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OUTLINE

» Significance of the subject
» Previous work on linear stability of flows over compliant walls
* Dean and Taylor vortex flows: the fluid model

« Shell theory: the wall model
* Linear stability: hydroelastic and hydrodynamic modes (A. Guaus)
e Some non-linear results (D. Biau & S. Brogniez)
» Related work on fluid-structure interactions:

- ciliated propulsion (A. Dauptain & J. Favier)

- flapping wing aerodynamics (J. Guerrero & H. Soueid)



SIGNIFICANCE OF THE SUBJECT

Hydro- and aero-elastic interactions are very important in a variety of
disciplines, from aeronautics to civil engineering to bio-fluid-dynamics
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PREVIOUS WORK ON LINEAR STABILITY OF
FLOWS OVER COMPLIANT WALLS

J. Gray (1936), observation of swimming dolphins
M.O. Kramer (1957), transition delay (?)

T.B. Benjamin (1960) and M.T. Landahl (1962)
SURFACE-BASED MODEL

- Coupllng of the hydrodynamics with thin plate equations

supported by springs and dampers
- Effect of compliant walls on Tollmien-Schlichting waves,

cross-flow vortices, streaks in boundary layers
- Study of the hydroelastic instabilities (TWF, SD + coalescing modes)
Y.S. Yeo (1985), U. of Cambridge, now at the National U. of Singapore
VOLUME-BASED MODEL
- Full coupling between the Navier equations for the solid and the flow
- Anisotropic and multilayered materials
M. Gad-el-Hak (1986)
Experiments on a turbulent boundary layer, coating made of household
gelatin or PVC plastisol, highlight the importance of static divergence waves
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DEAN AND TAYLOR VORTEX FLOWS: THE FLUID MODEL
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Figure 1. Sketch of the problem under investigation with some of the instability modes
which can emerge: Dean vortices, travelling-wave flutter (TWF) and spanwise-travelling
surface wave (STWE). The upper wall is not shown. Both walls are modeled as thin elastic
shells supported by rigid frames through arrays of springs and dampers.



DEAN AND TAYLOR VORTEX FLOWS: THE FLUID MODEL
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DEAN AND TAYLOR VORTEX FLOWS: THE FLUID MODEL

Parameters: y and Re =U,h/v
o, B wavenumbers (D = d/dy)
o growth rate of the instability

In the Dean (Taylor-Couette) problem the Dean (Taylor)
number is normally used:

De = Re y 12

Ta =Re y1?2



LOVE'S CYLINDRICAL SHELL THEORY: THE WALL MODEL
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where Aj, = ——5 + ——. In the equation above, m”* is the plate mass per unit
or* oz*
E*HS
area, d* is the wall damping coeflicient, B* = 5— is the flexural rigidity

12(1 — v*2)
of the shell, with £* Young modulus, H the thickness of the shell and »* Poisson’s
ratio; K™ is the spring stiffness and 7™ is the longitudinal tension per unit width.

Scaling of wall properties ensure that as Re (i.e. U,) varies the same walll

Is considered: m” d*h B E*R2  _ K*h3 T*h
nm = —, d= T B = 971 ! A= 5 3 K = 9 T = )
ph pv pr2h P2 pr2 pr2

After writing the wall displacement, scaled by A, as a normal mode in the form

n = fe Tzt the following dimensionless shell equation is found:
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ma- + —aT +—

Re Re?

(Bk4 + Tk + K




LOVE'S CYLINDRICAL SHELL THEORY: THE WALL MODEL

The no-slip condition on the upper wall at y = 1 + 1 reads:
U+u=0 v=0n/dt, w=0. (2.9)

Linearising around y = 1 we find:

u + nU' =0, (2.10)
v—on =0, (2.11)
w =0, (2.12)

and combining (2.10) and (2.11) allows to eliminate 7:

ot +U'v = 0. (2.13)

Likewise, introducing (2.10) and (2.11) into (2.8) yields:

. 1 ” 1
maotv +— —atv —
Re U’ Re?

(Bk* + K + Tk*) @ = p. (2.14)

m=2,T=0 (following Davies and Carpenter), y = 0.025 for the Dean
problem (as in the experiments by Matsson & Alfredsson 1990), and
v = 0.0174 for the Taylor-Couette problem (as in the experiments by
Prigent & Dauchot, 2000).




a=0: streamwise invariant
modes in curved channel

A new spanwise-travelling
surface wave (STSW) appears
and dominates in the long-wave
limit
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Figure 2. Neutral curves showing the effect of wall compliance on streamwise homogeneous
disturbances. The grey regions correspond to an unstable spanwise travelling mode. The
damping coefficient d is taken equal to zero. (a) K = B/4; vertical dashed lines are drawn
for fle = 225 and Re = 275, (b) B = 400, effect of varying K.
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Figure 3. (a) Eigenvalue spectrum showing the evolution of the main streamwise homo-
geneous eigenmodes with the spanwise wavenumber (0.1 < 3 < 2) and (b) disturbance
kinetic energy versus spanwise wavenumber (0.1 << 3 < 3.7) for the same modes. Arrows
denote increasing 3. The parameters are Re = 225, K = 1000, B = 4000 and d = 0.



