EFFECT OF A POROELASTIC LAYER ON LIFT AND DRAG OVER AN AIRFOIL

A. Bottaro, D. Venkataraman & F. Negrello Università di Genova, Italy

EFFECT OF A POROELASTIC LAYER ON LIFT AND DRAG OVER AN AIRFOIL

A. Bottaro, D. Venkataraman & F. Negrello & G. Tadmor Università di Genova, Italy

EFFECT OF A POROELASTIC LAYER ON LIFT AND DRAG OVER AN AIRFOIL

FOCUS on passive actuators, what works, why it does, how can we select and "optimise" actuators for lift/drag purposes, etc.?

Reducing pressure drag by a passive technique ...

"Coverts" feathers ...

... and other appendages are the norm

mosquito body

... and other appendages are the norm

butterfly scales

... and other appendages are the norm

fly wing

Passive control via "append-actuators"

Re = 200

FSI

പ

-0.5

0.07

0.09 time

0.1

0.11

0.08

What happens?

Favier et al, JFM 2009

For larger Re numbers, there are the experiments in water and oil channels by Prof. Ch. Brücker

Cylinder Experiments - Results Re = 27200

Cylinder Experiments – Results

Flexible and hairy flaps produce a comparable result: recirculation area elongated for Re < 15000, shortened for Re > 15000

Cylinder Experiments - Results

... plus reduced flow fluctuations for Re > 15000

Clear effect on the cylinder wake → effect on drag

New goal: effect on lift and drag over an airfoil via a *passive, poroelastic* layer

HAIRFOIL !

Goal: put a *poroelastic layer* on the suction side of an airfoil to affect the separated region and the wake

How can we model the layer (made of fibers, hence porous and compliant)?

Options:

Experiments	Poroelasticity	NS IBM	Low order
	theory	simulations	model

Options:

aerofoil with silk flaps

flow visualisation

Prof. Ingo Rechenberg, TU Berlin http://www.bionik.tu-berlin.de/institut/xs2vogel.html

silk flaps

Flexible, porous flaps delay stall ...

- -

Experiments (Freiberg)

Experiments (Freiberg)

Experiments (Freiberg)

- increasing α 0°-20° at - time instant for U<0 d $\alpha/dt = 5.6^{\circ}/s$ at x=0.275I

- Flexible and hairy flaps oppose separation at fixed angles of attack

- Hairy flaps delay flow separation in pitching experiments

Experiments (Genova)

Experiments (Genova)

Experiments (Genova)

Options:

Gopinath & Mahadevan (Proc. Royal Soc. A, 2010)

Options:

Present work (at low Re number)

- NACA0012 airfoil
- More difficult to control separation of boundary layer in laminar case – boundary layer less capable of handling adverse pressure gradient without separation.
- Low Reynolds number (1100) particularly used for testing performance of MAVs.

- Incompressible, unsteady 2D
 N-S eqns. with forcing
- Immersed Boundary Method:
 Stationary, non-conformal
 Cartesian grid (fine on and
 near airfoil)
- Feedback forcing term in N-S:
 Spring-mass system
 F = α ∫(0 U)dt + β (0 U)

RESULTS: NO-CONTROL CASE

Mean lift as a function of angle of attack (between 20° and 70°) - steady drop in lift after 45°. Mean drag as a function of angle of attack (between 20° and 70°).

An effective control should see a correlation between the time scale of the vortex shedding frequency and the natural time scale of the structures

Power Spectra of Drag & Lift Signals : 22 degrees

Power Spectra of Drag & Lift Signals : 45 degrees

Power Spectra of Drag & Lift Signals : 70 degrees

Modeling in 3 points

Modeling all feathers: too heavy ...

Must reduce the number of degrees of freedom

- 1. **Homogenized approach**: description of the layer in terms of **density** and **direction** of feathers.
- 2. Motion of the layer reduces to the oscillation of a small number of **reference elements**
- 3. The fluid "sees" the structures in terms of **volume forces** (and the same for the structures)

E. De Langre, ARFM, 2008

Fluid part...

$\frac{\partial \mathbf{U}}{\partial t} + \nabla (\mathbf{U}\mathbf{U}) = -\frac{\nabla p}{\rho} + \nu \nabla^2 \mathbf{U} + \mathbf{F}; \ \nabla \cdot \mathbf{U} = 0$

2D incompressible Volume forces formulation

Staggered grid Periodic boundary conditions, with buffer domain to treat I/O <u>Convective part</u>: Adams-Bashfort <u>Viscous part</u>: Crank-Nicolson Poisson and implicit parts solved using conjugate gradient

 \longrightarrow (

order 2 in space and time

$$\frac{\partial \mathbf{U}}{\partial t} + \nabla (\mathbf{U}\mathbf{U}) = -\frac{\nabla p}{\rho} + \nu \nabla^2 \mathbf{U} + \mathbf{F} \, ; \, \nabla \cdot \mathbf{U} = 0$$

Regular cartesian mesh 200 x 400 (10L x 20L)

