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WHY “POROELASTIC”?

BECAUSE IN NATURE ROUGH, COMPLIANT, FUZZY, ETC.
IS THE RULE, WHEREAS RIGID AND SMOOTH IS NOT!



Passive flow control
Problem motivation

Examples in nature abound

leading edge undulations, i.e. tubercles on whales’ flippers

Biomimetic flow control

Control of the separated flow around an airfoil using a wavy leading edge
inspired by humpback whale flippers

Controle du décollement autour d'un profil d’aile présentant un bord d'attaque ondulé
inspiré des ailerons de la baleine a bosse

Julien Favier*, Alfredo Pinelli®, Ugo Piomelli®

1 JEMAT, Unidad de Modelizacidn y Simulacidn Numérica. 28040 Madrid, Spain
" Dept. of Mechanicol and Materials Engineering Queen’s University, Kingsten (Ontario) K7L NG, Canodo

ARTICLE INFO ABSTRACT




Passive flow control
Problem motivation

Examples in nature abound
leading edge undulations, i.e. tubercles on whale’s flippers

multi-winglets, spiroid winglets, i.e. primary remiges

www.sciencedirect.com
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Computational fluid mechanics

Fig. 10. Lift coefficient versus angle of attack for the clean wing (CW) and the wing with the spiroid wingtip (WSW). Spiroid winglets reducing lifi-induced drag is by using wingtip devices. By applying biomimetic abstraction



Passive flow control
Problem motivation

Examples in nature abound
leading edge undulations, i.e. tubercles on whale’s flippers

multi-winglets, i.e. primary remiges

porous riblets on butterfly and moth scales (on the wings)

WIND ENGINEERING VOLUME 34, No. 4, 2010  pp 351-360

“From Butterfly to Wind Turbine”

Igor Kovalev
Kinneret College on the Sea of Galilee, Emek Hayarden 15132, Israel
kovis@ashdot-m.org.il

ABSTRACT

The lift force and vibration performance of a wind turbine blade w
(metallic version of the butterfly scale) were experimentally investig
initially directed to this problem by observation of the complex m




Passive flow control
Problem motivation

Examples in nature abound

leading edge undulations, i.e. tubercles on whale’s flippers

multi-winglets, i.e. primary remiges

porous riblets on butterfly and moth scales (on the wings)

denticles on shark skin

denticle
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SUMMARY

It has long been suspected that the denticles on shark skin reduce hydrodynamic drag during locomotion, and a number of man-
made materials have been produced that purport to use shark-skin-like surface roughness to reduce drag during swimming. But
no studies to date have tested these claims of drag reduction under dynamic and controlled conditions in which the swimming
speed and hydrodynamics of shark skin and skin-like materials can be quantitatively compared with those of controls lacking
surface ornamentation or with surfaces in different orientations. We use a flapping foil robotic device that allows accurate
determination of the self-propelled swimming (SPS) speed of both rigid and flexible membrane-like foils made of shark skin and
two biomimetic models of shark skin to measure locomotor performance. We studied the SPS speed of real shark skin, a silicone
riblet material with evenly spaced ridges and a Speedo® ‘shark skin-like’ swimsuit fabric attached to rigid flat-plate foils and when
made into flexible membrane-like foils. We found no consistent increase in swimming speed with Speedo® fabric, a 7.2% increase
with riblet material, whereas shark skin membranes (but not rigid shark skin plates) showed a mean 12.3% increase in swimming
speed compared with the same skin foils after removing the denticles. Deformation of the shark skin membrane is thus crucial to
the drag-reducing effect of surface denticles. Digital particle image velocimetry (DPIV) of the flow field surrounding moving shark
skin foils shows that skin denticles promote enhanced leading-edge suction, which might have contributed to the observed
increase in swimming speed. Shark skin denticles might thus enhance thrust, as well as reduce drag.

Key words: shark skin, locomotion, riblet, drag reduction, foil, swimming, Fastskin®.



