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Local linear stability of swept and unswept incompressible boundary layers devel-
oping over compliant, fluid-saturated, porous plates is considered in the limit of
small permeability. The analysis is meant to yield preliminary indications on the
possible stabilization induced on the flow’s hydrodynamic and hydroelastic modes
by poroelastic media, such as those occurring in many natural and technological
settings. As far as hydrodynamic modes are concerned, the main stabilizing effect
is that of compliance, which however couples weakly to low-frequency crossflow
modes. Permeability plays a damping role on hydroelastic modes, which here take
the form of travelling wave flutter instabilities. The passive control of instabilities
through poroelastic coatings specifically designed to selectively exploit the effect of
compliance and/or permeability is a subject worthy of future research efforts. C© 2014
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4892086]

I. INTRODUCTION

Fluid flow above and throughout poroelastic media occurs in a variety of technological and
natural applications, including, in order of decreasing length scales, vegetation canopies,1, 2 birds’
covert feathers,3, 4 tennis balls,5, 6 endothelial glycocalyx of blood vessels,7, 8 cytoplasm of living
cells,9 and carbon-nanototubes-based flow sensors.10, 11 The use of flexible, permeable media to
bound a flowing fluid is also acquiring momentum in applications related to both sensing12–14 and
manipulating15–22 near-wall transitional and turbulent structures. Such media often take the form of
dense bundles of pillars, hinged at a rigid base and free to vibrate under the forcing provided by
the fluid, so that elastic potential energy can be easily transferred to the fluid and back. Effective
field equations for media constituted by ordered pillars and disordered carpets have been recently
proposed by Gopinath and Mahadevan23 on the basis of homogenization theory.

Here the focus is on stability issues for swept and unswept boundary layers over thin plates
which are both flexible and porous, the goal being to find trends on linear stability boundaries upon
variation of parameters like the elastic modulus of the plate or its permeability. Previous related
studies consider either the stability of channel flows bounded by one or two porous walls,24–29 or
the stability of channel and boundary layer flows past flexible walls.30–34 In the first configuration
(porous wall) destabilization of Tollmien-Schlichting (TS) modes is found, even in the presence of
walls which are very weakly permeable. Conversely, the second case (compliant wall) is associated
to a reduction of the region in parameter space where hydrodynamic modes are excited (for both
TS and crossflow - CF - instabilities, as will be shown here), but causes the appearance of rapidly
amplifying wall modes (in the remainder of the paper, such modes are called FISI, for “flow induced
surface instabilities”). To the best of the authors’ knowledge, there are no studies on the stability of
incompressible flows over a poroelastic medium saturated by a fluid, and the present work represents
a first step in this direction, albeit in the limit of small permeability.
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Class A/NEW
Convective instability

Instabilities in a boundary layer over a compliant wall
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Absolute instability
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Ex. Static divergence
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FIG. 1. Schematic of classification of fluid-solid instabilities.

The different instabilities which might be observed in a boundary layer over a compliant wall
are summarized in Fig. 1. The original classification scheme, due to Benjamin35 and Landahl,36

divides the modes into three categories based upon the response of the wave to irreversible energy
transfer to and from the compliant surface. Class A waves, also called “negative energy waves”
(NEW) in the plasma physics community, are destabilized by dissipation within the coating, i.e.,
increased dissipation of energy in the wall yields an increase in wave amplitude. A typical example
of a class A wave is the viscous TS instability; Class B waves (also known as PEW for “positive
energy waves”) are stabilized by an increase in the viscous dissipation in the coating or the medium.
An example of such an instability is the mode known as “travelling wave flutter” (TWF, one of the
FISI). When PEW and NEW co-exist, there is the possibility of modal interaction and coalescence.
Modal coalescence between different branches of solutions and the emergence of waves with zero
group velocities are necessary conditions for there to be an absolute instability. Class C modes are
absolute instabilities for which hydrodynamic forces cause a unidirectional transfer of energy to
the wall. For example, the coalescence between TS waves (class A) and TWF (class B) yields the
so-called transitional mode (class C), identified theoretically by Sen and Arora.37 A well-known
class C mode is static divergence, a FISI which can be observed in the presence of high shear at the
wall and/or wall damping.38 Static divergence has a very small phase speed and manifests itself as a
periodic series of humps and valleys at the surface, as documented experimentally by Gad-el-Hak39

in 1986; ten years later, Gad-el-Hak40 states that “in a physical experiment it is rather difficult to
distinguish between the static-divergence waves and the transitional ones.” In the present work static
divergence modes are never amplified, and FISI are thus always of the travelling-wave type.

