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a b s t r a c t 

Conditions at the dividing surface between a free-fluid and a porous region are of utmost importance 

when a two-domain approach is used to treat the coupled problem. Conditions arising from homogeniza- 

tion theory are derived here; they are akin to the classical Beavers-Joseph-Saffman conditions, the differ- 

ence being that the coefficients which appear in the fluid-porous matching relations stem from the so- 

lution of microscopic, Stokes-like problems in a cell around the dividing surface with periodic conditions 

along the interface-parallel directions, and do not need to be fixed ad-hoc. The case of isotropic porous 

media is considered, and the model coefficients are provided for both two- and three-dimensional grains, 

for varying porosity. The relations at the interface are then tested for two problems: the stagnation-point 

flow over a porous bed and the motion past a backward-facing step, with the step region made of a 

porous material. To verify the accuracy of the conditions, macroscopic solutions are compared to feature- 

resolving simulations and excellent agreement is demonstrated, even for values of the Reynolds number 

larger than those for which the theory is formally applicable and for a large value of the porosity which 

results in significant infiltration of the fluid into the porous medium. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

The problem of the coupling between the motion in a free-fluid 

egion and that in a neighboring porous domain saturated by a 

uid has been largely studied experimentally ( Beavers and Joseph, 

967; Gupte and Advani, 1997; Agelinchaab et al., 2006; Arthur 

t al., 2009; Morad and Khalili, 2009; Terzis et al., 2019 ), analyt- 

cally ( Richardson, 1971; Saffman, 1971; Jones, 1973; Chandesris 

nd Jamet, 2006; Jamet and Chandesris, 2009; Lacis and Bagheri, 

016 ), and numerically ( Larson and Higdon, 1986; Liu and Pros- 

eretti, 2011; Carraro et al., 2013; Kuwata and Suga, 2016; 2017 ), 

ost often with a focus on understanding the nature of interface 1 

onditions for simple uni-directional shear flows. 

The prototypical example is the laminar flow in a channel 

ounded by a porous layer, whose analysis was initiated with the 

xperiments by Beavers and Joseph (1967) ; they observed that the 

iscous shear from the free-fluid region penetrates into the porous 

edium ultimately altering the velocity distribution of the fluid in 
∗ Corresponding author. 

E-mail address: naqvi.sehrish@yahoo.com (S.B. Naqvi). 
1 The word “interface” is used interchangeably with the words “dividing line” and 

dividing surface” to mean that line or surface which separates the free-fluid region, 

here the Navier-Stokes equation holds, from the region which can be described by 

acroscopic equations, such as Darcy’s or Brinkman’s models. 
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n intermediate layer across the dividing surface. Such a layer has 

 thickness of the same order of the characteristic microscale of 

he porous matrix, typically the interpore distance. Reducing such 

 layer to a two-dimensional surface (which, for simplicity can be 

aken to coincide with the dividing fluid-porous surface) permits 

o express the interface boundary condition as a slip velocity , i.e. 

ˆ 
 = 〈 ̂  u 

−〉 + 

ˆ K 

1 / 2 

αBJ 

∂ ̂  u 

∂ ̂  y 
, (1) 

nd analogously for ˆ w . The velocity components ˆ u and ˆ w are par- 

llel to the dividing surface, of normal coordinate ˆ y (cf. Fig. 1 ); αBJ 

s an empirical, order one dimensionless constant introduced by 

eavers and Joseph; ˆ K is the permeability of the porous matrix (a 

calar quantity for an isotropic arrangement of pores and solid in- 

lusions). The term 〈 ̂  u −〉 represents the seepage velocity through 

he porous medium, the superscript − indicating that the variable 

s evaluated sufficiently below the dividing line/surface, with an- 

le brackets denoting volume averaging (see later Eq. (37) ). Darcy’s 

aw stipulates that the mean velocity in the porous medium, away 

rom boundaries, is linearly dependent on the pore pressure gradi- 

nt, i.e. 

 ̂

 u 

−〉 = − ˆ K 

μ

∂ ̂  p −

∂ ̂  x 
, (2) 

https://doi.org/10.1016/j.ijmultiphaseflow.2021.103585
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Fig. 1. Two-dimensional macroscopic domain together with microscopic cell (shown by red lines). The latter is shown in its dimensional settings on the right: (a) in-line 

arrangement of solid grains, (b) staggered arrangement. 
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nd similarly for the other two components, with μ the dynamic 

iscosity of the fluid and ˆ p − the interstitial pressure. 

Saffman (1971) was the first to provide a theoretical justifica- 

ion for the empirical condition by Beavers and Joseph; he consid- 

red the Stokes equations in a domain across the dividing surface 

nd performed asymptotic matching at the two edges of the inter- 

ace layer. A few other studies along similar lines were conducted 

fter Saffman, leading to similar conclusions ( Jäger and Mikeli ́c, 

001; Lacis and Bagheri, 2016 ). The result by Saffman, when ex- 

ressed up to second order in terms of the small expansion pa- 

ameter ε, ratio of micro- to macro-scale of the problem, takes the 

orm: 

ˆ 
 = −B 

ˆ K 

μ

∂ ̂  p −

∂ ̂  x 
+ ̂

 λ
∂ ̂  u 

∂ ̂  y 
, (3) 

ith B a order one constant used to adapt the permeability of the 

orous medium to the geometric interface conditions, and 

ˆ λ (equal 

o ˆ K 

1 / 2 /αBJ in Beavers and Joseph’s notations) a slip coefficient. In 

he equation above the dimensional quantity ˆ K , homogeneous to a 

urface area, is of order ε2 and the quantity ˆ λ, a length, is of order

. This prompted Saffman to discard the term containing the pore 

ressure gradient, and to write the slip velocity at the porous/free- 

uid interface in the form of simple Navier slip (for a thorough dis- 

ussion of Navier slip the reader is referred to Bottaro (2019) ). 

Conditions such as those proposed by Beavers and Joseph are 

ecessary when the so-called two-domain approach is employed, 

.e. when the free-fluid region is approached by solving the Stokes 

r Navier-Stokes equations, and the porous domain is treated by 

he use of the Darcy (or more elaborate) macroscopic model. Al- 

ernatives to the Beavers and Joseph condition have been pro- 

osed, e.g., in refs. ( Ochoa-Tapia et al., 2017 ) and ( Ochoa-Tapia and

hitaker, 1995 ). 

Instead of the two-domain approach one can also carry 

ut the solution of the volume-averaged Navier-Stokes equations 

 Whitaker, 1986 ) across the whole domain. This latter one-domain 

pproach has been used successfully by a number of researchers to 

reat the interface region ( Luminari et al., 2019; Angot et al., 1999; 

arbou, 2008; Bruneau et al., 2020 ). 

The analysis to follow, for the case of isotropic solid grains, re- 

ies on separation of scales; this means that the inter-grain dis- 

ance must be much smaller than a characteristic length scale of 

he macroscopic flow in the free-fluid region. We thus divide the 

hole domain into three portions: an outer free-fluid part (de- 

oted with superscript + ), an intermediate, thin interfacial region, 

nd a third part (superscript −) where the fluid motion is ruled 

y Darcy’s equation. The asymptotic analysis is described in the 
2 
ext section, and the conditions which hold at a porous-fluid inter- 

ace, whose position must be set, are derived. All the coefficients 

ertaining to these conditions are computed and reported in tab- 

lar form in Appendix B, for future possible use. In section 3 they 

re employed to study the macroscopic flow in two different two- 

imensional configurations including, in particular, the case of fluid 

nfiltrating a porous domain. These cases, compared against fully 

eature-resolving simulations, demonstrate the accuracy of the ap- 

roach even for situations beyond the formal domain of validity 

f the conditions, including the case of very large porosity param- 

ter or large Reynolds numbers. Concluding remarks are given in 

ection 4. 

