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EFFECT OF SPANWISE SYSTEM ROTATION ON SPATIALLY 
DEVELOPING DEAN VORTICES 
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IMHEF-DGM. Ecole Polytechnique Ft%it!rale de Lausanne. CH-1015. Luusanne, Switzerland 

SUMMARY 

Three-dimensional spatially developing Navier-Stokes calculations are carried out to simulate the flow in a 
curved, rotating channel. The competition between centrifugal and Coriolis forces, expressed by the ratio of the 
Dean number to the rotation number, gives rise to a variety of possible instability modes characterized by the 
presence of streamwise vortices. Cases in which the force produced by system rotation enhances or opposes the 
centrifugal force are treated and the effect on the ensuing instability are analysed. Evidence for a generalized 
Eckhaus instability of rotating Dean vortices is presented. 
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1. INTRODUCTION 

Problems of flow with streamline curvature and/or system rotation have attracted much attention in 
recent years for a number of reasons. These kinds of flows are commonly encountered in several 
technical applications, e.g. rotating turbomachinery, and understanding the process by which they 
break down to turbulence might lead to improved models of the flow behaviour on the pressure and 
suction sides of a blade. One could also envisage ways to affect the near-wall structure of the motions 
to improve the performance of the machine. Another interesting characteristic of flows with multiple 
body forces is the possible cancellation of effects when the destabilizing forces oppose each other in 
such a way as to annihilate instability waves. 

The present work is concerned with the spatial development of the flow in a curved channel subject 
to spanwise system rotation. The motion in a curved channel is susceptible to an instability when the 
destabilizing centrihgal force exceeds the restoring normal pressure gradient. Under such a 
condition, steady streamwise ‘Dean’ vortices’ ensue. These vortical structures are initially amplified 
exponentially along x,  the streamwise direction, by the instability mechanism; downstream, non- 
linear effects become important and the vortices reach a saturated stage of (approximately) constant 
perturbation energy. Details of these phenomena are provided by the experiments of Matsson and 
Alfredsson2*’ and Ligrani et aL4 NavierStokes simulation results were reported by Finlay et al.’ 
using a temporal model and by Bottaro6 with a spatial model. A feature of these vortices, observed in 
both experiments and simulations, is their tendency to interact through the merging of neighbouring 
pairs and/or the appearance of new vortices in between existing pairs. Such events, termed mergings 
and splittings, have been studied by Guo and Finlay,’.’ who explained them in terms of an Eckhaus 
instability. 
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When spanwise system rotation is applied, a Coriolis force appears which can oppose or enhance 
the effect of the centrifugal force. Linear theory has been used by Matsson and Alfredsson' and 
Matsson" to describe the interaction of these forces during the initial spatial development of the flow 
in a curved, rotating channel. Matsson and Alfiedsson3 also conducted experiments and demonstrated 
that moderate negative* rotation can cancel the vortices and strong negative rotation can produce 
vortices with upwash (secondary flow away from the surface) on the convex wall of the channel 
(simply put, the vortices are 'upside-down'). This can be qualitatively explained on the basis of an 
inviscid stability criterion, a generalization of the Rayleigh criterion proposed by Mutabazi et al. " 
The modified Rayleigh discriminant in the presence of curvature and system rotation is defined by 

where u(r) is the base flow velocity distribution, 0 is the angular velocity of rotation and r is the 
radial co-ordinate. O measures the kinetic momentum stratification of fluid particles. A necessary and 
sufficient condition for inviscid stability to axisymmetric perturbations is @(r) 2 0 everywhere in the 
flow held. 

A problem somewhat related to the present one is that of the spanwise rotating boundary layer 
flow. It was shown by Aouidef et al.," Zebib and Bottar0l3 and Bottaro et a1.I4 via linear and non- 
linear theories that negative system rotation delays the appearance of the Gortler vortices to 
downstream distances very far away from the leading edge of the plate. There are no 'upside-down' 
vortices in this case because of the absence of a convex wall. 

