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Goals: 
• identify stable/unstable, non-linear recurrent

patterns in square ducts
• find a link between optimal disturbances

and NLRP

Based on joint work with: 
D. Biau and H. Soueid

OPTIMAL DISTURBANCESOPTIMAL DISTURBANCES: : 
A SEXY AND USELESS CONCEPT?A SEXY AND USELESS CONCEPT?



This idea has roots in the prehistory of chaos theory!

Lorenz attractor
(J. Atmos. Sci. 1963)

No steady states
No limit cycles
Sensitive dependence on IC

Local unpredictability

Why recurrent patterns?  

Current wisdom holds that a “small” set of recurrent patterns are sufficient
to develop a predictive tool for non-equilibrium turbulent flows.



If turbulence can be interpreted as the wandering of the flow system’s 
trajectory in phase space among mutually repelling states (Cvitanovi�
refers to this as Hopf theory of chaos) it may be possible to

1. identify the set of recurrent patterns pertinent to each flow
configuration and Reynolds number, &

2. Compute sensible global averages (           global predictability)
possibly retaining only the more meaningful patterns (i.e. the 
least unstable ones?)

Both tasks are difficult …
(Lan & Cvitanovi�, Phys. Rev E 2003, had some 
success with the 1D Kuramoto-Sivashinsky equation)



What are optimal perturbations good for?

Traditional argument: OP elicit the largest response, thus they are
good candidate solutions to study by-pass transition …



Success stories for NLRP in the context of the Navier-Stokes equations
(chronological and incomplete …)

1. Nagata (JFM 1990) 3D finite amplitude solutions
in plane Couette flow

2.  Ehrenstein & Koch (JFM 1991) Poiseuille flow
3. Cherhabili & Ehrenstein (JFM 1997) plane Couette flow

4. Waleffe (JFM 2001, PoF 2003) plane Couette & Poiseuille
flows, self-sustaining process

5. Kawahara & Kida (JFM 2001) first numerical evidence of the 
existence of unstable recurrent
patterns in Couette flow at Re=400

6. Faisst & Eckhardt (PRL 2003)
Wedin & Kerswell (JFM 2004) TW in pipe flow

Hof et al. (Science 2004, PRL 2005)



Further confirmation as to the presence of recurrent patterns
in pipe flow: Gavarini, Bottaro & Nieuwstadt, JFM, 2004 
&  IUTAM Symposium, Bristol, 2004

MINIMAL TURBULENT UNIT:
Vortices, streaks and TW sustain one another against viscous decay



Possibly, the square duct is “nicer” because of the presence of
geometrical symmetries that constrain the flow …

DNS, Gavrilakis, JFM 1992



Problem being investigated since Nikuradse (Ph.D. Thesis, Göttingen, 1926)                       

Experiments: Brundett & Baines (1964), Gessner (1973)
Reynolds-averaged simulations:  Launder & Ying (1973), Demuren & Rodi (1984)

Mompean (1998)
DNS/LES: Madabhushi & Vanka (1991), Gavrilakis (1992), 

Huser & Biringen (1993)

• Secondary flows near corners induced by anisotropic turbulent fluctuations
• Second-order closure underpredicts secondary vortices, possibly because

of inadequate modeling of secondary shear stress components
• “A theory of the flow structures that give rise to the observed mean flow is

not yet available”

Qualitative picture of the 
mean secondary flow:



Transition to turbulence

dp/dx = const.
characteristic length = h

[channel height]
characteristic speed = uτ

[uτ
2 = -(h/4ρ) dp/dx]

Reτ = 150

(MARGINAL VALUE)



Governing equations:

Linearized disturbance equations:

+

Traditional eigenvalue analysis shows that all eigenmodes are damped
(Tatsumi & Yoshimura, JFM 1990)



OPTIMAL PERTURBATIONS: Traditional functional optimization with adjoints.