. Mathematical formulation 

A regularly microstructured porous medium is taken to bound a 

ree-fluid region; for reasons of clarity we limit the present analy- 

is to two-dimensional Cartesian coordinates. The porous medium 

as a characteristic microscopic length scale equal to l (say, the 

eriodicity of the pattern); the macroscopic length scale is L (for 

xample, the channel half-thickness). With reference to Fig. 1 , the 

nterface where outer flow conditions will be enforced is arbi- 

rarily positioned in ˆ y = 0 , with hat variables denoting dimen- 

ional quantities. Other choices are possible for the position, close 

o ˆ y = 0 , where interface conditions can be enforced, but the re- 

ults are very weakly dependent on the choice made (for a dis- 

ussion on this issue, see ( Lacis and Bagheri, 2016; Lacis et al., 

020 )). The presence of two characteristic scales renders the prob- 

em amenable to a multiple scale expansion, in terms of the small 

arameter ε = l/L, along the lines of Mei and Vernescu (2009) . 

.1. Scalings and equations in the three regions 

Three regions can be identified, and will be normalized succes- 

ively, starting from the outer one ( + , or free-fluid region) up to 

he inner one ( −, or porous region). 

In the free-fluid, we use L, L/ U , U , and ρ U 2 to scale, respec-

ively, length, time, velocity and pressure. The velocity U is a char- 

cteristic speed, for example, the free stream velocity in a bound- 

ry layer, and ρ is the fluid density. The dimensionless system in 

he + region is simply 

∂U 

+ 
i 

∂X i 

= 0 , 
∂U 

+ 
i 

∂t 
+ U 

+ 
j 

∂U 

+ 
i 

∂X j 

= −∂P + 

∂X i 

+ 

1 

Re 

∂ 2 U 

+ 
i 

∂X 

2 
j 

. (4) 

e define X 1 = X = ˆ x /L, X 2 = Y = ˆ y /L, U 

+ 
1 

= U 

+ = ˆ u / U , and U 

+ 
2 

=
 

+ = ̂

 v / U; the macroscopic Reynolds number is Re = ρ U L/μ. No- 
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ice that all dependent variables in this upper region depend only 

pon the macroscale spatial coordinates. 

The intermediate region, across the dividing line/surface, is de- 

oted by the superscript = ; here we choose l = ε L, L/ U , ε U , and

U/L to normalize, respectively, length, time, velocity and pres- 

ure. These are the same scales used in countless papers to model 

he flow over a rough wall, cf. Bottaro and Naqvi (2020) and refer- 

nces therein. The dimensionless equations in the y -elongated mi- 

roscopic cell which traverses y = 0 are 

∂U 

= 
i 

∂x i 
= 0 , ε2 Re 

(
∂U 

= 
i 

∂t 
+ U 

= 
j 

∂U 

= 
i 

∂x j 

)
= −∂P = 

∂x i 
+ 

∂ 2 U 

= 
i 

∂x 2 
j 

, (5) 

ith x 1 = x = ˆ x /l, x 2 = y = ˆ y /l, U 

= 
1 

= U 

= = ε−1 ˆ u / U , and U 

= 
2 

= V = =
−1 ˆ v / U . All dependent variables are assumed to be periodic along 

 (and along z when in three-dimensions); around the dividing 

ine/surface they are function of both microscale and macroscale 

oordinates and the latter dependence is immediately apparent 

pon matching velocity and traction vectors at the upper boundary 

f the = region, i.e. 

lim 

 → + ∞ 

(U 

= , V 

= ) = 

1 

ε
lim 

Y → 0 + 
(U 

+ , V 

+ ) (6) 

nd 

lim 

 → + ∞ 

(
∂U 

= 

∂y 
+ 

∂V 

= 

∂x 
, −P = + 2 

∂V 

= 

∂y 

)

= lim 

Y → 0 + 

(
∂U 

+ 

∂Y 
+ 

∂V 

+ 

∂X 

, −Re P + + 2 

∂V 

+ 

∂Y 

)
. (7) 

The flow in the lower ( - ) inter-pore space, sufficiently below 

he dividing line/surface, is assumed steady and the equations are 

endered dimensionless by the same scales as in the interface re- 

ion, except for replacing ε U by ε2 U when normalizing the veloc- 

ty. This choice of scales stems from assuming that the macroscopic 

ressure gradient is balanced by viscous dissipation within the 

ores ( Mei and Vernescu, 2009 ). Eventually, in a square unit cell 

ithin the porous medium and away from boundaries we should 

olve 

∂U 

−
i 

∂x i 
= 0 , ε4 Re U 

−
j 

∂U 

−
i 

∂x j 
= −∂P −

∂x i 
+ ε

∂ 2 U 

−
i 

∂x 2 
j 

, (8) 

ubject to periodicity along all spatial directions. This latter sys- 

em leads to Darcy’s equation, after the variables are expanded in 

ower series of ε, and the leading order terms are retained. The 

rocedure is described in details by Mei and Vernescu (2009) ; we 

ill not carry it out here, but will develop a composite system 

alid across the dividing line/surface and below. 

.2. The composite description 

Here we couple the three regions identified above. Assuming 

hat ε2 Re � 1 , the leading order system in the intermediate do- 

ain turns out to be simply Stokes’ system. This stems from ex- 

anding the generic = variable as 

 

= (x i , X i , t) = F = 0 + ε F = 1 + ε2 F = 2 + ... (9)

nd plugging the expansion into system (5) . Since each dependent 

ariable is function of both microscopic and macroscopic coordi- 

ates, it is important also to replace 

∂ 

∂x j 
→ 

∂ 

∂x j 
+ ε

∂ 

∂X j 

, (10) 

o obtain 

(ε0 ) : 
∂ U 0 

= 
i 

∂x i 
= 0 , −∂P = 0 

∂x i 
+ 

∂ 2 U 0 
= 
i 

∂x 2 
j 

= 0 , (11)
3 
(ε1 ) : 
∂ U 1 

= 
i 

∂x i 
= −∂ U 0 

= 
i 

∂X i 

, −∂P = 1 

∂x i 
+ 

∂ 2 U 1 
= 
i 

∂x 2 
j 

= 

∂P = 0 

∂X i 

− 2 

∂ 2 U 0 
= 
i 

∂ x j ∂ X j 

. 

(12) 

n the - region each generic F − variable is expanded as 

 

−(x i , X i ) = F −0 + ε F −1 + ε2 F −2 + ... (13)

nd the expansions are plugged into system (8) , to obtain 

(ε0 ) : 
∂P −

0 

∂x i 
= 0 , (14) 

(ε1 ) : 
∂ U 0 

−
i 

∂x i 
= 0 , −∂P −

1 

∂x i 
+ 

∂ 2 U 0 
−
i 

∂x 2 
j 

= 

∂P −
0 

∂X i 

, 

(15) 

(ε2 ) : 
∂ U 1 

−
i 

∂x i 
= −∂ U 0 

−
i 

∂X i 

, −∂P −
2 

∂x i 
+ 

∂ 2 U 1 
−
i 

∂x 2 
j 

= 

∂P −
1 

∂X i 

− 2 

∂ 2 U 0 
−
i 

∂ x j ∂ X j 

. 

(16) 

t is a well-established fact that the pressure at leading order in 

he porous matrix, P −
0 

, does not fluctuate on the pore scale (cf. 

q. (14) ). 