Passive flow control
Problem motivation

Examples in nature abound
leading edge undulations, i.e. tubercles on whale’s flippers
multi-winglets, i.e. primary remiges
porous riblets on butterfly and moth scales (on the wings)
denticles on shark skin

as well as in sports
fuzz on atennis ball

dimples on a golf ball




Passive flow control
Problem motivation

. Focus of this work: covert feathers (layer of self-actuated flaps).

Passive “pop-up” of coverts on wings of some birds during

landing and gliding phases of flight, perching manoeuvres;
In general - high angle-of-attack/ low-lift regimes.

the Mykonos pelican



Passive flow control with a poro-elastic coating
A rapid research survey

AIM: Determine structure parameters of feathers that yield “optimal”
fluid-dynamical performance.

Experiments | Poroelasticity | NS IBM Low order
theory smlulahnns model

- Genova (at low Re number) :
- Freiberg, Briicker, Venkataraman & Bottaro, 2012
- Favier (AMU), Revell
- Orléans, Kourta, (Manchester), Pinelli (City U.)
- Genova,
Vv
- Oxford, Taylor, Present work
+
- Palaiseau, de Langre, Ongoing research...
A4

Gopinath & Mahadevan, 2010



Outline

. Computational modeling of fluid-structure interaction

- Highlights of numerical procedure

- Key computational results

. Theoretical modeling for vortex-shedding

~ Smooth airfoil

> Development of the minimal model
> Calibration against CFD results

- Airfoil with poro-elastic coating (“hairfoil”)

> Motivation & development
> Results, comparison with CFD & physical indications

. Summary & future extensions



Computational modeling of fluid-structure interaction

Highlights of numerical procedure



Computational model
Fluid solver (developed by Antoine Dauptain & Julien Favier)

2-D computations — NACAQ012 airfoil.
Re = 1100 for this study — low Reynolds number regime.
Immersed boundary forces — for airfoil, buffer zone, coating.
Hence, fixed Cartesian grid (fine on and near airfoil).
Numerical scheme :

~ Convective part - explicit Adams-Bashforth

- Viscous part - semi-implicit Crank-Nicolson

~ Pressure Poisson - conjugate gradient

Solid body
(airfoil)

l Buffer zone

Mixed fluid-solid part
(poro-elastic coating)




Validation of fluid solver

Case : 10° angle of attack
COMPARISON OF FREQUENCY SPECTRA

—— present computations
— FLUENT (Guerrero et al - Genova)

FFT amplitude of Lift coefficient

|
1.6 2 2.5 3 3.5 4

0 0.5 .
Dimensionless frequency

—

. Qualitative analysis:

. Periodic solutions sinusoidal
. similar frequency spectra — peak at 2"4 superharmonic of fundamental frequency.

. Quantitative analysis: Close values of
.  mean lift
. frequency of oscillations.



. Fluid — structure forcing & vice-versa

. Modeling all the feathers — too heavy.... Hence,

Homogenized approach Varying porosity & anisotropy
(b)

(2)
Wz=7) s
/_\,/’[, ' M -

. Normal component of the force: Koch & Ladd (JFM, 1997)
. Tangential component: Stokes' flow approx (Favier et al. JFM, 2009)



Structure solver

M

ANNEFECTRON

For each reference feather, equation for momentum balance solved.

MI*6+K, f(0)+K.f,(0)+K,6=1IF,_
Different frequency scales (= time scales) :

Kr Ki Kd
W, = |[—5;w; = ;g =
M2t MY M2

In present problem, rigidity effects dominant - i.e,

Wy < w; < W,




Computational modeling of fluid-structure interaction

Key computational results



RESULTS : Smooth airfoil case

Mean lift vs. angle of attack Mean drag vs. angle of attack
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When using feathers, structure (i.e, rigidity) and fluid time scales synchronized.