The objective of this work is to ascertain if and how a small amount of wall permeability has an
effect on the onset of hydrodynamic and hydroelastic instabilities. We model the wall as a Kramer-
type compliant surface,41 using classical thin-plate theory;42 the fact that it is porous and permeated
by the fluid is rendered by a simple Darcy’s law, as described in Sec. II. Section III addresses the
effects of the permeability of the plate on TS and CF modes, whereas Sec. IV presents results on the
impact of compliance on stability, including FISI. The combined effect of porosity and compliance
is addressed in Sec. V, while concluding remarks are given in Sec. VI.
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FIG. 2. Sketch of the coordinate systems for the boundary layer over a swept wing.

II. THE MODEL

The incompressible boundary layer which forms over a swept plate is modeled using the family
of similarity solutions given by Cooke.43 This model relies on the specification of two parameters:
one, m, describes the intensity of the pressure gradient, and the second, the sweep angle �, provides
a relation between chordwise and spanwise components of the velocity. The configuration illustrated
in Fig. 2 shows the swept plate seen from above: the wing coordinate system is described by xw and
zw, aligned, respectively, along the plate’s chord and the plate’s spanwise sense, with y the wall-
normal direction. The corresponding velocity components within the boundary layer are denoted
by Uw, Ww, and V . The velocity at the boundary layer edge (denoted in the following by using
subscript “e”) at any position xw is defined by Ue = Cxw

m , with C a suitable constant, and We

= constant. A similarity solution can be found by introducing the characteristic boundary layer

scale δ(xw) =
(

2

m + 1

νxw

Ue

)1/2

and defining the variable ξ = y/δ(xw). Then, if a streamfunction is

defined in the form ψ =
(

2

m + 1
νxwUe

)1/2

f (ξ ), continuity is satisfied directly and Uw = Ue f ′(ξ )

(apostrophe denoting derivation with respect to the independent variable). Assuming Ww = We g(ξ ),
the momentum equations yield the system:

f ′′′ + f f ′′ + 2m

m + 1
(1 − f ′2) = 0, g′′ + f g′ = 0 (1)

with

f (0) = f ′(0) = g(0) = 0 and f ′(∞) = g(∞) = 1. (2)

It is customary to study stability in the frame of reference of the external streamline. Let φ be the
angle between the frame aligned with the external potential flow streamline and the wing coordinate
system; some distance from the leading edge it is appropriate to take φ ≈ � (cf. Fig. 2), so that the
velocity components along x and z are given by

U (ξ ) = Qe[ f ′(ξ ) cos2 � + g(ξ ) sin2 �], (3)

W (ξ ) = Qe[g(ξ ) − f ′(ξ )] cos � sin �. (4)
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FIG. 3. Sketch of the problem considered; figure not to scale.

The parallel flow assumption is now enforced, and infinitesimal disturbances (u, v, w, p) are super-
imposed to a locally parallel base state (U, 0, W, P). By using as independent variables the physical
coordinates (x, y, z) and time t , the disturbance equations in dimensionless form read:

∂u

∂t
+ U

∂u

∂x
+ vU ′ + W

∂u

∂z
= −∂p

∂x
+ 1

Re
	u, (5)

∂v

∂t
+ U

∂v

∂x
+ W

∂v

∂z
= −∂p

∂y
+ 1

Re
	v, (6)

∂w

∂t
+ U

∂w

∂x
+ vW ′ + W

∂w

∂z
= −∂p

∂z
+ 1

Re
	w, (7)