We now define the composite velocity and pressure fields 

 i = u 

(0) 
i 

+ ε u 

(1) 
i 

+ O(ε2 ) , (17) 

p = p (0) + ε p (1) + O(ε2 ) , (18) 

ith 

 

(0) 
i 

= 

{
U 0 

= 
i 

y > 0 , 

ε U 0 
−
i 

y < 0 , 
(19) 

p (0) = 

{
P = 0 y > 0 , 

P −
0 

+ ε P −
1 

y < 0 , 
(20) 

nd 

 

(1) 
i 

= 

{
U 1 

= 
i 

y > 0 , 

ε U 1 
−
i 

y < 0 , 
(21) 

p (1) = 

{
P = 1 y > 0 , 

ε P −
2 

y < 0 . 
(22) 

The Ansatz above implies that an abrupt transition is assumed 

etween the = and - regions; this corresponds to what is referred 

o in the literature as the two-domain approach , leading to a jump 

n pressure across y = 0 . The leading-order composite equations, 

alid in a neighborhood of y = 0 as well as throughout the porous 

edium, are 

∂u 

(0) 
i 

∂x i 
= 0 , −∂ p (0) 

∂x i 
+ 

∂ 2 u 

(0) 
i 

∂x 2 
j 

= 0 , (23) 

nd at next order we have 

∂u 

( 1 ) 
i 

∂x i 
= −∂u 

( 0 ) 
i 

∂X i 

, −∂ p ( 1 ) 

∂x i 
+ 

∂ 2 u 

( 1 ) 
i 

∂x 2 
j 

= 

∂ p ( 0 ) 

∂X i 

− 2 

∂ 2 u 

( 0 ) 
i 

∂ x j ∂ X j 

. (24) 

he situation is schematized in Fig. 2 . 

For y → −∞ (i.e. sufficiently deep inside the porous medium) 

he solution of system (8) in a 1 × 1 periodic unit cell, eventually 

eading to the medium permeability, should be recovered. On the 

op boundary of the interface cell the matching outer-flow condi- 

ions (6) and (7) are 

lim 

 → + ∞ 

(u, v ) = 

1 

ε
lim 

Y → 0 + 
(U, V ) , (25) 
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Fig. 2. Schematic of the mathematical description of the interface problem, together with equations in the free-flow ( + ) region and composite, multiscale equations which 

apply in the = and - regions. In the numerical application, the matching between the flow in the region described by the composite equations and that in the free-fluid 

region is done at a finite value of y, i.e. y = y ∞ . 
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lim 

 → + ∞ 

(
∂u 

∂y 
+ 

∂v 
∂x 

, −p + 2 

∂v 
∂y 

)
= lim 

Y → 0 + 

(
∂U 

∂Y 
+ 

∂V 

∂X 

, −Re P + 2 

∂V 

∂Y 

)

(26) 

Note that from now on we omit the + superscript when refer- 

ing to dependent variables in the free-fluid region. Also, to sim- 

lify notations, we will indicate with S T and S N the tangential and 

ormal components of the dimensionless macroscopic stress for 

 → 0 + , i.e. 

 

T = 

∂U 

∂Y 
+ 

∂V 

∂X 

∣∣∣∣
Y → 0 + 

, S N = −Re P + 2 

∂V 

∂Y 

∣∣∣∣
Y → 0 + 

. (27) 

he boundary conditions for (23) at y → ∞ become 

∂u 

(0) 

∂y 

∣∣∣∣
y → + ∞ 

= S T , −p (0) 
∣∣

y → + ∞ 

= S N , (28) 

n account of the fact that on the top boundary of the interface 

ell, by construction, u (0) = u (0) 
1 

, v (0) = u (0) 
2 

, and p (0) loose mem-

ry of the porous matrix microstructure to become independent of 

 . The corresponding conditions for the variables at order ε are: 

∂u 

(1) 

∂y 

∣∣∣∣
y → + ∞ 

= − ∂u 

(0) 

∂Y 

∣∣∣∣
y → + ∞ 

− ∂v (0) 

∂X 

∣∣∣∣
y → + ∞ 

, (29) 

−p (1) 
∣∣

y → + ∞ 

+ 2 

∂v (1) 

∂y 

∣∣∣∣
y → + ∞ 

= −2 

∂v (0) 

∂Y 

∣∣∣∣
y → + ∞ 

. (30) 

.2.1. Sample solutions of the leading order composite system 

Linearity of system (23) permits to express the velocity compo- 

ents and the pressure using separation of variables, i.e. 

 

(0) 
i 

= u 

† 
i 

S T + u 

‡ 
i 

S N , (31) 

nd 

p (0) = p † S T + p ‡ S N + C(X j ) . (32) 

he fields u 
† 
i 
, p † , u 

‡ 
i 
, and p ‡ depend only on x j ; conversely, the in-

egration constant C is only a function of macroscopic coordinates. 

lugging (31)–(32) into (23) and (28) permits to find the two sys- 

ems below, subject to periodicity along x (and eventually z, in 

hree-dimensional settings) and to the no-slip condition on the 

olid grains of the porous medium. 
4 
Forcing by S T : 

∂u 

† 
i 

∂x i 
= 0 , −∂ p † 

∂x i 
+ 

∂ 2 u 

† 
i 

∂x 2 
j 

= 0 , (33) 

lim 

 → + ∞ 

∂u 

† 

∂y 
= 1 , lim 

y → + ∞ 

p † = 0 . (34) 

orcing by S N : 

∂u 

‡ 
i 

∂x i 
= 0 , −∂ p ‡ 

∂x i 
+ 

∂ 2 u 

‡ 
i 

∂x 2 
j 

= 0 , (35) 

lim 

 → + ∞ 

∂u 

‡ 

∂y 
= 0 , lim 

y → + ∞ 

p ‡ = −1 . (36) 

his latter system admits the trivial solution u 
‡ 
i 

= 0 and p ‡ = −1 . 

Solutions of the •† problem are pursued for both two- and 

hree-dimensional porous media, with either circular or spherical 

rains, for both in-line or regularly staggered solid inclusions, and 

or varying porosities. The porosity is defined as θ = V f luid / V total , 

ith V f luid the fluid’s volume in a square unit cell (in a two- 

imensional case the volume is meant per unit depth) within the 

orous domain and V total the corresponding total (fluid plus solid) 

olume. By defining the superficial (or phase) average, 

 a 〉 := 

1 

V total 

∫ 
V f luid 

a d V, (37) 

he porosity is also θ = 〈 1 〉 . The intrinsic average can also be de-

ned as 

 a 〉 f := 

1 

V f luid 

∫ 
V f luid 

a d V, (38) 

o be used later on. 

Since only the gradient of p † appears in Eq. (33) , uniqueness of 

he solution is guaranteed by imposing 

 p † 〉 ∞ 

= 0 , (39) 

ith the phase average now taken on the top 1 × 1 square (or cu- 

ic) cell of the elongated interfacial domain (this is indicated by 

he subscript ∞ ). This implies that 

p (0) 
∣∣
∞ 

= 〈 p (0) 〉 ∞ 

= −S N + C, (40) 
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Fig. 3. Fields of u † , v † and p † for θ = 0 . 4973 , regularly arranged two-dimensional 

solid grains. 

Fig. 4. Same as Fig. 3 for θ = 0 . 9999 . The solid inclusions are so small that they 

are not visible on the scale of the plot. 
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o that by the second equation in (28) it is finally found 

 = 0 . (41) 

Solutions of the auxiliary problem (33)–(34) are carried out us- 

ng the finite elements Comsol Multiphysics® software ( COMSOL ), 

rogressively refining the mesh until grid-converged solutions are 

ound. Sample results are first provided below, the parametric vari- 

tion is discussed later. Figs. 3 and 4 display isolines of the un- 

nowns for two values of θ in the full domain considered in 

he two-dimensional in-line case, domain which ranges in y from 

y ∞ 

= −5 to y ∞ 

= +5 . Such a vertical extent has been verified

gainst larger values of y ∞ 

and it has been found to be sufficient to

ield domain-independent results for all porosities tested. In par- 

icular, y ∞ 

must be sufficiently large for all fields computed to be- 

ome homogeneous in x when y = + y ∞ 

. The larger value of the

orosity considered in Fig. 4 ( θ = 0 . 9999 ) is not representative of

 realistic porous medium, except perhaps for the case of sparse 

anopies and, as a consequence, it will be shown that slip veloci- 

ies (at the dividing line/surface) and permeability coefficients are 

uch larger than for lower porosities. 
5 
It should also be observed that v † and p † are antisymmetric 

round a vertical mid-line (through x = 0 . 5 ). Thus, for isotropic 

rains it is 
∫ 1 

0 v † d x = 0 at any y, and likewise for p † . 