The dynamics of the layer is governed by the reference elements The "skeleton" of the layer is governed by six terms in the angular momentum equation for each element

$$egin{aligned} M_{losses}(k) &= -K_l \, \dot{ heta}(k) \ M_{inertia}(k) &= -m rac{l^2}{4} \ddot{ heta}(k) \ M_{gravity} &= mg rac{l}{2} \sin(heta) \ M_{ext}(k) &= rac{l}{2} F_n(k) \end{aligned}$$

Explicit (Runge-Kutta 4) and implicit (nonlinear conjugate gradient) resolution of the angular momentum balance of each reference fiber

 $m(l/2)^2\ddot{\theta}(k) = M_{spring}(k) + M_{rigidity}(k) + M_{dissip}(k) + M_{inertia}(k) + M_{ext}(k) , \ k = 1, \dots, N_c$

Equilibrium is reached after a sufficient number of sub-iterations

How to evaluate the force imposed by the fluid onto the structures ...

How to evaluate the force imposed by the fluid onto the structures ...

FIGURE 5. Homogenized model of the furry coating and sketch of the volume force F^h imposed on the fluid. (a) Hairy layer covering a cylinder and relative fluid velocity U^h at any point P of the layer, while the single element moves at velocity V^h . (b) Gray scale of the packing density ϕ and vector d orientation of the elements within the hairy layer. At point P, tangential and normal velocity components used to estimate the two components of F^h are displayed.

Homogenized part (fluid+structure) ...

- Each cilium is a circular cylinder
- At each point along the beam, the force is decomposed into a
 - tangential and a normal contribution

Estimate of F_n

$$\frac{||\mathbf{F}_{n}^{h}||}{\mu||\mathbf{U}_{n}^{h}||} = c_{0}(\phi) + c_{1}(\phi)Re_{n}^{h}$$
theoretical (Re=0) empirical Re<180

Koch & Ladd, JFM 1997

$$||\mathbf{F}_n^h|| = f_2(\phi, Re_n^h)$$

Homogenized part (fluid+structure) ...

Estimate of F_t

For Re = 0: Stokes approximation:

$$\frac{\mathcal{F}_t^h}{\mu || \mathbf{U}_t^h ||} = \frac{8\pi (1-\phi)^2}{\phi - 1 + \frac{2}{\phi - 1} \ln \phi - 2}$$

$$\mathbf{U}_t^h (1-\phi) : \text{ local velocity through the pores}$$

For Re<180: same scaling in Reynolds as for F_n

$$||\mathbf{F}_t^h|| = f_1(\phi, Re_t^h)$$

Inner constants of the layer: Density (nb/cm2), Diameter of cilia

Symbols : theoretical model by *Howells, JFM 1998*

$$\rightarrow F_{ext}(k) = \int_{V_{control}(k)} \left\| \boldsymbol{F}^{h} \right\| \mathrm{d} V$$

Volume force of each bristle onto the fluid

 The DNS is performed on a cartesian mesh. The cilia do not exactly coincide with the nodes

 we need to interpolate.

Two interpolation strategies are tested and compared on two test cases:

Distributed interpolation:

Linear interpolation:

Dauptain et al., JFS 2008

Weak coupling FSI algorithm

In the structural model, the rigidity/elastic term, which models the structural flexibility of the hairy layer, is the most significant. It defines a natural time scale of the layer, through which a coupling with the fluid is allowed

$$T_{structure} \approx \pi I V(m/K_r)$$

 $T_{fluid} \approx St^{-1} D/U_{\infty}$

Testing the model in the fluid (a vortex pair in a periodic box)

Amplitude of the velocity

Testing the model in the fluid (flow in a channel with one hairy wall)

Amplitude of the velocity

<u> </u>		

Back to the airfoil with control elements

COMPARATIVE ANALYSIS OF DRAG & LIFT - 22 DEGREES

Exact synchronization of fluid shedding time scale and bristles' time scale

COMPARATIVE ANALYSIS OF DRAG & LIFT - 45 DEGREES

Exact synchronization

COMPARATIVE ANALYSIS OF DRAG & LIFT - 70 DEGREES

Approximate synchronization

Comparative Analysis of Velocity Near the Airfoil— Without & With Control

Comparative Analysis of Vortex Shedding – Without & With Control

Summary

Sets of control parameters are found which give enhanced aerodynamic performances with the following features:

• For 22°:

Increase in mean lift – 32.24%, Decrease in lift oscillations – 16.74%, Decrease in drag oscillations – 37.44%, Mean drag increases – by 6.6%.

• For 45°:

Decrease in mean lift -9.23%, Decrease in drag fluctuations -8.79%, Mean drag decreases - by 1.47%.

• For 70°:

Increase in mean lift – 16.96%, Decrease in lift fluctuations – 25.75%, Decrease in drag fluctuations – 21.28%, Decrease in mean drag – approx. 1.48%.

Before you ask me ...

Before you ask me ...

- How to convert model parameters into a choice for an effective material for the actuators? The "optimal" material may not be viable or may not even exist.
- How do you optimize?
- Must increase Re to render it more pertinent!
- What works at one Re/angle of attack may hamper performances for different sets of parameters ...
- Etc.

Will we ever get here?

The Times of India, April 16 2009