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Irregular surfaces are the norm, not the exception
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unit cell



Microscopic equations:

Macroscopic equations:



Power series expansion
for microscopic variables:



Microscopic system at leading order: 

Homogeneous Stokes equations, plus periodicity in x, plus no-slip at
the wall, plus forcing from the outer flow

at the edge of the unit cell (            ).  



Microscopic system at next order:

plus boundary conditions.     



Linearity permits to express the order zero solution as

so that a Stokes system for the ‘dagger’ variables ensues with

at





• At order one the system becomes

and the generic solution reads:







The macroscopic effective conditions at are:



i.e.

and, for             , we find





It is thus convenient to transfer the conditions to          ,  , rim of the 
roughness elements, i.e.

with                                                                             evaluated at Y = 0



Other roughness shapes:



Macroscopic test



Macroscopic test: the Hiemenz stagnation point flow



Rough Hiemenz flow: a similarity solution exists also when
roughness is present



FreeFEM numerical resolution:



rough Hiemenz

Hiemenz



slip and transpiration velocity components

(appreciable difference between the solutions at order e and e2) 



pressure at



Larger differences between the order 1 and 2 conditions are
expected for the case of 3D, laminar or turbulent flow cases



In a three-dimensional turbulent channel flow with a rough wall the 
transpiration condition seems to work well (cuboid roughness, e = 0.2) …

Bottaro, J. Fluid Mech. 2019              Lacis et al., J. Fluid Mech. in press



… although this is not always true (cubic roughness elements, e = 0.4) …

feature-resolving simulations
by Orlandi & Leonardi,           
J. Turbulence 2006



BUT …



BUT …

in the models used above (both Bottaro and Lacis et al.) the 
conditions used at the fictitious wall in Y = 0 are first order
for U (i.e. simple Navier slip) and second order for V. 

Need to do:      DNS with second order conditions throughout



Summary

1. Developed second order conditions to be employed at a fictitious
wall to model a micro-structured wall

2. Very simple to extract coefficients of the second order conditions
by solving as few as two Stokes-like equations in unit cells of  
different heights and extrapolating results to       = 0

3. Conditions is formally correct for e → 0, but results seem to be  
acceptable for rather large values of e

4. Trivial extension to 3D roughness



Future developments (SHS/LIS):

1. include a lubricant fluid within the roughness (VOF in unit cell)

2. derive slip/transpiration conditions to second order in this
two-phase flow case (1st order problem already solved using
BEM: Alinovi & Bottaro, Phys. Rev. Fluids, 2018)

3. perform DNS with slip/transpiration for turbulent channel flow            
over a LIS and compare to feature-resolving DNS

4. optimise morphology of rough surface impregnated with lubricant
and optimise properties of lubricant fluid