For instance - Lift coefficient for 22° - time and frequency domains
2 . . . 0.25 . . . .

o
I

Lift coefficient
FFT amplitude of
lift coefficient
o =2
= N

0.5 1 1 I 0 MM\—-N"

0 ; 19 5 20 05 1 15 2 25
Dimensionless time Dimensionless frequency



Efficient structure parameters

Parameters varied during the course of the study

Angular sector

Angle of of movement, Flow
attack, o Rigidity Interaction Dissipation Packing [ — frequency,
(degrees) moment, Kr moment, K; moment, K density, ¢ (degrees) () il
22 B.9905 0.2034 0.0085 [-60,21] 0.4772
45 6.8002 0.2034 0.0022 [—60,60] 0.4151
10 B.9905 0.2034 0.0085 [—6i0,60] 0.4772

Parameters fixed throughout the course of the study

Mass of reference beam, M

Length of reference beam., [

Diameter of reference beam, d-

Equilibrium angle/ Initial orientation of reference
beams, §.4 (degrees)

Extent of the coating

Mumber of reference beams used., &V

12

8.5 x 1072
2% 1077
0

70% of suction side, starting 0.1 units of length

after the leading edge and ending (.2 units
before the trailing edge.

8




Summary of computational results [Phys. Fluids, 2012]
. o=22°:
Mean IiftT : 34.36%, Lift fluctuations' i: 7.15%, Drag quctuations'\L: 35.47%, Mean drag T: 6.6%

iy

10
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Dimensionless time
. a=4b°:
Mean drag i: 8.92%, Drag fluctuations' i: 10.46%, Mean lift i: 1.47%.

a = 45°

.05

05

. a=70°;
Mean lift T: 7.5%, Drag fluctuations' i: 9.71%, Mean drag i : 4.92%.



Theoretical modeling for vortex-shedding

Smooth airfoil

> Development of the minimal model
> Calibration against CFD results



Minimal models: (Airfoil) Vortex-shedding

FINAL AIM: (a) predict “optimal” structure parameters at a
fraction of the cost

(b) explain physical mechanism behind such
optimal coatings

Some facts

For unsteady flows over bodies, for fixed set of parameters, long time
history of lift/drag forces periodic + independent of initial conditions

l.e, lift/drag can be represented as self-excited oscillator,
yielding limit cycle

Autonomous equations with negative linear damping and positive non-
linear damping can produce limit cycles (as in present case)

l.e, small disturbances allowed to grow; large disturbances pushed
back to equilibrium.



Minimal models: periodic forces
In the flow past a cylinder

Hartlen & Currie (1970); Currie and Turnbull (1987)

Rayleigh oscillator ﬁ L= d_I B (d_1 3

dt? dt dt
Skop & Griffin (1973) 2 dr ) da
Van der Pol-like oscillator e TEE T

Nayfeh et al (2005); Akthar, Marzouk & Nayfeh (2009)

Van der Pol + Duffing-type cubic nonlinearity

dr dr pdr 3
—— +tr=——I'— — T

dt? Cdt dt



Crucial physics: smooth airfoil

. Super-harmonics of flow frequencies - peak at twice the fundamental
frequency — unlike the case of a cylinder.

Lift coefficient for 10°- time and frequency domains
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. Indicates presence of quadratic non-linearity in model equation.

. Can a generic equation with all possible quadratic terms be a model ?



Lift coefficient
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Crucial physics: smooth airfoil

Super-harmonics of flow frequencies - peak at twice the fundamental

frequency — unlike the case of a cylinder.

Lift coefficient for 10°- time and frequency domains
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Indicates presence of quadratic non-linearity in model equation.

Can a generic equation with all possible quadratic terms be a model ?

No, at least one higher-order non-linear term is needed
to obtain a self-excited oscillator (i.e. independent of initial

forcing conditions).



When can a limit cycle exist ?

Most general system with all possible quadratic and cubic non-
linearities, with negative linear damping:

. . 2 : . 2 3 2 . . 2 . 3
X+X=cX+x, X+, XX+, X +p,x +L, x X+ B, xx +[,x




When can a limit cycle exist ?

