 6 = 0.98. Nonetheless, a
porous material formed by Gyroid cells is the most permeable at
low porosities (6 < 0.7), almost independently of Re, for all tested
structures. Above 6 = 0.7 the largest permeability is displayed by
a Schwarz P-based metamaterial. Finally, for highly porous media
(i.e. beyond 6 ~ 0.9), the Fischer-Koch S pattern is affected the
least, among all the shapes examined, by inertia.

For selected cases, the model was validated against Navier-
Stokes simulations performed in a larger domain; the good agree-
ment in terms of throughput attests the adequacy of the unit
block as a REV, at least up to Re 50000 (sufficiency of a
single geometric unit cell was also checked at the closure problem

206

level, for sample cases, and REV-independent results of H were
obtained). Should transient and/or large-scale effects be present
in the domain, larger REVs would be needed [19].
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