Just like in the case of the flow over a rough wall ( Bottaro and

aqvi, 2020 ) it is found that 

 

† | y ∞ = y ∞ 

+ λ, (42) 

ith λ a slip length which, for in-line solid inclusions of θ = 

 . 4973 , is equal to 1.451 ×10 −1 , while λ = 6 . 188 × 10 −1 when the

orosity is 0.9999. It is reasonable to expect the slip length (and, as 

 consequence, the slip velocity) to increase as the solid inclusions 

ecome of smaller dimensions. The same values of λ are recovered 

lso by 

= 

∫ 1 

0 

u 

† | y =0 d x. (43) 

s in the case of the flow past a rough solid surface ( Bottaro and

aqvi, 2020 ), the outer flow matching 

 | y = y ∞ = (y ∞ 

+ λ) S T + O (ε) , v | y =0 + = O (ε) . (44)

an be transferred to a dividing surface in y = 0 + and expressed 

n terms of macroscopic variables (cf. Eq. (25) ), for the boundary 

onditions of the free-fluid variables to read: 

| Y =0 + = ελ S T + O(ε2 ) , V | Y =0 + = O(ε2 ) . (45) 

his is a simple Navier slip condition, aside from the fact that a 

 V/∂ X term appears in the condition ( via S T ). 

.2.2. The first correction to the leading order composite description 

On account of the results obtained for u (0) 
i 

and p (0) , system 

24) equipped with boundary conditions (29) and (30) becomes 

∂u 

(1) 
i 

∂x i 
= −u 

† 
i 

∂S T 

∂X i 

, (46) 

∂ p (1) 

∂x i 
+ 

∂ 2 u 

(1) 
i 

∂x 2 
j 

= p † 
∂S T 

∂X i 

− ∂S N 

∂X i 

− 2 

∂u 

† 
i 

∂x j 

∂S T 

∂X j 

, (47) 

ogether with 

∂u 

(1) 

∂y 

∣∣∣∣
y →∞ 

= −u 

† ∂S T 

∂Y 
− v † 

∂S T 

∂X 

, (48) 

p (1) + 2 

∂v (1) 

∂y 

∣∣∣∣
y →∞ 

= −2 v † 
∂S T 

∂Y 
. (49) 

he Ansatz for the new variables is 

 

(1) 
i 

= 

˜ u i j 

∂S T 

∂X j 

+ ŭ i j 

∂S N 

∂X j 

, (50) 

p (1) = 

˜ p j 
∂S T 

∂X j 

+ p̆ j 
∂S N 

∂X j 

, (51) 

ith the microscopic coefficients arising from the solutions of the 

wo sets of microscopic problems given below. 

Forcing by 
∂S T 

∂X j 
: 

∂ ̃  u i j 

∂x i 
= −u 

† 
i 
δi j , −∂ ̃  p j 

∂x i 
+ 

∂ 2 ˜ u i j 

∂x 2 
k 

= p † δi j − 2 

∂u 

† 
i 

∂x j 
, (52) 

lim 

 → + ∞ 

∂ ̃  u 1 j 

∂y 
= −u 

† δ j2 − v † δ j1 , lim 

y → + ∞ 

− ˜ p j + 2 

∂ ̃  u 2 j 

∂y 
= −2 v † δ j2 . 

(53) 
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Fig. 5. Fields of ˜ u i j and ˜ p j in the neighborhood of the dividing surface for regularly arranged two-dimensional solid grains, porosity θ = 0 . 4973 . 

y

o

fi

t

i

s

O
i

f  

i  

d

w

u

m

a

f

−

w

a

a

K

f

m

s

a

c

a

t

E

p

t

a

c

p

n

t

N

w

E

o

(

s

p  

l

2

f

t

Forcing by 
∂S N 

∂X j 
: 

∂ ̆u i j 

∂x i 
= 0 , −∂ ̆p j 

∂x i 
+ 

∂ 2 ŭ i j 

∂x 2 
k 

= −δi j , (54) 

lim 

 → + ∞ 

∂ ̆u 1 j 

∂y 
= 0 , lim 

y → + ∞ 

−p̆ j + 2 

∂ ̆u 2 j 

∂y 
= 0 . (55) 

These two systems, like the ones solved earlier, require peri- 

dicity along the interface-parallel direction(s); furthermore, the 

elds deep within the porous domain ( y → −∞ ) must repeat 

hemselves with a dimensionless y -periodicity equal to 1. Numer- 

cal solutions of these systems can be easily carried out by the 

ame technique used before; the ˜ • and •̆ terms yield all of the 

(ε2 ) terms in the expressions of the macroscopic fields at the 

nterface. 

The solution of systems (52)–(53) and (54)–(55) is carried out 

or varying values of y ∞ 

, and results are displayed in Figs. 5 and 6

n the vicinity of the interface, when using y ∞ 

= 5 . For the system

riven by the gradient of S T the coefficient of concern here is ˜ u 21 

hereas for that driven by the gradient of S N we are interested in 

˘ 11 and ŭ 22 . Other coefficients either vanish at y ∞ 

or are antisym- 

etric about the vertical mid-line so that their x -averaged value at 

ny y vanishes. For y ∞ 

sufficiently large (larger than about 4), it is 

ound that 

˜ u 21 | y ∞ = ŭ 11 | y ∞ = 

y 2 ∞ 

2 

+ λ y ∞ 

+ K 

it f , (56) 

ŭ 22 | y ∞ = K, (57) 

ith λ the slip length. The other two parameters introduced above 

re the porous system permeability, K, and the interface perme- 

bility, K 

it f . For the case reported in Figs. 5 and 6 it is found that 

 = 1 . 830 × 10 

−3 and K 

it f = 1 . 173 × 10 

−2 . 

A result similar to that expressed by (56) was obtained before 

or the case of the flow past a regularly microstructured, imper- 

eable surface ( Bottaro and Naqvi, 2020 ). We also note that the 
6 
ame values of the parameters λ, K and K 

it f can be found by the 

lternative adjoint approach proposed by Bottaro (2019) . 

If the matching condition (which normally is enforced at y ∞ 

) is 

onveniently transferred to the dividing surface in y = 0 + , only K
nd K 

it f enter the interface conditions at second order. 

The velocity of the macroscopic problem at Y = 0 + , correct up 

o order ε2 (i.e. including u (0) 
i 

and u (1) 
i 

), has components: 

U | Y =0 + = ε λ S T 
∣∣

Y =0 + 
+ ε2 K 

it f ∂S N 

∂X 

∣∣∣∣
Y =0 + 

+ O(ε3 ) , (58) 

V | Y =0 + = −ε2 K 

it f ∂S T 

∂X 

∣∣∣∣
Y =0 + 

+ ε2 K 

∂S N 

∂Y 

∣∣∣∣
Y =0 + 

+ O(ε3 ) . (59) 

qs. (58) and (59) represent the most important result of the 

resent contribution: the outer flow is coupled to the motion in 

he porous medium through the coefficients λ, K, and K 

it f , avail- 

ble via the solutions of Stokes-like problems in a y -elongated 

ell, periodic along the interface-parallel direction(s). In the ex- 

ressions above the terms of order ε2 arise from streamwise and 

ormal variations of the components of the outer traction vec- 

or. Eqs. (58) and (59) coincide with those given by Bottaro and 

aqvi (2020) for the case of the flow over a rough, impermeable 

all, provided the permeability K is set to zero; the first term in 

q. (59) is related to transpiration at the surface in Y = 0 because 

f shear variations. 

The condition for U| Y =0 + does not seem to match 

 Saffman, 1971 )’s, given in dimensional form in (5) , since the 

treamwise velocity at the dividing surface appears to be decou- 

led from the pore pressure gradient ∂ P −
0 

/∂ Y at Y = 0 −. A further

ook at the pressure condition is thus needed. 