The present work treats numerically the problem of the influence of spanwise system rotation on 
spatially developing Dean vortices. The results illustrate nicely the vortex annihilation effect 
discussed previously for moderate negative rotation, the 'upside-down' effect for larger negative 
rotation and the enhancement of the instability produced by position rotation of the system. 
Furthermore, evidence of an Eckhaus instability for rotating Dean vortices is also presented. 
Comparisons with the experimental data of Matsson and Alf ieds~on~*~ are made throughout. 

2. FORMULATION 

The development of steady vortices is computed by solving the three-dimensional, incompressible 
NavierStokes and continuity equations expressed in cylindrical co-ordinates (r, 8, z) in the rotating 
frame of reference sketched in Figure 1: 

-- Du, aP 1 2 - - -+-v u,, 
Dt aZ Re (4) 

* By negative rotation we mean rotation in a sense opposite to the base flow direction. 
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Figure 1. Sketch of problem 

where 

~a a ue a a _ - _  - +u,-+--++,-  
Dt at ar r ae a ~ ’  

(ur, ue, u,) are the velocity components along r ,  8 and z respectively and p is the dimensionless 
pressure. The scalings used are the channel height h (equal to the difference between outer and inner 
radius, r,, - ri) for length, the bulk speed U for velocity, h / U  for time and pU2 for pressure, where p 
is the fluid density. The ensuing governing parameters are the Reynolds number and the rotation 
number, 

Re = Uh/v, RO = m/U, (6) 

with v the kinematic viscosity. 
The numerical method is the same as that used by Bottaro et al. I s  and Bottaro6 to study the spatial 

development of Dean vortices. The main characteristics of the numerical technique follows. A finite 
volume staggered gnd is constructed to cover the computational domain which is swept by zebra 
relaxation sweeps along radial and aximuthal directions. Convective and diffusive fluxes are treated 
with second-order centred schemes and the Thomas algorithm is used to solve the resulting 
tridiagonal system of equations. Steady solutions are obtained via fully implicit Euler time stepping; 
the time step dt is taken equal to 0.1 and is such that more than four steps are needed to advance a 
typical fluid element moving at the bulk speed of one streamwise mesh length. The pressure coupling 
is dealt with by the pressure correction technique SIMPLER described in detail by Patankar.16 The 
computational domain extends from z = 0 to z = z, with z,, = 1.5 and the spanwise length is 
such that one vortex pair of wave number /? = 4.2 can be accommodated in the cross-section. This /? 
is equal to the average value measured by Matsson and Alfredsson’ and is close to critical for Ro = 0. 
In the radial direction the domain goes from r = ri to ro with r, - r, = 1 and = 37.6 in order to 
match the set-up of Matsson and Alfreds~on?*~*~ The angular extent is 1 a745 rad. The grid consists of 
48 equally sized control volumes along the spanwise direction and 24 stretched control volumes 
along the normal-to-the-wall direction; the stretching is such that near-wall details are finely resolved. 
With such a grid a typical vortex pair is resolved in the cross-section by 1152 control volumes; such a 
resolution is clearly adequate and exceeds the minimal resolution requirements established by 
Bottaro6 (p. 636) for a comparable flow configuration. Along the streamwise direction 150 equally 
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spaced grid points are used. For the channel of streamwise length (r, + r0)0/2 = 66.49 in the present 
simulations this resolution translates to more than two control volumes along the streamwise 
direction for every non-dimensional unit of length. The resolution is acceptable for this kind of flow 
prior to the onset of the secondary, wavy instability. However, when such an instability arises, 
streamwise travelling waves of length approximately equal to h occur so that more grid points in 8 
will be needed to adequately capture the phenomenon. No-slip Dirichlet boundary conditions are 
applied at the solid walls and the spanwise direction is taken periodic. 

The open boundary conditions are crucial in a convectively unstable flow such as the present one." 
For the Dean flow6 it was found that a steady forcing at the inlet was required to 'drive' the vortex 
development and to overcome the unsteady effects caused by the propagation of pressure waves 
between inlet and outlet boundaries. These effects were found to be responsible for states with 
continuous and seemingly random interactions--mergings and splittinge-f vortices. These 
interactions produced defects with soliton-like behaviour. Although this subject is worthy of further 
investigations, the focus is on the primary, steady instability of the vortices. 