A necessary condition : For most general system with all possible
guadratic and cubic non-linearities with negative linear damping:

. . . 2 S -2 3 2. L2 -3
X+X=cX+x, X+, XX+, X +p,x +0, X X+ B xx +[,x

Poincare-Lindstedt's method guarantees the existence of a limit

cycle only if |
ag(ay +as)+ P2 +381 <0

Coefficients of cubic terms with odd powers of x —I.e. B, & 5, — play
no role.

(expand dependent and independent variables in powers of a small
book-keeping parameter ¢ to have a solution uniformly valid in time,
collect like-order equations, impose conditions on order zero
amplitude/frequency of the solution ...)



When can a limit cycle exist ?

A necessary condition : For most general system with all possible
guadratic and cubic non-linearities with negative linear damping:

X+x=c j:-l—alxz-l—azx;i:-l-%.i:z -I-EA'S-FB2 Xk + BJgs:js:Z-|—}5’4;j;:3

Poincare-Lindstedt's method guarantees the existence of a limit
cycle only if

ag(ay +as)+ P2 +381 <0

Coefficients of cubic terms with odd powers of x —I.e. B, & 5, — play
no role.

(expand dependent and independent variables in powers of a small
book-keeping parameter ¢ to have a solution uniformly valid in time,
collect like-order equations, impose conditions on order zero
amplitude/frequency of the solution ...)



A necessary condition : For most general system with all possible

When can a limit cycle exist ?

guadratic and cubic non-linearities with negative linear damping:
.- . 2 . . 2 3 2 . . 2 . 3
X+Xx=cXx+x, X+, XX+, x +p,x +0, x X+ xx +6,x

Poincare-Lindstedt's method guarantees the existence of a limit

cycle only if

Coefficients of cubic terms with odd powers of x —I.e. B, & 5, — play

no role.

Other two cubic terms correspond to Rayleigh (as in present low-

0(2(0(1 + 0(3) + Bz + 3B4, <0

order model) & van der Pol oscillators resp.

Case ¥y ¥y g % % Existence of hmit cycle
1 1 0 i -1 0 No
2 1 0 0 0 -1 No
3 0 1 0 -1 0 Yes

1

{

()

-1

Limit cycle exists only for
mitial conditions with =
negative or Zero.

o

()

1

-1

0

No

&

()

1

()

-1

Yes




dx/dt

RESULTS: Minimal model for smooth airfoll

Comparison of convergence to limit cycles

W N = O = B W

— Case 3

| |- Caseb6

L

. Since convergence to the limit cycle, from both small and large initial
conditions, is faster for case 6, the model equation is taken as:

-
+ 3

e . . 2
X+X=X+TX —X

. In the present case, since mean lift # 0, the equation becomes :

C,4+w C,=uC,—xC, +pC, +w C,

. For this equation, method of multiple scales used to find right model
parameters, which in turn determine the correct model equation.




How to find a (periodic) solution?

Method of multiple scales — key steps:

* Solutions sought in form of power series in 8, where 0 measures how strongly
non-linear the system is.

« If only one time scale considered, typical issue is: for large t, perturbation solution
does not match with numerical/exact solution.
Reason: Appearance of secular terms in perturbation solution.

* |n present problem, minimum three time scales seen to be sufficient.

Transforming model equation into 1% order complex-variabled equation:

é:twé—éw(’-i—l—3p{:C—z)+%t¥ulz(C3—3 ' C+3 ZEE—?H—%‘ﬁtw{él—Z CC+C°)

* Introducing three time scales TD =t T1 = Ot and T2 = 62t, substituting

(=3 ,6'C(T,.T,.T,)+0(5)

and separating similar coefficients of powers of 5° (=1), 5! and 5°
one obtains...



Finding a periodic solution (contd..)