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0, (8)

where 	 is the Laplacian operator and the Reynolds number is defined as Re = Qeδ

ν
; Qe is the

velocity scale, δ = δ(l) is the length scale (with l a reference distance along the chordwise direction),
ρQ2

e is the pressure scale, with ρ the density of the fluid and ν its kinematic viscosity.
The boundary layer is assumed to develop above an isotropic plate of uniform thickness b,

whose midplane coincides with the plane y = 0; the plate is attached to a rigid, impermeable base
through regularly arranged stubs which behave like springs, and the same fluid permeates both the
regions above and below the plate. Following Carpenter and Davis,44 we assume that, under the
effect of the mean pressure gradient and/or mean viscous stresses, the wall is maintained horizontal.

A small perpendicular displacement η(x, z, t) of the plate from its rest position is assumed,
caused by the load exerted by the medium which flows above it (Fig. 3).

Provided that η � b and that the wavelength of the plate’s flexural motion is much larger than
b, η satisfies the (dimensional) bending wave equation:

ρpb
∂2η

∂t2
+ d

∂η

∂t
+ B∇4

2η − T ∇2
2η + κη = −[p], (9)

where ρp is the plate’s density, d is a damping coefficient per unit area, B = Eb3

12(1 − ν2
p)

is the

bending stiffness of the plate (with E Young modulus and νp Poisson ratio), ∇4
2 = ∇2

2∇2
2 is the

biharmonic operator, with ∇2
2 = ∂2

∂x2
+ ∂2

∂z2
, T is the longitudinal tension per unit width, κ is the

spring stiffness per unit area, and [p] = p+ − p− denotes the jump in perturbation pressure across
the plate. Without loss of generality, we assume that the fluid pressure within the confined region is
uniform, so that [p] = p+(x, η, y, t); in the following, superscript + will be dropped.

The flexible plate is further assumed to be weakly porous, with isotropic permeability kD

sufficiently small for the seepage velocity of the unperturbed state to either vanish or be of such a
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reduced magnitude that the parallel flow approximation remains tenable. The Darcy’s flux along y
for a rigid plate can be expressed as

〈v〉 = − kD

ρν

∂p

∂y
= − kD

ρν

[p]

b
; (10)

it is related to the actual velocity of the fluid in the interstitial space via the porosity of the material.
Moderate to large values of the permeability and anisotropic effects are out of the scope of the
present paper; the case could be treated with effective field theories of poroelastic media such as
those outlined by Whitaker45 or Mei and Vernescu.46 In such a case, the base velocity field on
top of which disturbances are imposed must include three components of the velocity through the
fluid-infiltrated porous plate, with the permeability being a tensor. Some progress along these lines is
reported by Hill and Straughan27 and Tilton and Cortelezzi29 for the case of rigid, isotropic, porous
block(s) delimiting a channel, in the limit of negligible inertial effects within the porous block(s). A
different approach is described by Battiato47 for both porous and poroelastic composites confining
the flow in a channel. Her poroelastic formulation considers small displacements of the medium, so
that the analysis of the flow and the mechanics of the elastic medium can be decoupled. The analyses
by Hill and Straughan, Tilton and Cortelezzi, and Battiato eventually resort to using a Brinkman
model in the porous region adjacent the bulk fluid, plus interface conditions. The definition of such
conditions is still subject of debate: Beavers and Joseph48 have proposed to use an interfacial slip
velocity; Ochoa-Tapia and Whitaker49, 50 adopt continuous tangential velocity and discontinuous
shear stress (this is the condition used also by Tilton and Cortelezzi28, 29); Cieszko and Kubik51

argue that both tangential velocity and shear stress are discontinuous; conversely for Vafai and
Kim52 these same quantities must be continuous (both Hill and Straughan, and Battiato follow this
line). This unclear scenario stems from the fact that near the interface microscopic velocity and
pressure fields vary rapidly over length scales of the order of the pore size, whereas a formulation
of the porous matrix based on Darcy’s or Brinkmann’s laws requires a matching across the interface
based on spatially averaged quantities.23