LINEAR STABILITY: HYDROELASTIC AND HYDRODYNAMIC MODES

Reynolds-Orr energy equation:
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Figure 4. Main terms in the disturbance energy balance, normalized by F;. for the
STSW1 mode; same parameters as in figure 3(b).



LINEAR STABILITY: HYDROELASTIC AND HYDRODYNAMIC MODES

Reynolds-Orr energy equation:
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Figure 5. {a) Disturbance energy growth rate versus spanwise wavenumber and (b) main
terms in the disturbance energy balance for the Dean vortex mode. All terms are normal-
ized by Eg. The parameters are He = 275, K = 1000, B = 4000 and 4 = 0.



LINEAR STABILITY: HYDROELASTIC AND HYDRODYNAMIC MODES

Mode shapes
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Figure 6. Longitudinal ¢ and wall normal ¢ velocities (absolute values normalised by
maximum) for the case shown in figure 3(a) with 7 = 0.7. (a) stable Dean vortex, (b)
stable STSW1, (¢) stable STSW2.



LINEAR STABILITY: HYDROELASTIC AND HYDRODYNAMIC MODES

Effect of damping coefficient
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Figure 7. Neutral curves and curves of constant growth rate (o = 0.01) for different
damping coefficients, The parameters are K = 100 and E = 400,



LINEAR STABILITY: HYDROELASTIC AND HYDRODYNAMIC MODES
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Figure 8. Neutral curves for the Tollmien-Schlichting instability showing the effect of (a)
wall compliance and wall curvature for d = 0 and (b) wall damping for 4 = 0.025. In both
cases we have B = 4K,
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Figure 11. Curves of constant positive growth rate (lines are equally spaced of A, = 0.01) Figure 12. Neutral curves showing the influence of the spring s‘rihuessi on streamwise
for spanwise homogeneous disturbances showing the dominant modes with (a) K = 107, homogeneous disturbances for a fixed flexural rigidity B = 24 x 107 with d = 0.

B=4x10" and (b) K =6 x 107, B =24 x 107. In (b) the effect of wall damping is also
shown.



LINEAR STABILITY: HYDROELASTIC AND HYDRODYNAMIC MODES

Disturbances in the Couette system | & = n7y/2
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FIG. 1 — (a) Courbes neutres pour différents nombres d’onde azimutaux o« = n7y /2 pour des parois

compliantes de parametres 5 = 4000, d = 0. En pomntillé : Re = 140. (b) Courbes neutres montrant
I"infhience de la fexibilité des parois pour n = 5 avec d = 0.



LINEAR STABILITY: HYDROELASTIC AND HYDRODYNAMIC MODES

Disturbances in the Couette system
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LINEAR STABILITY: HYDROELASTIC AND HYDRODYNAMIC MODES

Disturbances in the Couette system

B =4000: an optimal azimuthal wavenumber n exists which minimizes
Re for each B and K. For example,

K = B/16: Ny =35 A, =20.63h
K=8B : N =131 2, = 55h

This implies that for increasing o, = (K/B)Y4 (wavenumber at which free
waves in the compliant wall propagate at minimum possible phase speed)
the azimuthally travelling waves shorten (coherent with the TWF case of
the curved channel flow).



SOME NON-LINEAR RESULTS

wall model:

Es* a a4 a4 a4 a
 +Cet + G [ ot + =+ 2= | + O = G,
-:l af dx | o -:n'_rj-_r ; d

the coefficients are:
C, =2 x 10® plate density
C, =103 wall damping
C,=0 flexural rigidity
C,=104 spring stiffness
C,=C,=0 tension
p,, = wall pressure given by the fluid solver

fluid model:
Navier-Stokes equations for Taylor-Couette flow (narrow gap hypothesis)
Taylor number: Ta = 3000




SOME NON-LINEAR RESULTS




RELATED WORK ON FLUID-STRUCTURE INTERACTIONS:
CILIATED PROPULSION




RELATED WORK ON FLUID-STRUCTURE INTERACTIONS:
FLAPPING WING AERODYNAMICS
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