D,C,—tw CUZ% (UE: (1)

— 2 7 - = - 3, 3 / 2 = = 2,
Dy, =T, = =D, Cyth (€= T+ 5 0’ (G368, +30, 8, T+ S w(t —28,8+ ) @)

Dugg_[w‘igz_DQ:o_Dl‘:1"'%{.(;1_'7:1%'“%'[Uz(ggz;1_:02614_502€1_ioz51_2€oio:1+2€oioi1)

e

+£"}1w[€0€1_cofl_iﬂt—:l—i_iﬂgl} (3)

. Substituting solution ¢, from (1) in (2)

+ .
eliminating terms proportional to exp(l'wTO)} é bounded solution

. Substituting {,and ¢, in (3), solvability conditions obtained a parameters
+ of limit cycle

steady-state assumption on amplitude of lift coefficient

SUMMARY: Given a system, with known model parameters,
characteristics of solution (i.e, amplitude, frequency, etc.) can be solved.

Conversely, given a system, with known solution, model parameters can
be determined.



RESULTS: Smooth airfoil

. Final solution: |C,(#)=a,+a,cos(w. t)+a,cos(2w. t)+a,sm(3w_1)

where a, a,a,a, and w_ are computational parameters, found in terms of
model parameters w, g, a and .

. Model parameters thus recovered in terms of computational parameters as:

2 f z
W= ay 3 2 P o=
a, a,—36a,—6a, a, a
3 3 2 3

- 3 2
| a,—36a,”—6a, a,

- 2 i | 3 3
32a, a,—36a;, —6a, a,

O X=




RESULTS: Smooth airfoil

. Final solution: C,(t)=a,+a,cos(w. t)+a,cos(2w. t)+a,sin(3w, 1)

where a, a,a,a, and w_ are computational parameters, found in terms of
model parameters w, g, a and .

. Model parameters thus recovered in terms of computational parameters as:

7 2 - 2 5 3 2
a,” da,w . 24a.a,” w . 6a, . 32a, a,—36a, —6a, a

(0 =— 1 33 5 _ ’ 5“: . 1 33 5 . ’ 68: > ; Sox= 1 73 - 3 273

a, a;—36a; —6a, a; a,”a,—36a;—6a, a, a, a, w,

: 10" : :
—CFD

i = —
o = Model
: L
2L g4 3
L]
E =
D 038} 2
o E.
=
"5 0.36} S
- -

T
034 1 2 3 4 5 6 105 0.5 1 15 2 25 3

Dimensionless time Dimensionless frequency



Can do viceversa ...



RESULTS : Dependence of amplitude @, on model parameters

Computational
result

__._Fﬂ—f__d__.-::_ﬂd:__

=
e

Cubic damping coefficient, ©

-{Lin=ar damping coefficient), -(z )

Size of limit cycle proportional to u/ a.

Effect of increase in 4 dominates over increase in a.

Oscillations in limit cycle scales as Vu

We an easily span a very large parameter space!



Computational

result

Dependence of the

frequency o, of the

limit cycle on model
parameters
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Dependence of the

frequency o, of the

limit cycle on model
parameters

we can easily change
model parameters and
simulate the effect of
varying Re, a, etc.

Computational
result
10
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Dependence of the L —
f_requency o, of the
limit cycle on model
parameters

Cubic damping coefficient, «

10°

we can easily change
model parameters and \'¥
simulate the effect of 3 AN K
varying Re, a, etc. N VAR E
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Cubic damping coefficient, a



Theoretical modeling for vortex-shedding

. Airfoil with poro-elastic coating (“hairfoil”)

> Motivation & development
> Results, comparison with CFD & physical indications



COATED AIRFOIL: towards a low-order model

Some guestions:
What are (the) optimal structure parameters ?
How are structure parameters related to aerodynamic changes ?
e.g, why do some feathers lead to drag reduction and/or lift enhancement, etc.?
Which structure parameters are most crucial for realistic physics ?
e.g, in computations,

features modeled with compliance, porosity and anisotropy

rigidity effects were predominant.

Simplest model for coupled fluid-structure system:

6L+{uz C,—w E;—,'J CL+{*( C.;—ﬁC.LE:,OlH

O+cH+w, 0=p,(C,—C,)

The method of multiple scales again yields insights!



