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125th Anniversary …



Osborne Reynolds, 1842-1912

“An experimental investigation of 
the circumstances which determine
whether motion of water shall be 
direct or sinuous and of the law of
resistance in parallel channels”, 
Royal Society, Phil. Trans. 1883



Retrans ≈ 13000

`the colour band would all at once mix up 
with the surrounding water, and fill the 
rest of the tube with a mass of coloured 
water ... On viewing the tube by the light 
of an electric spark, the mass of colour 
resolved itself into a mass of more or 
less distinct curls, showing eddies.'



Hydrodynamic stability theory followed a few years later:

W. M’F.Orr, ‘The stability or instability of the steady motions of a 
perfect liquid and of a viscous liquid’, Proc. Roy. Irish Academy, 1907

A. Sommerfeld, ‘Ein Beitrag zur hydrodynamischen Erklaerung
der turbulenten Fluessigkeitsbewegungen’, Proc. 4th International 
Congress of Mathematicians, Rome, 1908

Hints on the solution of the stability equations for the flow in a pipe

arrived only much later (C.L. Pekeris, 1948), just to show that

Recrit → ∞ (!!)



STILL TODAY, TRANSITION IN SHEAR FLOWS IS STILL 
NOT FULLY UNDERSTOOD. For the simplest parallel 
flows  there is poor agreement between predictions from the 
classical linear stability theory (Recrit) and experimentals
results (Retrans)

Poiseuille Couette Hagen-Poiseuille Square duct

Recrit 5772 ∞ ∞ ∞

Retrans ~2000 ~400 ~2000 ~2000



EXPONENTIAL GROWTH

LAMINAR FLOW IN A DUCT: 
THE CLASSICAL LINEAR STABILITY THEORY

T. Tatsumi & T. Yoshimura, JFM 1990

Base flow: analytical solution in terms of a series of trigonometric 
and hyperbolic functions (Saint-Venant 1855)

Temporal stability analysis 
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EXPONENTIAL GROWTH

LAMINAR FLOW IN A DUCT: 
THE CLASSICAL LINEAR STABILITY THEORY



EXPONENTIAL GROWTH

LAMINAR FLOW IN A DUCT: 
THE EXPERIMENTS

T.W. Kao & C. Park, JFM, 1970

Unsteady artificial excitation (mechanically driven vibrating ribbon)
to trigger growing instability waves, A = 8



EXPONENTIAL GROWTH

LAMINAR FLOW IN A DUCT: 
THE EXPERIMENTS

Conclusions reported:

1. For A = 8 a critical Reynolds number of 1200, α = 0.42,
is obtained. “The result of the critical Reynolds number
using artificial excitation is in good agreement with the
naturally occurring one”

2. “The critical Reynold for rectangular channels is larger
at larger aspect ratio and approaches the plane Poiseuille
value when the aspect ratio becomes very large”

3. “The disturbances are three-dimensional in the experiments”
4. The unstable region includes the zero-frequency, zero

streamwise wavenumber range.

Little mention of the receptivity environment.



THE MECHANISM: a stationary algebraic instability exists in 
the inviscid system (“lift-up” effect).  In the viscous case 
the growth of the disturbance energy is hampered by 
diffusion  ⇒ transient growth

P.H. Alfredsson and M. Matsubara (1996); streaky structures in a boundary
layer.  Free-stream speed:  2 [m/s], free-stream turbulence level: 6%

TRANSIENT GROWTH

LAMINAR FLOW : TRANSIENT GROWTH



HYDRODYNAMIC  STABILITY THEORY

Is transient growth the solution?
Butler & Farrell (1993)
Trefethen, Trefethen Reddy & Driscoll (1993)
Schmid & Henningson (2001)

Transient growth is related to unstructured operator’s
perturbations, i.e. to the pseudospectrum of the linear
stability operator:    [L(U, ω; α, β, Re) + ∆] v = 0



The case studied

dP/dx = const.
characteristic length = h

[channel height]
characteristic speed = uτ

[uτ
2 = -(h/4ρ) dp/dx]

Reτ = 150
(MARGINAL VALUE)



Governing equations:

Linearized disturbance equations:Linearized disturbance equations:



OPTIMAL PERTURBATIONS: Traditional functional optimization with adjoints

The adjoint problem reads:



G = 873,1 at t+ = 1.31       G = 869.03 at t+ = 2.09

uopt = 0  at  t+ = 0

uopt ≠ 0  at  t+ = 0

t+t+



Nonlinear evolution of the optimal disturbances ( + random noise)
(streamwise periodic duct of length 4π)

F = skin friction factor (F = 0.0415 from DNS at Reτ = 150  (Reb = 2084))

At t = 0: α = 0     E0 = 10-1 !!
α = 1 E0 = 7.8 x 10-3

α = 2 E0 = 4.4 x 10-3

fully developed turbulence



Excellent agreement with Gavrilakis, JFM 1992.

Streamwise/time averaged turbulent flow



The α = 1 mode

The threshold value is E0 = 7.8 x 10-3. In fact the optimal perturbation for α = 1 
is not so important. What matters is the distorted field which emerges at t ~ 0.8.
Such a field is subject to a strong amplification.



Partial conclusions 1

• Global optimal disturbances are interesting concepts, with probably
little connection to transition.

• The key to transition is to set up a distorted base flow with certain
features

• The distorted base flow can be set up efficiently by sub-optimal
disturbances in the form of streamwise travelling waves.  In fact,
any initial condition in the form of a travelling wave of sufficiently
large amplitude is capable to do it!