Accounting for both plate’s deflection and flow through the pores, the boundary conditions for
the perturbation velocity components at y = η are

u = 0, v = ∂η

∂t
− kD

ρνb
p, w = 0. (11)

To place the numerical boundary at y = 0, we use a first order Taylor expansion in η, thus replacing
the first condition above with u + ηU ′ = 0, the other two remaining unchanged. The boundary
conditions and the plate’s equation can be rendered dimensionless by adopting appropriate scale. In
particular, we scale η with δ and further define:

χ∗ = ρp Qeb

ρν
, d∗ = d

ρQe
, B∗ = B Qe

ρν3
, T ∗ = T

ρνQe
, κ∗ = κν

ρQ3
e

. (12)

The set of plate’s parameters is independent of δ, i.e., we assume that Qe, ρ, and ν are fixed, and
that Re can increase simply with the observer moving along the plate in the chordwise sense, so that
l and δ vary.

All components of the disturbance field, (u, v, w, p) and η, are assumed to behave like normal
modes of the form:

exp(iαx + iβz + σ t),

with α and β real wavenumbers, k2 = α2 + β2, and σ the complex amplification factor; equations
plus boundary conditions are modified accordingly. The dimensionless equation for the plate’s
displacement thus becomes (dropping asterisks):(

χ

Re
σ 2 + dσ + B

Re3
k4 + T

Re
k2 + κ Re

)
η = −p, (13)

and the disturbance boundary conditions at y = 0 are

u + ηU ′ = 0, v = ση − ap, w = 0, (14)
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where the dimensionless permeability coefficient a = kD Qe

νb
arises from the nondimensionalisation;

a is the product of the Reynolds number Re, times the Darcy number Da = kD

b2
, times the ratio

between the plate’s thickness b and the boundary layer scale δ. Re-arranging the equations above it
is easy to find three suitable boundary conditions for the fluid which apply at y = 0:

χ

Re
σ (v + ap) + d(v + ap) − 1

U ′ Re

(
B

Re2
k4 + T k2 + κ Re2

)
u = −p, (15)

σu + U ′(v + ap) = 0, (16)

w = 0. (17)

At the outer edge of the boundary layer, disturbances are taken to vanish by enforcing asymptotic
boundary conditions; numerical tests have been carried out to ensure that the outermost grid point is
placed sufficiently far from y = 0 for the solution to be unaffected by this choice. The code developed
solves for the disturbance equations in primitive form; it is based on a classical Chebyshev collocation
approach similar to that used in previous studies34, 53, 54 and it has been extensively validated against
results for both rigid and compliant surfaces.30, 31, 55–58 The local approximation used here implies a
separation of scale between the mean flow and the disturbance field, with the consequence that the
results for low α (α < 0.05 for the Blasius case) must be interpreted with caution.

To set ideas, the parameters used by Carpenter and Garrad (meant to reproduce and explain
Kramer’s41 experimental results in water) for a wall which is untensioned can be employed, i.e., Qe =
18 m/s, ρ = 1025 kg/m3, ρp = 945 kg/m3, ν = 1.37 × 10−6 m2/s, b = 2 × 10−3 m, and νp = 0.5.
This choice yields: χ = 24226, B = 6.08 × 106 E , κ = 5.27 × 10−11 E (following Carpenter and
Garrad who considered springs/stubs of length equal to 1 mm), a = 6.57 × 109 kD , with both Young
modulus E and permeability kD expressed in SI units. To limit the number of available parameters,
the viscous damping d is set equal to zero. An increase in elastic modulus represents an increase
in wall rigidity and typical values of E do not exceed 105 Pa for soft polyvinyl chloride (PVC),
6 × 105 Pa for silicon rubber, 2 × 109 Pa for polypropylene, and 2 × 1011 Pa for steel. An increase
in kD means that seepage through the pores is enhanced for a given pressure gradient. Values of
water permeability depend on the structure and porosity of the material; kD is of order 10−14 m2

for granite; 8 × 10−8 m2 for nickel foametal, 10−8 m2 ÷ 10−6 m2 for polyester textiles and ceramic
foams. These numbers yield coefficients a in the range 10−4 ÷ 104; because of the arguments
presented earlier we will limit our parametric search to values of a up to one.