Inifial equilibrium configuration
of fluid-coating interface

Displacement variable &

S

Displaced “wavy™ configuration
of fluid-coating interface

Figure 1: Fluid-coating interface : (left) - initial undisturbed configuration (i.e., without
any forcing from the fluid) - the vertical lines here denote a discrete number of feathers
spread uniformly in this layer; (right) - disturbed configuration showing the displacement
variable #. Note here that the colour gradient in this disturbed layer characterizes the
non-uniform, time-varying porosity (i.e., darker shades denote clustering of feathers while
lighter shades stand for areas with a lower instantaneous concentration of feathers).

P ——

C;L+(u2 C,—w C,—u C"L+.fx C;—BC";:,OIQ

O+co+w,’0=p,(C,—C,)




Solution of coupled system

Similar procedure as for smooth airfoil — but now for both equations.

Three time scales (as before).

Separating similar coefficients of powers of & (=1), & and & and solving.
Constraints analogous to case of smooth airfoil :

Vanishing of secular terms in closed-form solution of lift.
Steady-state assumption on amplitude of lift coefficient a (t).

il 3
Eal(t) — gamzaf(t) =0

Additional, but similar, constraints now also on poroelastic coating
deformation a,(t).

ca,(t) =0




RESULTS : Weak structure— fluid coupling

. Casel: a0 =% % , ay(t) =0 (i.e, c can be arbitrarily large)
C.(t)=C,+ 'f.filg + q:iE cos(ms’l t) + jf?»: cos(ZmS’l t) + 6 42:;‘4 sin(Bmsll t)

O(t) = w(w —;23?5) + ;) 3acos(ms,1t)

where Ps1 = @7 (18;3)2 B 2(‘985()02“ B Zw(w(ipi))l()s([z)-l- 1)

NOTE:

- Form of C (t) exactly similar to case of smooth airfoil (with super-harmonics).

. No super-harmonics of w ) In dynamics of 6(t).
S, 411

| 3aw?

. Non-resonant condition : Changes in structure parameters do not directly change lift >

. Resonant condition : If W = 0 (i.e,w ~ wl), dominates, mean lift T

THE STRUCTURE IS SLAVED BY THE FLUID



RESULTS : Weak fluid—structure coupling

Case 2: a,(t)=0 ; ¢=0 (e, o) can be arbitrary > C,)

0p1Co
(w—wq)(w+ wq)

C.(t)=C,+ cos(wg t)

0(t) = C, cos(ws’z t)

(591)(592) . .
— _ l.e, W . aperturbation of w,).
Where ('US,Z ('01 2(1)1((1)_ (1)1)((1) + (1)1) ( s,2 p 1)

NOTE :
* Dynamics of coupled system dictated by structure frequency.

« No superharmonics of wg, in C(t) and 8(t).
« Resonant condition : If wg, =0 (i.e, w ~ w,), mean Iift+ by O(8) when:

« structure-fluid coupling parameter p, increased (decrease porosity).

. increase compliance so that steady state oscillations of feather C is large.

- : . : 0p,C, 4p
* Non-resonant condition : Lift fluctuations y if |- : <y 2
(w—w;)(w+w,) '\=3(\<(LJ

NEVER REALISED IN PRACTISE WITH IBM SIMULATIONS



RESULTS : Two-way coupling

Case 3. 4,(0) =% 3% , ¢=0  (i.e, a(t) can be arbitrarily large)

~  28Bp # 4u 26Bp ’ w oo
C.(t)=Cp+ Amid - P cos(msrl t) + o2 cos(ZmS,l t) +6 YETPY 51n(3w5_1 t)

L 6p1Co
(0 —wg)(w+ wq)

cos(wg ,t)

26p,

M
0(t) = Cocos(wslzt) - 0@ — 0@+ o) BaCOS(ws*lt)

NOTE:

. Solution — combination of solutions of cases 1 and 2.

. No super-harmonics of w_, in dynamics of 0(t).

. No superharmonics of w,, in C_(t) and 6(t).

. Resonant condition : If w,, and w ,= 0, mean lift T by O(8) as in Case 2.

. Non-resonant condition : Increase in lift fluctuations avoided as in Case 2.