• Is there any scope for studying optimal perturbations?



What happens past t ~ 0.8?

Streamwise velocity showing a non-staggered
array of Λ vortices (similar to H-type transition)



What happens past t ~ 0.8?

The secondary flow does not oscillate around the 8-vortex state,
but around a 4-vortex state, with active walls which alternate ...
… eventually relaminarisation ensues (and the lifetime of the turbulence 
depends non-monotonically on the streamwise dimension of the computational box)



THE PHASE SPACE PICTURE

EU   = mean flow energy
Reb = Reynolds number based on bulk velocity

lower branch solution                            upper branch solution
(qualitative)



Global optimal perturbations saddle node state             “edge states” ?
(Wedin et al. 2007)



Partial conclusions 2

• Global optimals (4-vortex structure) resemble “edge states” (just a 
coincidence?). 

• A saddle point appears in phase space to structure the turbulence;
after leaving the unstable manifold of the saddle, the trajectory loops
in phase space a few times, with the flow spending most of the time 
in the vicinity of the saddle, until the flow eventually relaminarizes. 

• The lifetime depends on the box size.



HYDRODYNAMIC  STABILITY THEORY

Distorted base flow: minimal defects
Bottaro, Corbett & Luchini (2003)
Biau & Bottaro (2004)
Ben-Dov & Cohen (2007)

The growth of instabilities on top of a distorted base flow
(related to dynamical uncertainties and/or poorly modeled
terms) is related to structured operator’s perturbations, i.e.
to the structured pseudospectrum of the linear stability
operator.          
[L(U, ω; α, β, Re) + ∆] v = 0          Unstructured perturbations

[L(U + ∆U, ω; α, β, Re)] v = 0        Structured perturbations



Input-output framework

Instead of optimising the input (the vortex), 
we optimise the output (the streak)!



SENSITIVITY ANALYSIS



SENSITIVITY ANALYSIS



MINIMAL DEFECT

constraintconstraint







We do not look directly at the spectrum of
temporal eigenvalues of the direct and adjoint 
equations, instead we iterate the PDE’s for 
long time, until the leading eigenvalue emerges.

Advantage: if we decided to iterate for a fixed
(short) time, we could find the optimal defect
for transient growth …



Minimal defects for ε = 1, Reτ = 150

(ε = 1 corresponds to 0.16 of the laminar flow energy)



Minimum defect for α = 1:             Unstable eigenmode:
modulus of the streamwise streamwise vel. perturbation
velocity defect

(the white line corresponds to u = Ub)



Partial conclusions 3

• Minimal defects represent the optimisation of the output (rather than
the input, as customarily done in optimal perturbation analysis)

• They can lead to transition as efficiently as suboptimal perturbations

• Both minimal defects and suboptimals are more efficient for initial α‘s 
larger than zero (i.e. when the disturbances have small longitudinal
dimensions)

• We have not closed the cycle yet ... we need to include the feedback !



Self sustained process



A NEW OPTIMISATION APPROACH:
i.e. maximising the feedback



The initial process of transition:

1. Algebraic growth of a O(ε) travelling wave
2. Generation of weak streamwise vortices O(ε2)

by quadratic interactions
3. Production of a strong streak O(ε2Re) by lift-up
4. Wavy instability of the streak to close the loop

U0(y,z)       U(y,z,t) u(x,y,z,t)
0 V(y,z,t) v(x,y,z,t)
0 W(y,z,t) w(x,y,z,t)
P0(x) P(y,z,t) p(x,y,z,t)

+ +



Inserting into the Navier-Stokes equations we obtain equations for

STREAMWISE-AVERAGED FLOW

plus FLUCTUATIONS



Goal: maximise the feedback of the wave onto the rolls, i.e. 
maximise Reynolds stress terms or, more simply, the energy
GAIN of the wave over a fixed time interval:

G = e(T)/e(0)

with

Tool:  the usual Lagrangian optimisation, with adjoints



ADJOINT EQUATIONS:

with SENSITIVITY FUNCTIONS



Ansatz for the fluctuations:

acceptable as long as in the first stage of the process the large

scale coherent wave is but mildly affected by the  behaviour of 

features occurrring at smaller space-time scales



Optimisation result for Reτ = 150, α = 1, T = 1, e0 = 3x10-3
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Parametric study

Wave Defect



Two comments:

α small defect is not created
(classical optimal perturbation are of little use)

α large cut off length “minimal channel”



Comparison between the minimal defect (left) 

and the optimal streak at t = 0.6 (centre)
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Evolution of the skin friction in time
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edge

laminar fixed point

chaos

THE EDGE MEDIATES LAMINAR-TURBULENT TRANSITION,
it is the stable manifold of the hyperbolic fixed point



The edge state solution



Simplified phase diagram
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Global optimal perturbations saddle node state             “edge states”
(Wedin et al. 2007)



Partial conclusions 4

• A model has been developed which closes the loop and combines
transient growth, exponential amplification, defects, the “exact
coherent states” and the SSP

• In the very initial stages of transition we need growth of a wave and
feedback onto the mean flow, to create a vortex. The lift-up then
generates the streaks, which break down and re-generate the wave.

• The initial conditions in the form of elongated streaks (the optimal
disturbance) is inefficient at yielding transition because it fails at 
modifying the mean flow

• Our new simplified model yields a flow which sits initially on a trajectory
directed towards the saddle point on the edge surface; direct 
simulations confirm the suitability of the proposed model

• The basic flow structure of the edge state is a vortex pair, with upwash
near a wall bisector

• LINEAR equations can go a long way !!!


