

Convegno sulle Applicazioni della Computational Fluid Dynamics alla Progettazione Navale

UNA NUOVA TECNICA DI AZIONAMENTO PER IL CONTROLLO DELLA SCIA – E LA RIDUZIONE DELLA RESISTENZA AL MOTO – DIETRO UN CORPO TOZZO IMMERSO

> A. Bottaro, J. Favier (DICAT, Genova) & A. Dauptain (CERFACS, Toulouse)

How can we reduce pressure drag behind a solid bluff body by a passive technique?

How can we reduce pressure drag behind a solid bluff body by a passive technique?

Known techniques of passive/active flow control:

- Injection of micro-bubbles and/or polymers
- Riblets

- ...

- Compliant walls
- Viscosity modifier
- Vortex generators

Known techniques of passive and/or active flow control:

- Injection of micro-bubbles and/or polymers
- Riblets

- ...

- Compliant walls
- Viscosity modifier
- Vortex generators

The approach used here:

Passive hairy coating

sea otter

Scientific challenges to modeling a hairy surface

- Mechanical properties of the biological surfaces
- Large displacements and rotations of structures
- Multiple interactions between structures
- Coupling fluid and structure

We use a partitioned explicit approach. The fluid and the structures communicate via **volume forces**.

Influence on the unsteady separated wake

porous, anisotropic, compliant coating

Fluid model

• Navier Stokes solver for uncompressible, unsteady laminar flows, with a volume force, 2nd order in space and time

$$\nabla \cdot \mathbf{u} = 0$$

$$\frac{\partial \mathbf{u}}{\partial t} + \nabla (\mathbf{u}\mathbf{u}) = -\nabla p + \nu \nabla^2 \mathbf{u} + \mathbf{f}$$

 2D Mesh is regular, periodic Cartesian, staggered, (typically 800x400). Obstacles, sources and damping terms imposed by
the IMMERSED BOUNDARY METHOD.

Chorin A.J. *Math. Computation* 1968 Peskin C.S. *Acta Numerica* 2002

Interaction model: homogenized approach

Modeling every cilium is numerically impossible: \rightarrow reduction of the dimensions of the problem

- The volume of hair is considered as an homogenized anisotropic porous medium, with porosity varying in time and space.
- Locally, a drag force is applied on fluid (and its reaction on the structure)
- η local porosity

- **d** hair direction

$$\mathbf{F}_{drag} = \mathcal{F}(\eta, \mathbf{d}, \mathbf{u} - \mathbf{u}_{hair})$$

- *u-u*_{hair} relative velocity of fluid

Howells, D. I. J. Fluid Mech 1997

Interaction model: homogenized approach

Structure model

- Hair layer motion is modeled by a group of rods. Each rod represents a cluster of hairs
- $0 = M_{ext.}(\mathbf{x}_k) + M_{inter.}(\alpha_{k-1,k,k+1}) + M_{flex.}(\alpha_k) + M_{dissip.}(\dot{\alpha_k}) + M_{inertia}(\mathcal{I}\ddot{\alpha_k})$
 - Non linear system solved implicitly (NLCG) or explicitly (RK4)

Restoring forces in the structural model

Structure model: parameters

- **1. Density** of hair, related to porosity (0.006, modifies fluid flow without blocking)
- 2. Flexibility related to material elasticity
- **3. Interaction** between hair during a compression
- 4. Dissipation by deformation and hair-to-hair contacts
- 5. Inertia of the hair (low)

Coupling

- The flow and structure solvers, developed at DICAT, are written in FORTRAN 77 and 90
- The partitioned coupling is controlled by the PALM software developed at CERFACS

Buis S., Piacentini A., Declat D. *Concurrency Comp.: Pratice and* Experience 2005

Coupling

- The flow and structure solvers, developed at DICAT, are written in FORTRAN 77 and 90
- The partitioned coupling is controlled by the PALM software developed at CERFACS

 \bigcirc

Buis S., Piacentini A., Declat D. *Concurrency Comp.: Pratice and* Experience 2005

Case 1 : bare cylinder

Case 2 : rigid wall-normal hair

Case 3 : rigid longitudinal hair

Case 4 : moving hair

Aerodynamic performances

	Cd	Cd'	Cl'	St
Case 1	1.3689 (1.39;1.356)	0.0274	0.4381	0.199 (0.199;0.198)
Case 2	3.1464	0.1943	1.1376	0.1946
Case 3	1.3035	0.0207	0.3839	0.1916
Case 4	1.2109	0.012	0.3008	0.1661

(Bergmann et al. Phys. Fluids 2005; He et al J. Fluid Mech. 2000) ²⁵

Aerodynamic perf.(ctd.)

	Cd	Cd'	Cl'	St
Case 1	ref	ref	ref	ref
Case 2	+130%	+608%	+160%	-2.21%
Case 3	-4.78%	-24.54%	-12.37%	-3.71%
Case 4	-11.54%	-56.09%	-31.34%	-16.53%

Physical mechanism

Physical mechanism

Contours of vertical velocity

Movements of reference cilia

Contours of vertical velocity

Force field

The hairy layer counteracts flow separation

Conclusions and perspectives

- ✓ Simulations show a reduction of pressure drag on a cylinder for a unsteady laminar flow (Re=200).
- The motion of the hairy structure can improve aerodynamic performances
- The passive control structural parameters have been optimised
- Direct perspectives concern flexible rods and turbulent configurations; possible applications to small underwater vehicles and to UAV/MAV (in the aeronautical field)
- Experimental investigations seem justified on this topic

Thank you for your attention