Model parameters from CFD results
Re-writing the most general form of analytical solution (i.e, Case 3) as:
C.(t) =1y + lycos(weqt) + Lrcos(2we1t) + Izsin(3we 1t) + 1 cos(we »t)

0(t) = 6,cos(w, ,t) + 6, cos(w, 1)

2

one gets the following coupled quadratic equations for the frequencies w and w

(1,°1,-3617=61," 1) w’ =1’ Lw, ;0—1"Lw +1 Lw, ,w,=0

[28111—1;9 }{U —2w_,0, [, w, +F 6 w’=0

and the following six equations:

. 2w 6l, 321
Sp= , 0B=— ; da= , Co=0,
l [, I, w
- (co— }{{U—HU )(11
0p,= - :
Co

—w(w—w,)(w+w,)8, 13«
> \




. Correspondence with Case 1, i.e. case with only w 1and super-narmonics.
S,

CASE: Airfoil with a poro-elastic coating in front half of its suction side:

Lift coefficient — time and frequency domains:

E

Comparison: minimal model and CFD
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= ©
= e
T T

Lift coefficient

e

(%)

[=1]
T

] 2 3 1
Dimensionless time

Lift coefficient

FFT amplitude of lift
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én
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Computational modeling of fluid-structure interaction

Highlights of numerical procedure

Key computational results

Theoretical modeling for vortex-shedding

Smooth airfoil
Theory & development
Results and comparison with CFD results

. Airfoil with poro-elastic coating (“hairfoil”)
Motivation & development

Results, comparison with CFD & physical indications

. Summary & future extensions



SUMMARY

Computational modeling of fluid-structure interaction

-~ Computational investigation of low Reynolds number flows.

-~ Employment of immersed boundary method for complex, moving boundaries.

~ Synchronization of structure frequency with fluid frequency can:

> affect flow topology near airfoil, by spontaneous adjustment;
> modify vortex-shedding;
> change pressure distribution for the better.

Without coating With coating

@ ) 2

Q‘. \.. . 3 Q‘.'...'.‘Q" 2 0

-10




SUMMARY

Theoretical modeling for vortex-shedding

-~ Non-linear minimal models developed for vortex-shedding behind :

> smooth airfoil;
> airfoil with poro-elastic coating.
-~ These models are capable of :

> reproducing dynamics obtained by heavy computations;
> giving insights into prediction of optimal structure parameters.

Without coating With coating

— CFD
| | — Modlel

0.42-

0.4}
0.381

1 1 1 1 | 1 1 1 1
034 1 73 4 5 5 %% 1 73 K 5 6
Dimensionless time Dimensionless time

Lift coefficient
Lift coefficient




FUTURE EXTENSIONS & PERSPECTIVES

Non-linear model for structure part.

Bending feathers: Bending also neglected since feathers were short
enough - usually the case with birds' coverts.

Effectiveness of coating under turbulent conditions, particularly vis-a-vis
control of transition to turbulence.

For higher Reynolds number regimes meaningful to add a third spatial
component ...

Modeling of hairy actuators on internal flow without vortex-shedding
Eg:- Couette flow.

How do actuators affect velocity profile in boundary layer ?

Effectiveness of coating on more complex configurations —
> asymmetric airfoils (with positive camber)
> dynamic airfoils (with slow pitching and/or heaving, dynamically changing camber).
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Spring constant a not large — else, spring breaks.

Immersed boundary force

Feedback forcing term in N-S «<->Spring-mass system equilibrium.

F=af (U —U)dt+p(U% - U)

Damping parameter  not large — else, force less reactive.

Magnitudes of these constants in buffer zone must ensure no dominant
frequency enters inflow, when domain is streamwise periodic.

2
s 0.1
el
c
9
Q
E 2 0.08
g o
@
? ; 0.06
(]
- 2 Frequency
o E of
S & 0.04rinflow
3 g streamwise
E. 0 velocity
E 3 0.027 7
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w - |
m o

= Drag coefficient
— Inflow streamwise velocity
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