The flow field imposed at the inlet of the domain consists of the exact, one-dimensional solution 
for curved channel flow, the expression of which is 

(7) U(r)  = A(r In r + Cv + E/r) ,  

with 

plus a small perturbation which is taken to be 

ui = --c sin (;I;, -- n )  cos(Bz + n). (9) 

with no-slip conditions explicitly enforced on the solid walls and with E ,  the amplitude of the inlet 
disturbance, small: -c = 0.01. The perturbation chosen satisfies the continuity equation and represents 
a pair of vortices (see Fig. 2). Equation (9H11)  are not the eigensolutions of the linear stability 
problem but constitute physically sound inlet conditions with a non-zero projection on the linear 
eigenfunction space. The numerical simulations performed show that Dean vortices start growing 
immediately from the proposed initial disturbance field. 

The outlet conditions are expressed via convecfive derivatives of the form 

where denotes each velocity component. Such conditions were found to produce negligible 
reflection of outgoing waves in a complex mixed convection problem (the Poiseuille-Benard 
configuration'*) which, at periodic time intervals, presented macroscopic regions of flow reversal at 
the exit boundary. 

A note is in order concerning the advantage of simulations that use the spatial as opposed to the 
temporal model. A detailed discussion of the subject is given by B ~ t t a r o ; ~  here it suffices to say that 
temporally developing simulations (i.e. those simulations that employ streamwise periodic 
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Figure 2. Initial condition 

boundaries and that try to match spatial and temporal developments through the adoption of an ad 
hoc convection speed) may produce spurious, periodic time oscillations, resulting from the 
continuous creation and annihilation, in the computational cross-section, of a vortex pair. On the 
other hand, experiments camed out under conditions of steady inlet f o r ~ i n g ~ ~ ’ . ~  suggest that 
stationary and spatially developing vortex interaction phenomena occur. 

3. RESULTS AND DISCUSSION 

To illustrate the effect of system rotation on the vortices, we focus on the case of Re = 432 (the 
corresponding Dean number, defined as De = Reyo’’ with the curvature parameter y given by 
7 = 2(r0 - ri)/(ro + r J ,  is equal to 70) and four different rotation numbers: Ro = 

Before presenting the nonlinear results, it is interesting to comment on the expected behaviour of 
the different flow cases by inspecting the generalized Rayleigh discriminant. The flow is inviscidly 
unstable to axisymmetric perturbations in regions where 4 is negative. From Figure 3 one would 
expect the instability to arise near the concave wall for Ro = 0 and 0.03 and near the convex wall for 
Ro = -0.05. When Ro = -0.03, four alternating regions of positive and negative 4 are present 
across the radial direction and this is interpreted as an indication that some global balance between 
Coriolis and centrifugal effects occurs. The linear stability theory’ confirms that the flow is stable up 
to large values of Re when Ro is in the neighbourhood of -0.03. 

Results for the reference case Ro = 0 are displayed in Figure 4 from the top in terms of streamwise 
perturbation velocity isolines and secondary flow vectors on several cross-sections* and of 
streamwise perturbation energy as a function of 8. The open circles in the last figure are the results by 
Matsson and Alfred~on.~ The streamwise perturbation velocity is defined as 

0.03,0, -0.03, -0.05. 

~ ’ ( r ,  8, Z) = u&, 8, Z) - U(r, O),  where U(r, 8) = (13) 

Note that the curved channel has been ‘straightened’ for graphical purposes. 