.3. The pressure condition 

Continuity of pressure has often been used at the dividing sur- 

ace ( Lacis and Bagheri, 2016; Zampogna et al., 2019 ); however, 

he interstitial pressure is a pore-averaged value and, even if the 
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Fig. 6. Same as Fig. 5 for ŭ i j and p̆ j . 
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icroscopic pressure is indeed continuous at y = 0 , it is now ac- 

epted that a pressure jump exists between the fluid pressure and 

he pore pressure, when crossing the interface ( Carraro et al., 2013; 

acis et al., 2020 ). To evaluate such a pressure jump, the starting 

oint is the expression of p in the interfacial domain, i.e. 

p = p † S T − S N + ε ˜ p j 
∂S T 

∂X j 

+ ε p̆ j 
∂S N 

∂X j 

+ O(ε2 ) . (60) 

ithin the porous region the coefficients ˜ p j and p̆ j attain a y - 

eriodic behavior when we are sufficiently below the dividing sur- 

ace. The intrinsic average value of the pressure in a 1 ×1 unit cell 

or y → −∞ is indicated by 〈 p〉 f −∞ 

. We have 

 p〉 f −∞ 

= −S N + ε 〈 ̃  p 1 〉 f −∞ 

∂S T 

∂X 

+ ε 〈 ̆p 2 〉 f −∞ 

∂S N 

∂Y 
+ O(ε2 ) . (61)

urthermore, from the definition of p in the porous domain we 

ave 

 p〉 f −∞ 

= P −0 | Y =0 − + ε 〈 P −1 〉 f −∞ 

+ O(ε2 ) , (62) 

o that it is simple to conclude that the normal stress exerted by 

he outer fluid is impressed onto the pore pressure, i.e. 

 

−
0 | Y =0 − = −S N + O(ε) . (63) 

his condition on the leading-order interstitial pressure is suffi- 

ient to close the problem and there is no need to find the order 

ne correction to the pressure, 〈 P −
1 
〉 f −∞ 

, nor to evaluate the pres-

ure jump across the dividing surface. If the solution in the + do- 

ain is known at iteration n, boundary condition (63) can be used 

t the interface for the equation ∂ 2 P −
0 

/ ∂X 2 j = 0 which describes the 

ehavior of the pore pressure in the bulk of the porous medium. 

he same condition permits also to write the macroscopic free- 

uid streamwise velocity at Y = 0 + ( Eq. (58) ) in terms of the pore

ressure, i.e. in Saffman’s form (cf. Eq. (3) ): 

U | Y =0 + = ε λ S T 
∣∣

Y =0 + 
− ε2 K 

it f 
∂P −

0 

∂X 

∣∣∣∣
−

+ O(ε3 ) . (64) 

Y =0 

7 
he vertical velocity at Y = 0 + can also be expressed in terms of 

 

−
0 

by using Darcy’s law, enforcing mass conservation across the 

nterface and accounting for periodicity along the interface-normal 

ell boundaries. It reads: 

V | Y =0 + = −ε2 K 

∂P −
0 

∂Y 

∣∣∣∣
Y =0 −

+ O(ε3 ) . (65) 

f (64) and (65) are used at the interface instead of (58) and 

59) the motion in the free-fluid region is coupled to that in the 

orous matrix, i.e. the problems in the two domains must be 

olved together. Comparison of the two proposed (and equivalent) 

orms of interface conditions permits to state that also the pres- 

ure gradient is discontinuous at the interface; in particular it is 

asy to find that 

e 
∂P 

∂X 

∣∣∣∣
Y =0 + 

− ∂P −
0 

∂X 

∣∣∣∣
Y =0 −

= 2 

∂ 2 V 

∂ X ∂ Y 

∣∣∣∣
Y =0 + 

+ O(ε) , (66) 

e 
∂P 

∂Y 

∣∣∣∣
Y =0 + 

− ∂P −
0 

∂Y 

∣∣∣∣
Y =0 −

= −K 

it f 

K 

∂ 

∂X 

(
∂U 

∂Y 
+ 

∂V 

∂X 

)∣∣∣∣
Y =0 + 

+ 2 

∂V 

∂Y 

∣∣∣∣
Y =0 + 

+ O(ε) . (67) 

efore closing this subsection it is useful to write all the coupling 

onditions in terms of dimensional variables. The slip and transpi- 

ation conditions to be used in the resolution of the outer flow are: 

ˆ 
 | 0 + ≈ ˆ λ

(
∂ ̂  u 

∂ ̂  y 
+ 

∂ ̂  v 
∂ ̂  x 

)∣∣∣∣
0 + 

+ 

ˆ K 

it f 

μ

∂ 

∂ ̂  x 

(
− ˆ p + 2 μ

∂ ̂  v 
∂ ̂  y 

)∣∣∣∣
0 + 

, (68) 

ˆ 
 | 0 + ≈ ˆ K 

μ

∂ 

∂ ̂  y 

(
− ˆ p + 2 μ

∂ ̂  v 
∂ ̂  y 

)∣∣∣∣
0 + 

− ˆ K 

it f ∂ 

∂ ̂  x 

(
∂ ̂  u 

∂ ̂  y 
+ 

∂ ̂  v 
∂ ̂  x 

)∣∣∣∣
0 + 

. (69) 
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Fig. 7. Fields of u † and ŭ 11 for θ = 0 . 4973 , randomly arranged two-dimensional solid grains. 
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lternatively, we can also write 

ˆ 
 | 0 + ≈ ˆ λ

(
∂ ̂  u 

∂ ̂  y 
+ 

∂ ̂  v 
∂ ̂  x 

)∣∣∣
0 + 

− ˆ K 

it f 

μ

∂ ̂  p 

∂ ̂  x 

∣∣∣
0 −

. (70) 

ˆ 
 | 0 + ≈ − ˆ K 

μ

∂ ̂  p 

∂ ̂  y 

∣∣∣
0 −

. (71) 

The Dirichlet condition for the pore pressure at the interface is 

ˆ p 
∣∣

0 −
≈ ˆ p − 2 μ

∂ ̂  v 
∂ ̂  y 

∣∣∣
0 + 

. (72) 

The dimensional coefficients are ˆ λ = λl, ˆ K 

it f = K 

it f l 2 , and 

ˆ K = 

l 2 . It is important to stress once more that no empirical coeffi- 

ients are present in the matching conditions (68)–(72) ; the coef- 

cients of interest, homogeneous to either a length or an area, are 

ll available through the solution of simple microscopic problems. 

uch coefficients are discussed in the section 2.5, for both two- and 

hree-dimensional isotropic porous media. 

.4. Randomly arranged grains 

Randomly arranged grains, such as those shown in Fig. 7 , have 

lso been considered for completeness, by perturbing the position 

f each grains about its reference value (starting from the stag- 

ered configuration). Fig. 7 shows the results obtained in a 10 × 10 

 −periodic domain; the left image shows u † (which eventually 

eads to λ) and the right one shows ŭ 11 (which eventually gives 
ig. 8. Comparison between regularly arranged grains (solid lines) and staggered grains

plotted in abscissa in all frames). From left to right: λ, K and K it f . In the central frame th

gainst ( Zampogna and Bottaro, 2016 ) (red circles) and ( Bottaro, 2019 ) (black circles). T

nterpretation of the references to color in this figure legend, the reader is referred to the

8 
 

it f ). The values of the permeability of the anisotropic medium is 

btained from the method described by Mei and Vernescu (2009) ), 

omputing all components of the permeability tensor. Once this 

s done, the two eigenvalues of the tensor are found, K max and 

 min , and their geometric average, K mean = 

√ 

K max K min , is com- 

uted ( Airiau and Bottaro, 2020 ). It is the average value of K which

s reported in Fig. 8 (central frame) with diamond symbols, and 

ompared to the values found for the case of in-line and staggered 

olid inclusions. It is interesting to observe that the coefficients 

ound, λ, K mean and K 

it f , are typically included between the stag- 

ered and the in-line values, while remaining closer to the former 

s the porosity varies. 

.5. How do the coupling coefficients change with porosity? 

Results for two-dimensional circular and three-dimensional 

pherical grains are summarized in Figs. 8 and 9 , respectively, for 

oth in-line (solid lines) and staggered (dashed) arrangements of 

he solid inclusions, and for varying values of the porosity. The 

wo-dimensional case of randomly arranged grains is also included 

n the figure. 

