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Taylor vortices and wavy Taylor vortices



OUTLINE

• Significance of the subject
• Previous work on linear stability of flows over compliant walls
• Dean and Taylor vortex flows: the fluid model
• Shell theory: the wall model
• Linear stability: hydroelastic and hydrodynamic modes (A. Guaus)
• Some non-linear results (D. Biau & S. Brogniez)
• Related work on fluid-structure interactions: 

- ciliated propulsion (A. Dauptain & J. Favier)
- flapping wing aerodynamics (J. Guerrero & H. Soueid)



SIGNIFICANCE OF THE SUBJECT

Hydro- and aero-elastic interactions are very important in a variety of 
disciplines, from aeronautics to civil engineering to bio-fluid-dynamics





PREVIOUS WORK ON LINEAR STABILITY OF 
FLOWS OVER COMPLIANT WALLS

• J. Gray (1936), observation of swimming dolphins
• M.O. Kramer (1957), transition delay (?)
• T.B. Benjamin (1960) and M.T. Landahl (1962)

SURFACE-BASED MODEL
• P.W. Carpenter (1985) with his group at the U. of Warwick

- Coupling of the hydrodynamics with thin plate equations
supported by springs and dampers

- Effect of compliant walls on Tollmien-Schlichting waves,                        
cross-flow vortices, streaks in boundary layers

- Study of the hydroelastic instabilities (TWF, SD + coalescing modes)
• Y.S. Yeo (1985), U. of Cambridge, now at the National U. of Singapore

VOLUME-BASED MODEL
- Full coupling between the Navier equations for the solid and the flow
- Anisotropic and multilayered materials

• M. Gad-el-Hak (1986)
Experiments on a turbulent boundary layer, coating made of household
gelatin or PVC plastisol, highlight the importance of static divergence waves

http://upload.wikimedia.org/wikipedia/commons/a/a6/Bottlenose_Dolphin_KSC04pd0178.jpg


DEAN AND TAYLOR VORTEX FLOWS: THE FLUID MODEL

γ « 1



DEAN AND TAYLOR VORTEX FLOWS: THE FLUID MODEL

U0 is the centerline velocity in one case, and ωR in the other

Base flow,  CCPF:

Base flow, Couette:

Disturbance equations to first order in γ:



DEAN AND TAYLOR VORTEX FLOWS: THE FLUID MODEL

Parameters: γ and  Re = U0 h/ν
α, β  wavenumbers (D = d/dy)
σ growth rate of the instability

In the Dean (Taylor-Couette) problem the Dean (Taylor) 
number is normally used:

De = Re γ 1/2

Ta = Re γ 1/2



LOVE’S CYLINDRICAL SHELL THEORY: THE WALL MODEL

Scaling of wall properties ensure that as Re (i.e. U0) varies the same wall
is considered:



LOVE’S CYLINDRICAL SHELL THEORY: THE WALL MODEL

m = 2, T = 0 (following Davies and Carpenter), γ = 0.025 for the Dean
problem (as in the experiments by Matsson & Alfredsson 1990), and 
γ = 0.0174 for the Taylor-Couette problem (as in the experiments by
Prigent & Dauchot, 2000).



LINEAR STABILITY: HYDROELASTIC AND HYDRODYNAMIC MODES

α = 0: streamwise invariant
modes in curved channel

A new spanwise-travelling
surface wave (STSW) appears
and dominates in the long-wave

l    limit



LINEAR STABILITY: HYDROELASTIC AND HYDRODYNAMIC MODES

irreversible work done
on the wall by p

energy source/sink term (only sink
in the case of TS waves)

centrifugal energy
production term

Reynolds-Orr energy equation:



LINEAR STABILITY: HYDROELASTIC AND HYDRODYNAMIC MODES
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LINEAR STABILITY: HYDROELASTIC AND HYDRODYNAMIC MODES

Mode shapes



LINEAR STABILITY: HYDROELASTIC AND HYDRODYNAMIC MODES

Effect of damping coefficient



LINEAR STABILITY: HYDROELASTIC AND HYDRODYNAMIC MODES

β β = 0: TS-like mode 
in curved channel



LINEAR STABILITY: HYDROELASTIC AND HYDRODYNAMIC MODES

Disturbances in the Couette system

K = B/4



LINEAR STABILITY: HYDROELASTIC AND HYDRODYNAMIC MODES

Disturbances in the Couette system

Re = 300Re = 300 



LINEAR STABILITY: HYDROELASTIC AND HYDRODYNAMIC MODES

Disturbances in the Couette system

B = 4000:  an optimal azimuthal wavenumber n exists which minimizes
Rec for each B and K.  For example, 

K = B/16: nopt = 35   λθ = 20.63 h
K = 8B : nopt = 131 λθ =   5.5 h

This implies that for increasing αw = (K/B)1/4 (wavenumber at which free
waves in the compliant wall propagate at minimum possible phase speed)
the azimuthally travelling waves shorten (coherent with the TWF case of
the curved channel flow).



SOME NON-LINEAR RESULTS

wall model:

the coefficients are:
C0 = 2 x 10³  plate density
C1 = 10³        wall damping
C2 = 0           flexural rigidity 
C3 = 104 spring stiffness
Cx = Cz= 0 tension
pw = wall pressure given by the fluid solver

fluid model: 
Navier-Stokes equations for Taylor-Couette flow (narrow gap hypothesis)
Taylor number: Ta = 3000



SOME NON-LINEAR RESULTS

velocity pressure

rigid case



RELATED WORK ON FLUID-STRUCTURE INTERACTIONS: 
CILIATED PROPULSION



RELATED WORK ON FLUID-STRUCTURE INTERACTIONS: 
FLAPPING WING AERODYNAMICS
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