The adjoint problem reads:



G = 873,1 at t+ = 1.31       G = 869.03 at t+ = 2.09

uopt = 0  at  t+ = 0

uopt � 0  at  t+ = 0

t+t+



Nonlinear evolution of the optimal disturbances ( + random noise)
(streamwise periodic duct of length 4π)

F = skin friction factor (F = 0.0415 from DNS at Reτ = 150  (Reb = 2084))

At t = 0: α = 0     E0 = 10-1   !!
α = 1 E0 = 7.8 x 10-3

α = 2 E0 = 4.4 x 10-3

fully developed turbulence



Excellent agreement with Gavrilakis, JFM 1992.

Streamwise/time averaged turbulent flow



The α = 1 mode

The threshold value is E0 = 7.8 x 10-3. In fact the optimal perturbation for α = 1 
is NOT important. What matters is the distorted field which emerges at t ~ 0.8.
Such a field is linearly unstable and can grow exponentially.



The α = 1 mode

Quadratic interactions produce a distorted base flow (which could be generated by
just about any initial condition with streamwise structure) which satisfies the conditions
for the growth and sustainement of turbulence.  The distortion is of rather large amplitude
and inviscidly unstable (cf. with theory of minimal defects, Bottaro et al, JFM 2003, 
Biau & Bottaro, PoF 2004)).

unperturbed base flow 0-Fourier mode at t ~ 0.8



The α = 1 mode and turbulence

The similarity between the zeroth-order mode at t ~ 0.8 and the streamwise/time
averaged flow field in the fully developed regime suggests that this is the end of
the story, i.e. one could easily imagine that the state on the left is an unstable limit
cycle around which the flow trajectory oscillates for a  long time.

Or not?

0-Fourier mode at t ~ 0.8                              mean turbulent flow



Conclusions (midway through the work)

• Global optimal disturbances are interesting concepts, with little
connection to transition.

• The key to transition is to set up a distorted base flow with certain
features, in particular such a distorted base flow must be able to
grow exponentially and resembles the mean fully developed
turbulent flow (?)

• The distorted base flow can be set up efficiently by sub-optimal
disturbances in the form of streamwise travelling waves.  In fact,
any initial condition in the form of a travelling wave of sufficiently
large amplitude is capable to do it!

• Is there any scope for studying optimal perturbations?



What happens past t ~ 0.8?

with

: grows out of the random noise
: present at t = 0
: from quadratic interactions



What happens past t ~ 0.8?

The secondary flow does not seem to oscillate around the
8-vortex state!!!

FILM …

A pair of opposite walls remains active for 50 + time units.
Afterwards, the opposite pair of walls become active.  The 
lifetime of the 4-vortex state is “infinite”.



(submitted JFM, 2007)

4-vortex state in an “edge state”?  (Eckhardt et al., ARFM 2007)
Edge state = the flow state that sits on the separatrix between laminar and 
turbulent flow (i.e. that dividing surface in phase space separating initial
conditions which remain laminar from those leading to turbulence)

active walls



Edge states in circular pipe flow have been recently computed by Pringle
& Kerswell (arXiv:physics/0703210v1).

An example of “edge state” is shown below (instantaneous and time average)

asymmetric 2-vortex structure

The same state has been found by Eckhardt et al., ARFM 2007.

high speed streak

low speed streak with
strong oscillations



Global optimal perturbations “Edge states”



Conclusions (final?)

• Global optimal disturbances are incapable to trigger transition to
turbulence (unless the initial amplitude is unreasonably large).

• Local optimals (with α � 0) can sep up a distorted base flow
which undergoes transition, provided the initial condition has an
amplitude superior to a given threshold.  The key to transition
is the nonlinearly distorted base flow (which here appears around
t ~ 0.8), not the suboptimal initial condition.

• The distorted base flow presents a 8-vortex structure and resembles
the mean fully developed turbulent flow in the square duct (any
reason?)

• Global optimals (4-vortex structure) resemble “edge states” (just a 
coincidence?). 

• There might still be scope for studying sexy optimal perturbations.