In both two-dimensional and three-dimensional configurations 

he coefficients have a monotonic behavior with θ ; both slip length 

nd interface permeability are systematically one order of mag- 

itude larger in the regularly arranged case than in the stag- 

ered configuration (at the same value of θ ), to be ascribed to 

he fact that the unit cell right below the interface ( 0 ≤ x ≤ 1 ,
 (dashed lines) for two-dimensional isotropic porous media of varying porosity θ

e medium permeabilities for in-line and staggered cases are validated, respectively, 

he case of randomly arranged grains is also considered (diamond symbols). (For 

 web version of this article.) 
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Fig. 9. Same as Fig. 8 for three-dimensional spherical grains. In the central frame the permeability for the in-line arrangement of spheres is compared to results in 

( Zampogna and Bottaro, 2016 ) (red circles). The permeability results for Wigner-Seitz grains ( Lee et al., 1996 ) are given with blue filled symbols. (For interpretation of 

the references to color in this figure legend, the reader is referred to the web version of this article.) 
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1 ≤ y ≤ 0 ) in the staggered case presents a sizeable portion in 

 = 0 where the fluid cannot slip and through which it cannot 

enetrate (cf. Fig. 1 ). Conversely, the deviation in K between the 

wo arrangements of solid grains examined is rather small. In the 

wo-dimensional case ( Fig. 8 ) for both grains arrangements the 

resent procedure yields results in excellent agreement with those 

eported in the past ( Zampogna and Bottaro, 2016; Bottaro, 2019 ), 

btained from the conventional approach described by Mei and 

ernescu (2009) . 

For three-dimensional spherical grains, conditions 68 - (72) re- 

ain unchanged, and must be supplemented by the following 

panwise slip condition: 

ˆ 
 | 0 + = 

ˆ λ

(
∂ ˆ w 

∂ ̂  y 
+ 

∂ ̂  v 
∂ ̂  z 

)∣∣∣
0 + 

− ˆ K 

it f 

μ

∂ ̂  p 

∂ ̂  z 

∣∣∣
0 −

, (73) 

ith the same coefficients used in ˆ u . The results for K in Fig. 9 co-

ncide with those computed by Zampogna and Bottaro (2016) , cf. 

olid line and red dots in the central frame of the figure. It is 

lso instructive to compare the permeability found to that of the 

igner-Seitz grain ( Lee et al., 1996 ), a polyhedron with 14 sides 

n a cubically packed array, with contact among grains on the six 

aces of the unit cell. The results of the Wigner-Seitz grain are con- 

ained between those of in-line and staggered spherical inclusions, 

nd this denotes the low sensitivity of K to the arrangement (and 

o the exact shape) of the solid grains. 

As anticipated in the introduction, all the coefficients com- 

uted are tabulated in Appendix A: all the numbers reported are 

onverged up to four significant digits. We have initially tried to 

nd correlations for λ, K and K 

it f as function of the porosity θ
in a way similar to what done for K by Zampogna and Bot- 

aro (2016) for the case of in-line spherical grains) but have even- 

ually decided that it is preferable to give the raw numbers and 

et eventually interested readers interpolate the tabulated values 

o infer the coefficients at any desired value of the porosity. This is 

impler and more accurate than using a curve-fitting law. 

. The macroscopic problems 

.1. Interface conditions 

Let us now assume that all dimensional variables, through- 

ut the whole domain, are rendered dimensionless with the same 

cales used in the free-fluid region. In particular, from now on we 

enote by P −
0 

the pore pressure non-dimensionalized with ρ U 2 . 
f the dividing surface is positioned in Y = 0 the conditions to be
9 
mposed there for a two-dimensional macroscopic flow problem, 

orrect up to order 2 in ε, are: 

U | Y =0 + ≈ ε λ

(
∂U 

∂Y 
+ 

∂V 

∂X 

)∣∣∣
Y =0 + 

+ ε2 K 

it f ∂ 

∂X 

(
−Re P + 2 

∂V 

∂Y 

)∣∣∣∣
Y =0 + 

, (74) 

V | Y =0 + ≈ −ε2 K 

it f ∂ 

∂X 

(
∂U 

∂Y 
+ 

∂V 

∂X 

)∣∣∣∣
Y =0 + 

+ ε2 K 

∂ 

∂Y 

(
−Re P + 2 

∂V 

∂Y 

)∣∣∣∣
Y =0 + 

. (75) 

With the conditions above there is no direct coupling between 

he Navier-Stokes and the Darcy regions: once the outer flow prob- 

em is solved for, the pore pressure at leading order within the 

sotropic porous medium is a harmonic function which satisfies 

∂P −
0 

∂X i 

n i = 0 , (76) 

t solid surfaces of unit normal n i , and 

 

−
0 

∣∣
Y =0 −

= P 
∣∣

Y =0 + 
− 2 

Re 

∂V 

∂Y 

∣∣∣
Y =0 + 

(77) 

t the dividing surface. 

An alternative to conditions (74)–(75) , formally correct up to 

he same order in ε, is constituted by the following dimensionless 

onditions: 

U | Y =0 + ≈ ε λ

(
∂U 

∂Y 
+ 

∂V 

∂X 

)∣∣∣
Y =0 + 

− ε2 K 

it f Re 
∂P −

0 

∂X 

∣∣∣∣
Y =0 −

, (78) 

V | Y =0 + ≈ −ε2 K Re 
∂P −

0 

∂Y 

∣∣∣∣
Y =0 −

. (79) 

Conditions (78)–(79) are, respectively, a Beavers-Joseph-like 

ondition for the velocity along the direction tangent to the in- 

erface, and an expression of mass conservation across the two do- 

ains; they must be coupled to the Laplace equation for the pore 

ressure in the porous medium, using Eq. (77) which expresses 

he balance of normal forces at the interface. This latter system is 

loser to what is often found in the literature (cf. Eggenweiler and 

ybak (2020) and references therein). We have employed both sets 

f conditions to compute the macroscopic results presented below, 

nding negligible differences. 
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Fig. 10. Streamlines (top row) and pressure contours (bottom row) close to the 

axes’ origin, both in the free-fluid and the porous region. The frames on the left 

correspond to solutions obtained with the two-domain approach; results on the 

right are obtained by fully resolving the flow, also through the solid inclusions. The 

pressure in the bottom right frame is the intrinsic averaged pressure. 
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It is important to notice that Saffman’s result, see Eq. (3) in the 

resent paper, is equivalent to (78) . In dimensionless form, the re- 

ult by Saffman, including Jones (1973) correction 

2 , reads: 

U | Y =0 + ≈ ε λ

(
∂U 

∂Y 
+ 

∂V 

∂X 

)∣∣∣
Y =0 + 

− ε2 B K Re 
∂P −

0 

∂X 

∣∣∣∣
Y =0 −

. (80) 

qs. (78) and (80) coincide once the constant B is set equal to 

 

it f / K. The important result of the present contribution is that 

icroscopic problems have been derived and solved for isotropic 

orous media which yield directly the required constants, λ, K, 

nd K 

it f . 

The approach proposed here can be used to solve cases in 

hich the fluid flows parallel to the porous layer or infiltrates 

he porous medium. Whereas the first case has been much exam- 

ned in the literature, the latter has been scarcely focussed upon. 

 recent paper by Eggenweiler and Rybak (2020) shows that the 

eavers and Joseph condition is unsuited for filtration problems, 

nd that the parameters of the Beavers-Joseph condition cannot be 

tted for arbitrary flow direction. In the following we will examine 

ow the present approach fares when compared to fully resolved 

imulations which capture microscopic details of flow and pressure 

elds also within the pores. 