1280 T. RANDRIARIFARA AND A. BOTTARO 

- Rc-4 03 
R d  
RO-4.03 
R c - 4  05 ___--_ 

- 
I ' I ' I ' I  l ~ i * l J i ~ l '  

37 G r 38 G 

Figure 3. Generalized Rayleigh discnrnrnant for various rotation numbers 

and the corresponding disturbance energy is 

with A the cross-sectional area. 
The agreement between the computed and the measured perturbation energies is very good, 

although the experimental results present a higher background disturbance level that shows up to 8 of 
about 0.6. The computed e grows exponentially from 8 = 0 rad up to 8 % 1 rad. At that point, non- 
linear effects become predominant and after an overshoot a saturation characterized by a quasi- 
parallel pair of vortices appears. The details of the streamwise perturbation velocity on several cross- 
sections are well captured by the simulation as attested by a comparison between Figure 4 (top) and 
Figure 5(a). In Figure 5 we have reported the hot wire results of Matsson and Alfredsson3 for u' at 
three cross-sections in the non-linear regime separated by an angular distance of 0.787 rad from one 
another. An elongated (along z) high-speed region is formed near the concave wall for Ro = 0 and it 
is delimited by two thin, vigorous upwash zones with secondary flows from the outer to the inner 
surface. 

The picture is completely modified when a small negative rotation is applied. Figure 6 shows that 
the perturbation energy in both the experiment and the computation at Ro = -0.03 does not grow 
from its background level and vortices do not form in the allotted streamwise distance. Conversely, 
by decreasing Ro further (Ro = -0.05), a pair of cells starts to emerge in the Coriolis-unstable region 
close to the convex wall (Figure 7). The computational domain is not long enough in 8 to allow for a 
full amplification of the instability; however, the experimental results in Figure 5(b) demonstrate that 
the vortices become just like those of the Ro = 0 case, with the roles of concave and convex walls 
reversed (the flow structures are 'upside-down'). 

For the positive rotation case (Ro = 0.03) a rapid growth of e is found with a peak for 8 as low as 
0.8 rad (Figure 8). The large amplification factor of the instability is due to the combined effect of 
centrifugal and Coriolis forces. An interesting phenomenon occurs from 8 = 1.1 rad the elongated 
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Figure 7. Same as Figure. 4 but for Ro = -0.05 
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the calculation (Figure 9). The perturbation energy peak is reached at 8 = 0.87 and such a maximum 
value is slightly inferior to that attained by vortices with f i  = 4.2. Starting from 8 = 1 .O, a new vortex 
pair starts appearing at the concave wall midway between z = 0 and z-. This new structure, clearly 
evidenced by plots of both the streamwise disturbance velocity and the secondary flow, rapidly 
acquires strength and produces a second, well-marked overshoot in e close to the exit of the 
computational domain. The final, stable flow configuration at the channel exit consists of two pairs of 
counter-rotating vortices, although only one pair was forced at the inlet. 
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Figure 9. Same as Figure 8 for /I = 2.51. The broken curve in the e versus 0 plot is the result for B = 4.2 
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The difference between the case with fl  = 4.2 and that with fl = 2.5 1 can also be nicely illustrated 
by isosurface plots of the streamwise vorticity. In Plate 1 (a) the initial formation of a second vortex 
pair is not visible (this is, however, due to the values of the streamwise vorticity chosen for the 
graphical representation). In contrast, in Plate 1 (b) a suggestive structural bifurcation appears 
whereby from the large-scale regions of positive and negative vorticity near the outer wall, two 
symmetric ‘legs’ emerge that tend to invade the centre of the cross-section. These two legs in turn 
induce, a bit further downstream, opposite sign vorticity at the concave wall in such a way that at the 
channel outlet two quasi-fully developed pairs of streamwise vortices appear. 

4. CONCLUDING REMARKS 

In this work, three-dimensional, spatially developing Navier-Stokes calculations have been described 
for the rotating Dean flow case. It has been shown that depending on the rate of rotation of the 
system, different instabilities (Coriolis-dominated or centrifugally dominated) may arise with 
amplification rates that can range from very large to negligibly small. Extensive comparisons with 
experimental data have been made to attest the validity of the simulations. 

Convincing evidence for the appearance of a generalized Eckhaus instability has been presented 
for the positive rotation case. This may warrant further theories for secondary, non-linear instabilities 
of rotating vortices. 
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Plate 1 lsosurfaces uf streamwise vorticity for Ro=0.03 with (a) p 4 . 2  and (b) p=2.51. The two valucs chosen for the display 
are +0.2 (blue) and 4 . 2  (red). The extrcrna of the streamwise vorticity are (a) 1.41 and (b) 2.1 