Finally, assuming that the chordwise length of the plate is of the order of the meter, we will

explore values of the Reynolds number Re = Qeδ

ν
up to 5000, covering adequately the region where

the first instabilities appear, for both swept and unswept plates.

III. EFFECT OF PLATE’S PERMEABILITY ON THE INSTABILITIES DEVELOPING
OVER A SWEPT PLATE

To have a point of reference, we first focus on the case for which the crossflow velocity is
maximized, i.e., � = 45◦. Neutral stability boundaries for β = 0 and for β = 0.4 are displayed in
Fig. 4, both values of the spanwise wavenumbers coinciding with those of largest amplification for
the instability mode which is observed.

In the first instance, TS instabilities are amplified over a range of α’s which shrinks with
increasing m. As expected, adverse pressure gradient enhances destabilization. In the second case,
low-frequency crossflow modes are preferentially excited, with the range of unstable values of α

which increases with m. The critical Reynolds number for CF modes reaches its lower limit for m
equal to 0.4 and does not decrease upon further enhancement of the pressure gradient.

The results are summarized in Fig. 5; for adverse pressure gradients, the CF disturbances become
unstable at values of Re well above the critical values Rec of TS modes.
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FIG. 4. Linear stability results for accelerated/decelerated boundary layers over a plate swept at � = 45◦.

On the contrary, for m exceeding 0.05 the reverse is true, and low-frequency crossflow modes
define the onset of transition. These same modes have already been computed by Mack,55 and our
results match his (cf. his Figure 13.5). Figure 5 provides also an overview on the effect of a weak
permeability of the plate on the onset of TS and CF modes (dotted and dashed lines, respectively).
Permeability is destabilizing in both cases and, interestingly, it is observed to have a larger effect
on the Re-threshold of TS modes. This same influence of permeability on TS modes has already
been reported by Chang et al.,26 Hill and Straughan, and Tilton and Cortelezzi28 for the channel

FIG. 5. Critical conditions for TS and CF modes developing in the boundary layer over a plate swept at � = 45◦, for both
impermeable and weakly permeable walls.
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FIG. 6. Effect of permeability on the marginal stability curves for the flow past a swept wing (m = 0.2, � = 45◦).

flow case, on the basis of different theoretical models. It is further seen here that weak permeability
of the plate tends to increase the critical frequency at the onset of the instability, for both TS and CF
modes.

The marginal stability curves for varying a’s are displayed in Fig. 6. For both instability modes,
permeability enlarges the streamwise wavenumber’s range of unstable modes, and the effect is
clearly more pronounced for the case of TS modes. The mode shapes of representative disturbances
are plotted in Fig. 7 and the effect of permeability on the shape of either TS or CF perturbations is
minor.

IV. EFFECT OF PLATE’S COMPLIANCE

The influence of compliance on two-dimensional TS waves in a Blasius boundary layer has
been addressed before, cf. Allen58 and Al Musleh and Frendi.59 The results given here are meant

FIG. 7. Perturbation profiles at the critical points of the curves in Figure 6.
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FIG. 8. Variation of TS (a) and FISI (b) neutral curves for varying wall elastic modulus E on a Blasius boundary layer
(φ = 0◦, m = 0, β = 0).