.2. Test case 1: stagnation point flow over a porous bed 

The first configuration considered is that of the stagnation 

oint flow, with the fluid impacting onto a permeable surface; the 

orous domain (in ˆ y < 0 ) is assumed isotropic and the porosity is 

ery large ( θ = 0 . 9999 ) to allow for large infiltration of the fluid

ithin the porous domain. The small parameter ε is set to ε = 0 . 1 ,

.e. there are 10 2 two-dimensional circular grains in every macro- 

copic 1 × 1 area. 

In the inviscid, irrotational approximation the velocity compo- 

ents in the free fluid are: 

ˆ 
 = a ̂  x , ˆ v = −a ̂  y . (81) 

The irrotational outer motion is used in the Hiemenz similar- 

ty solution far from the (smooth or regularly micro-structured) 

all ( Bottaro and Naqvi, 2020 ). In the present configuration a 

eneral similarity solution does not exist, because of the Navier- 

tokes/Darcy coupling across the interface. In the expressions 

bove, the constant a is the inverse of a time scale; the character- 

stic velocity can thus be chosen as aL . The length scale L is here

he depth of the porous layer; the domain has length 15 L along ˆ x ,

nd the outer edge is set in ˆ y = 5 L . Symmetry boundary conditions

re employed on the ˆ x = 0 axis so that the flow develops only in

he positive ˆ x direction (cf. Fig. 10 ). 

The full Navier-Stokes equations are used in the computations, 

ither resolving the flow field over and within the porous bed, or 

oupling the solution in Y > 0 to the harmonic pressure field in 

he porous region, in the manner described before. The same finite 

lements method is employed for these macroscopic simulations 

s that used for the microscopic systems in section 2. 

We choose a Reynolds number Re = aL 2 /ν = 25 . To account for 

he presence of a boundary layer, in enforcing the inflow condition 

he vertical coordinate must be shifted by a quantity equal to the 

isplacement thickness δ1 , i.e. at Y = 5 , outer edge of the domain,

he inflow conditions in dimensionless form reads: 

 = X, V = −Y + δ1 . (82) 

he dimensionless displacement thickness δ1 is a priori unknown 

nd it arises as part of the solution. Just like in the case of the
2 Jones replaced the scalar product of the interface-normal unit vector times the 

ree-fluid velocity gradient with the scalar product of the same unit normal vector 

imes the rate of strain tensor. 

c

o  

a

d

10 
iemenz flow, also here we find that the boundary layer has a 

onstant thickness, i.e. δ1 is constant. On the X = 15 boundary the 

sual do-nothing condition is employed when the full Navier-Stokes 

onditions are employed, and this corresponds to zeroing the trac- 

ion components. When using the two-domain approach, the con- 

ition for P −
0 

in Y < 0 is ∂ 2 P −
0 

/∂X 2 = 0 for X = 15 . This amounts to

etting to zero the Y -component of the phase-averaged velocity in 

he porous medium at the exit plane, an acceptable approximation 

f the exit boundary is sufficiently far away from the stagnation 

oint. 

In the smooth wall case, it is ˆ δ1 = 0 . 648 
√ 

ν/a , while when the

sotropic porous structures are present below the free-fluid region, 

he displacement thickness decreases to 0 . 425 
√ 

ν/a . The result in 

he feature-resolving simulation is displayed in Fig. 10 in the vicin- 

ty of the point of symmetry ( X = Y = 0 ) by the use of streamlines.

t is immediately apparent that the fluid both slips at the fictitious 

all and traverses it. This is thus a more difficult test case com- 

ared to the often used one of the flow is a plane channel bounded 

y one (or two) porous layers. 

In Fig. 11 , the solution U is displayed as a function of Y, at three

ifferent positions, X = 1 , 2 and 3, for both direct simulations and 

or the case in which slip/transpiration conditions are imposed. It 

s clear that the solution of the feature-resolving simulation, which 

scillates along Y when Y < 0 because of the presence of solid 

rains, matches well the modeled case. 

This result also shows that the velocity component U in the 

odel problem has a discontinuity close to the interface because 

f the presence of reasonably large slip speed. The right frame in 

he Fig. 11 presents the normal velocity component V as a func- 

ion of Y at X = 3 only, since all solutions at different X positions 

oincide with one another. 

The intrinsic averaged pressure contours in both cases are dis- 

layed in Fig. 10 (bottom row). The blue line in the left image 

orresponds to the dividing surface, across which a pressure jump 

ccurs (cf. Eq. (77) ). In the image on the right, the intrinsic aver-

ge pressure, computed over each unit cell V f of the domain, is 

isplayed for the feature-resolving simulation. The pressure field 
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Fig. 11. Comparison between complete simulation with full feature resolution (solid lines) and modeled with slip/transpiration velocity imposed at the dividing line/surface 

(empty circles). Longitudinal velocity component U (left) and normal velocity component V (right) as a function of Y . The insets highlight the velocity distributions in the 

porous domain. 

Fig. 12. Computational domain of backward facing step case, with porous block at the step. 
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Fig. 13. Comparison between the solutions for Re = 0 . 0 0 01 of the two-domain ap- 

proach (left frames, with blue lines denoting the dividing surfaces) and the exact 

feature-resolving numerical solution of the equations, also through the pores (right 

frames), focussing around the neighborhood of the step. The top row of images dis- 

plays the pressure contours; streamlines are plotted in the bottom row. 
nd its gradient are discontinuous at Y = 0 also in the right image;

he computed pointwise pressure is irregular around the dividing 

ine/surface when the fluid enters the porous region because large 

ocal values of the pressure occur near the stagnation points of the 

ppermost solid grains. There is thus a transition region of dimen- 

ional size of order l (cf. Fig. 10 , inset), highlighted with a black 

trip, across which a jump in intrinsic averaged pressure occurs. 

We believe that the results presented in this section represents 

onvincing evidence of the accuracy and applicability of the pro- 

osed methodology to treat the dividing surface between a free- 

uid and a porous region, even when the fluid infiltrates signif- 

cantly within the porous domain. The results are all the more 

ignificant after considering that they have been obtained for an 

xtremely large value of the porosity (θ = 0 . 9999) and a rather 

arge value of the expansion parameter (ε = 0 . 1) . In the next sec-

ion, another case is considered with two orthogonal intersecting 

avier-Stokes/Darcy interfaces, and a value of θ smaller than that 

onsidered so far. We will also test reasonably large values of the 

eynolds number, stretching the limits of applicability of the the- 

ry, to assess whether the conditions proposed can be employed 

or Re beyond order one. 

.3. Test case 2: backward facing step 

We now focus on testing the interfacial conditions between 

he free fluid and the porous domains for the case of the two- 

imensional incompressible fluid flow past a backward-facing step, 
11 
ith the step region made of a isotropic porous material as 

ketched in Fig. 12 . 

The porous block occupies the area 2 ≤ X ≤ 3 and 0 ≤ Y ≤ 1 . 

he domain is long 15 units in X, and the unit of length corre- 



S.B. Naqvi and A. Bottaro International Journal of Multiphase Flow 141 (2021) 103585 

Fig. 14. Same quantities as in Fig. 13 , plotted in the whole domain ( Re = 500 ). 
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ponds to either the inflow section or the step height. The hori- 

ontal interface, itf 1, is located in Y = 1 and 2 ≤ X ≤ 3 ; the vertical

nterface, itf 2, is in X = 3 and 0 ≤ Y ≤ 1 . At the inflow of the do-

ain (X = 0) , the laminar, fully developed channel flow velocity 

istribution is imposed, i.e. 

 = 4(Y − 1)(2 − Y ) and V = 0 ; (83) 
ig. 15. Comparison of velocity components U, V and pressure P for Re = 0 . 0 0 01 (six fram

eature-resolving solutions are shown with solid lines and results of the two-domain app

12 
hus, the centerline velocity at X = 0 and Y = 1 . 5 is the velocity

cale, used in the definition of the Reynolds number Re . At the out- 

ow (X = 15) the traction vector is set to zero. At the solid walls

he usual no-slip conditions apply, except on the dividing surfaces, 

tf 1 and itf 2, where we apply the interface conditions derived here. 

The case ε = 0 . 1 and θ = 0 . 4973 is considered and the first

omparisons, in terms of isobars and streamlines, are made for 

oth a Stokes flow ( Fig. 13 ) and a case with significant inertial ef-

ects ( Fig. 14 ). 

At this latter value of Re ( Re = 500 ) the flow is still two-

imensional and steady, according to Biswas et al. (2004) , when 

he step is impermeable. The steady solutions we have computed 

or the permeable step, based on both fully feature-resolving sim- 

lations and the two-domain macroscopic approach, attest to the 

ccuracy of the proposed interface conditions: both pressure and 

treamfunction show the same trends, also for the larger Re flow. 

n this latter case the primary recirculation region after the step 

xtends almost up to the domain’s exit, and a secondary bubble 

ppears on the upper wall. On the contrary, in the Stokes’ flow 

ase the primary recirculating vortex is very small, with both ap- 

roaches. Although these comparisons seem already to be suffi- 

iently satisfactory, a closer look in the immediate vicinity of itf 1 

nd itf 2 is in order 

The slip and transpiration velocity components along the two 

nterfaces are plotted in Fig. 15 , together with the pressure P, for 

he two Reynolds numbers already shown. 

The exact feature-resolving results and those obtained by us- 

ng the interfacial conditions agree well with one another, with 

he former solutions displaying oscillations on the pore scale, of 

ncreasing amplitude with Re . Such oscillations clearly cannot be 

aptured by the homogenization approach. Notable differences oc- 
es on the left) and Re = 500 (six frames on the right), for the two interfaces. The 

roach are displayed with symbols. 
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Fig. 16. Recirculation length and distance of the primary vortex center from the 

backward-facing step as a function of Reynolds numbers, for the exact solutions 

(dash-dotted lines) and those obtained by using the homogenization approach (cir- 

cles). Results of simulations without the porous block are shown with solid lines 

and are compared to reference values by Biswas et al. (2004) (square symbols). 
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ur, not unexpectedly, at the corner point in (X, Y ) = (3 , 1) , where

he approximations made break down. The level of accuracy of 

he model derived here is, however, surprising, particularly for the 

arger value of the Reynolds number. 

A last comparison is made on the primary recirculating vortex 

fter the step, comparing the two approaches in terms of reattach- 

ent point and abscissa of the vortex center. Both quantities are 

easured with respect to the base of the step, in X = 3 . Such com-

arisons are displayed in Fig. 16 . Also on this macroscopic mea- 

ure the model performs very well, with the results being practi- 

ally superposed (to graphical accuracy) to those available by car- 

ying out fully resolved numerical simulations. In the figure a fur- 

her comparison is made for the case θ = 0 , i.e. when the porous 

lock is impermeable. The results we have obtained match very 

ell those reported by Biswas et al. (2004) , obtained for a slightly 

ower expansion ratio, confirming the validity of our numerical ap- 

roach. 

When the step is porous the recirculation length is slightly 

horter (and so is the abscissa of the vortex center) at each 

eynolds number. Although the reduction is very small since no at- 

empt has been made to optimize porosity, permeability, or length- 

cale ratio, this observation provides support on the use of porous 

anels to mitigate vortex shedding behind bodies. 

. Conclusions 

Homogenization theory is a powerful tool to be employed when 

mall-scale features coexist with macroscopic ones. In the present 

aper we have considered how a idealized porous medium, formed 

y isotropic (circular or spherical) solid grains of small dimensions, 

ffects the free-fluid flow in its proximity. To achieve our goal, we 

ave divided the whole domain into three regions: an outer or up- 

er region, where only macroscopic variables are present; an in- 

ermediate region, across a dividing line/surface, whose dependent 

ariables are function of both micro- and macro-scale variables; a 

nner or lower region, deep within the porous medium. The micro- 

copic cell of the intermediate region spans, along the interface- 

ormal direction, from the inner to the outer domain, where the 

ehaviors are either known or can be computed. Such behaviors 

rovide the boundary conditions to be enforced on the dependent 
13 
ariables of the intermediate reference cell, which has unit length 

long the interface-parallel, periodic directions. Expanding the un- 

nowns in powers of the small parameter ε, ratio of microscopic 

o macroscopic length scales, Stokes-like systems arise at lead- 

ng order and at next higher order in the intermediate reference 

ell. These linear systems can be expressed in terms of the forc- 

ng terms, related to the traction exerted by the outer flow and its 

radient. The auxiliary problems thus arising in the intermediate 

ell permit to identify three important parameters: a slip length, 

n interface permeability, and a medium permeability. These are 

he parameters which represent the effect of the porous domain 

n the outer, large-scale flow and enter the interface conditions 

58) and (59) . Of note is the fact that the interface permeability, 

 

it f , has a different behavior from the porous medium permeabil- 

ty, K, particularly at low values of the porosity; this is because 

 tight packing of the grains affects the flow through the inner 

egion more than it does near the dividing surface. Another im- 

ortant observation concerns the pressure: the pressure (the outer 

ointwise value and the inner interstitial value) is not continuous 

or differentiable at the interface. 

The most significant result of the present paper is repre- 

ented by the interface conditions, given in dimensional form in 

ection 2.3 , and by the coupling coefficients, Section 2.5 . To permit 

he immediate use and testing of these conditions, for both two- 

nd three-dimensional arrangements of isotropic solid grains, the 

oefficients are given in Appendix A, as function of the medium 

orosity. 

Our own tests of interface conditions and coefficients have 

een carried out in a simple two-dimensional setting, under rather 

training conditions: significant fluid infiltration through the pores, 

alues of ε not so small, Reynolds number beyond the Stokes 

egime. Despite these difficulties the conditions given have per- 

ormed very well, even beyond expectations, when model com- 

utations are compared against simulations which resolve micro- 

copic details also within the porous medium. The cases con- 

idered are i ) the incompressible Hiemenz boundary layer flow 

ver the porous bed and ii ) the backward facing step, with a 

orous step region. Additional test cases, possibly including a 

hree-dimensional turbulent flow in the free-fluid region, will be 

onsidered in future work. 

The extension of the theory to the case of anisotropic porous 

edia does not present fundamental nor numerical difficulties. 
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ppendix A. Coefficients of the interface conditions 

Two dim

In-line 

θ λ K K it

0.2500 6 . 571 × 10 −2 8 . 918 × 10 −6 2 . 896 ×
0.3600 9.147 ×10 −2 2.962 ×10 −4 5.268 ×
0.4973 1.451 ×10 −1 1.830 ×10 −3 1.173 ×
0.5000 1.362 ×10 −1 1.877 ×10 −3 1.089 ×
0.6200 1.899 ×10 −1 5.378 ×10 −3 2.032 ×
0.7200 2.420 ×10 −1 1.120 ×10 −2 3.319 ×
0.8000 3.013 ×10 −1 1.945 ×10 −2 4.691 ×
0.8700 3.542 ×10 −1 3.201 ×10 −2 6.456 ×
0.9300 4.144 ×10 −1 5.798 ×10 −2 8.957 ×
0.9500 4.410 ×10 −1 7.268 ×10 −2 1.030 ×
0.9700 4.752 ×10 −1 9.879 ×10 −2 1.233 ×
0.9900 5.323 ×10 −1 1.256 ×10 −1 1.670 ×
0.9999 6.188 ×10 −1 2.166 ×10 −1 2.585 ×

Three dim

In-line 

θ λ K K

0.4900 1.093 ×10 −1 2.769 ×10 −3 9.280

0.6300 1.597 ×10 −1 6.901 ×10 −3 1.818

0.7300 2.196 ×10 −1 1.302 ×10 −2 3.019

0.8300 3.002 ×10 −1 2.727 ×10 −2 5.580

0.9300 4.098 ×10 −1 7.172 ×10 −2 5.580

0.9500 4.478 ×10 −1 9.287 ×10 −2 1.260

0.9700 5.061 ×10 −1 1.330 ×10 −1 1.686

0.9900 6.291 ×10 −1 2.708 ×10 −1 2.893

0.9999 1.361 1.691 1.6
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