to be used as a basis on which to later assess the consequence of the plate’s permeability (Sec. V).
Figure 8(a) illustrates the outcome of varying the Young modulus E and demonstrates that rendering
the plate softer reduces the size of the unstable region, eventually causing it to split into two separate
parts, with the leftmost one which disappears for E below 104Pa. It is thus recovered the known
result that compliance stabilizes TS waves, while exciting surface modes as shown in Fig. 8(b). The
unstable eigen-domain in this case can be divided into three portions, of increasing size with the
wall softening. The central region (denoted as I in Fig. 8(b)) displays larger growth rates compared
to the uppermost (II) and lowermost (III) regions. Carpenter and Garrad30, 31 indicate that the mode
arising in this central region is travelling wave flutter, with a phase speed close to the free-stream
velocity; our results provide a value of the phase velocity always comprised between 0.8 and 1 in
region I. The classification of the modes in the other two regions with respect to the scheme of
Fig. 1 has not been indicated in Refs. 30 and 31; we observe here that disturbances in regions
II and III are wall-based modes travelling faster than the external stream (phase speed consis-
tently in the range [1, 1.6]). We thus believe that they are convective PEW, like those in region
I. The disturbance shapes in regions II and III resemble one another, and differ from those of
the main region I, cf. Fig. 9. All the mode shapes are essentially unaffected by the presence of
permeability.

When the boundary layer is swept, compliance acts as illustrated in Figs. 10 and 11. With the
parameters chosen, the threshold for the appearance of crossflow vortices is Re = 250, α = 0.05,
and β = 0.4. Figure 10 shows that this threshold is not influenced by compliance, even for the case of
soft walls because of the weak coupling that an elastic boundary can have with quasi-steady crossflow
modes. When the wall becomes essentially a membrane which offers no resistance to bending loads
(i.e., when Young’s modulus is very small) a disturbance of relatively high phase velocity emerges
at larger values of α (cf. Fig. 10(a)). The elasticity of the wall, at low frequencies and low values of
the streamwise wavenumber, manifests itself with a reduction in the range of unstable α’s, and the
occurrence of FISI which are preferentially z-independent at onset (Fig. 10(b)). The neutral curves
in Fig. 10(b) display a merger between the travelling wave flutter and the crossflow mode, which
is anticipated (in Re terms) for softer walls. These results are in qualitative agreement with those
obtained by Carpenter and Thomas60 for the case of the rotating disk boundary layer, highlighting
the similarities between the two configurations even in the presence of a compliant wall. The main
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FIG. 9. TWF modes shapes in region I (at Re=2500), II (at Re=1200), and III (at Re=4000). Plain lines: a = 0; dashed
lines: a = 1 (other parameters: α = 0.12, E = 5 × 105 Pa, thus B = 3.04 × 1012, φ = 0, m = 0, β = 0).

FIG. 10. Variation of CF neutral curves for decreasing wall elastic modulus E in (a) the Re − α plane for β = 0.4, and (b)
the Re − β plane for α = 0.05 (φ = 45◦, m = 0.2). To set ideas a value E = 100 Pa corresponds to B = 6.08 × 108.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

130.251.56.122 On: Mon, 25 Aug 2014 13:40:36



084103-11 Pluvinage, Kourta, and Bottaro Phys. Fluids 26, 084103 (2014)

FIG. 11. Effect of varying elastic modulus on TWF for a swept boundary layer (φ = 45◦, m = 0.2, β = 0.4). The unstable
region for E = 100 Pa is shaded for clarity.

difference is that, at fixed α, here Rec for the onset of TWF decreases monotonically; conversely,
in the case of the rotating disk the behavior of Rec is not monotonic with E , a consequence of
Coriolis effects.60, 61 For decreasing values of E the TWF appears at progressively smaller Re’s,
covering a progressively larger β range, eventually overruling the crossflow vortices even at the
lower β (βc = 0.4) for which the CF mode appears (as displayed in Fig. 11). The moduli of the
critical CF and TWF mode shapes in the limit of very soft plate (E = 100 Pa) are shown in
Fig. 12; the consequence of weak permeability is most noticeable on the surface-based hydroelastic
mode.

FIG. 12. Most unstable CF and TWF mode shapes (E = 100 Pa, thus B = 6.08 × 108, φ = 45◦, m = 0.2, β = 0.4).
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FIG. 13. TS (a) and FISI (b) neutral curves as function of the permeability coefficient a for a Blasius boundary layer (φ = 0◦,
m = 0, β = 0, E = 3 × 105 Pa, thus B = 1.8 × 1012).

V. POROELASTIC PLATE

A. Effect of permeability on the Blasius boundary layer over a compliant wall

The fact of rendering the plate permeable enhances the TS instability (cf. Fig. 13(a)) and this is
borne, in analogy to the action of wall damping on class A NEW, by the plate’s boundary condition

FIG. 14. Neutral curves on a swept plate boundary layer (φ = 45◦, m = 0.2).
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FIG. 15. Plain lines: TWF neutral curves with varying permeability a on a swept plate boundary layer. Dashed lines:
frequency isovalues for a = 0 with growing direction indicated by the arrow and interval between successive isolines equal
to 5 × 10−3 (φ = 45◦, m = 0.2, β = 0.4, E = 100 Pa, thus B = 6.08 × 108).

for the vertical velocity v: the increase of seepage through the pores is responsible for reduced plate’s
oscillations. Conversely, the effect on FISI is stabilizing: the size of region I is mildly reduced by
permeability, but that of regions II and III is significantly so, as shown in Fig. 13(b). This reinforces
the argument that the modes present in regions II and III are class B PEW, with permeability playing
the role of substrate damping. It would be interesting to develop a model allowing the study of larger
values of kD , possibly including anisotropic effect, to evaluate whether the onset of FISI could be
delayed even more.

B. Effect of permeability on crossflow and hydroelastic waves

An example of the result of permeability on the crossflow instability is illustrated in Fig. 14:
both high and low frequency CF modes seem but very mildly sensitive to permeable damping, and
the critical Reynolds number is essentially unaffected in the range of a’s tested. The benefits of
permeable damping on FISI appear to be more pronounced (cf. Fig. 14(b)) and the critical value of
Re roughly doubles when going from a = 0 to a = 0.2.

When the wall is very soft (the case E = 100 Pa is taken as an example in Fig. 15), the effect
is qualitatively similar, and the lower branch neutral curve is shifted towards larger Re values, and
particularly so for the case of long streamwise waves.

VI. CONCLUSIONS

A temporal, parallel stability analysis has been used to study the instability waves which can
develop in the boundary layer over a swept plate which can be compliant and/or permeable to
the fluid. The model developed couples thin plate’s theory and Darcy’s equation, and results in a
fictitious wall condition applicable in the limit of small displacement and permeability of the wall.
Despite the simplicity of the approach, this paper presents the first indications of how compliance
and porosity conjures to destabilize the flow over a swept wing. The results have implications for
passive flow control techniques, which are increasingly turning towards poroelastic materials in the
quest to mimic the effects observed in biological surfaces.
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The presence of a porous substrate at the wall of a boundary layer is summarized in Fig. 5; the
effect is destabilizing as far as TS waves are concerned (as already reported previously) but less so
for three-dimensional, low-frequency, crossflow modes. The former result is due to the enhanced
Reynolds stress near the wall brought about by permeable damping, allowing efficient extraction of
energy from the mean flow; the latter stems from the fact that the base flow is unmodified when the
permeability coefficient kD is very small, with an ensuing second order effect on inflectional-driven
modes.

As far as compliance is concerned, it is stabilizing for class A Tollmien-Schlichting waves (a
result already known30, 31) but mildly so for low-frequency (class B) crossflow modes, which are
impacted upon only when the elastic modulus is very small. When the plate becomes permeable the
effect is similar to the rigid case, i.e., very weakly destabilizing.

The upshot of small permeability on FISI is more interesting in light of possible applications: the
onset of travelling wave flutter can be significantly postponed in the boundary layer over both swept
and unswept plates. This suggests that delaying transition via a suitably designed poroelastic plate
is a viable approach to flow control, compliance acting mostly to damp the hydrodynamic modes
and porosity mitigating flow-induced surface instabilities, such as TWF. Further studies are called
for to strengthen this conclusion, allowing in particular for large, anisotropic permeability, paying
however attention not to excite static divergence modes, should the permeable damping influence
become too important.
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