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Why vortical states?

Saffman (ANYAS 1983) holds that “unstable quasi-steady vortical states
probably exist in every flow’ and speculates that “their shadows are present
in the turbulent flow ... and that turbulence can be understood in term of their
properties”.

Current wisdom holds that a “small” set of recurrent vortical patterns is
sufficient to develop predictive tools for non-equilibrium turbulent flows.

This idea has roots in the prehistory of chaos theory!

Lorenz attractor
(J. Atmos. Sci. 1963)

No steady states
No limit cycles
Sensitive dependence on IC

!

Local unpredictability




If turbulence can be interpreted as the wandering of the flow system’s
trajectory in phase space among mutually repelling vortical states
(Cvitanovic¢ refers to this as Hopf theory of chaos) it may be possible to

1. identify the set of vortical states pertinent to each flow
configuration and Reynolds number, &

2. compute sensible global averages ( ——)> global predictability)
possibly retaining only the more meaningful patterns (i.e. the
least unstable ones?)

Both tasks are difficult ...
(cf. Lan & Cvitanovi¢, Phys. Rev E 20083, in the
context of the 1D Kuramoto-Sivashinsky equation)



Success stories in the context of the Navier-Stokes equations
(chronological and incomplete ...)

6. Nagata (JFM 1990) 3D finite amplitude solutions
in plane Couette flow

2. Ehrenstein & Koch (JFM 1991) Poiseuille flow

9. Cherhabili & Ehrenstein (JFM 1997) plane Couette flow

10. Waleffe (JFM 2001, PoF 2003) plane Couette & Poiseuille
flows, self-sustaining process

11.Kawahara & Kida (JFM 2001) first numerical evidence of the

existence of unstable recurrent
patterns in Couette flow at Re=400

12.Faisst & Eckhardt (PRL 2003)
Wedin & Kerswell (JFM 2004) TW in pipe flow
Hof et al. (Science 2004, PRL 2005)




Further confirmation as to the presence of recurrent patterns
in pipe flow: Gavarini, Bottaro & Nieuwstadt, JFM, 2004
& IUTAM Symposium, Bristol, 2004
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Vortices, streaks and TW sustain one another against viscous decay




Possibly, the square duct is “nicer” because of the presence of
geometrical symmetries that constrain the flow ...
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FieURrE 6. (a) Mean secondary velocity vectors and mean streamwise flow contours. The contour
increment is 4u, with the lowest value contour being nearest to the duct walls representing 4u,

units. (b) Vector field in (a) averaged over all octants. Only half the vectors in each direction are
shown.
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unstable TW solution



Conversely, the boundary layer presents the difficulty of being non-
parallel along the streamwise direction x, hence it is not possible to
simplify the equations by expanding perturbations in the form:

2 f(y’ Z) e ina(x-ct)

Inflow-outflow conditions?
Proper model and scales for boundary layer streaks/vorti 7" ?




For the time being let’s forget about the high frequency TW
and let’s focus on steady streaks/vortices elongated in x;
the streaks/vortices found will (likely) be unstable, and this
will be assessed with a subsequent analysis.

Boundary layer scales: y, Z — > O0=L Re'?
(Gortler-like) X — L

Vv, W —» U_Re'”?

u — U,

p —> pU,2Re’

with Re = UL /v

(“p” above is just the second order term in the usual inner expansion of
pressure)



Re-independent steady leading order equations

u.+Vv,+w,=0
(uu), + (uv), + (uw), -u, - u,, =0
(uv), + (w),+ (vw), +p,-v,, - v,, =0

(UW)X + (VW)y + (WW)Z + pz - Wyy -W,= 0

with boundary conditions:

u=0 at y=0 =1 fory o
v=0 at y=0 w=0 for y o
w=0 at y=0 p=0 for y o

Streamwise parabolic set of PDE’s, leading edge optimal
conditions can be chosen on the basis of a variational principle:

1. find IC such that the solution at the exit station (x = L) (or
the solution integrated over x) has a maximum value of the
disturbance kinetic energy;

17. ... rate of energy dissipation;
3. .. growth rate of the secondary instability (TW)



At any value of x it is easy to show that u, vand w are constrained through:

uv, + Uw,—vu, -wu, + U, + U,,= 0

and if u is uniform along y and z (for example when u = 7 uniformly
along x, yand z upstream of the leading edge) then the constraint
at x = 0- is simply the continuity equation: v, +w, =0

Thus, we need to search only for 2 (!) optimal leading edge velocity
conditions, the third component being a linear functional of the others.

We decide to fix:
{U(O, y,z)=1
v(0, y, z) = vy(y, 2)

(i.e. no streamwise velocity perturbation at the leading edge) and to
maximize:

Emean (1/(22)) f_ZZfooofOlHM’\Z +Re_l(|v'|2 + |w’|2)] dxdydz

Eypn [(1/(22))]_2Z o u'12 + Re= L/ |2 + [w/|2)]dy dz] =0

Gmean ==



Given that Re is “large” we define
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so that the functional to be maximed is:
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in

Constrained optimization problem handled with the technique of
Lagrange multipliers

DIFFERENTIATE-THEN-DISCRETIZE vs DISCRETIZE-THEN- DIFFERENTIATE ?
(Gunzburger, Flow, Turb & Comb. 2000)



Discretization: second order finite differences on non-uniform grids along
x and y, Fourier discretization along z. The direct problem in discrete form
can be cast as:

An—l—l fn—l—l =By fn

with n the streamwise grid index. T
The initial energy can be written as:  E;, = fy Mofy = E
and the discrete functional is:

J = Zn—' fTM

Thus the Lagrangian functional is:

E(fo'r fi"’la fn—|—la fN) —
N-—1
Z £, Mafy + D [P (A 1£uq1 —Bafi) ]+ olfgMofy — Eo]

n=1 n=>0




It is simple to rewrite the Lagrangian functional as:

N—1 N—-1
£(f0, fn_|_1 , fN) = Z fz_|_1Mn—|—lfn+l + Z [p;{An—l—lfn—H - p;£_|_1Bn—|—lfn—|—l]
n=0 n=0

+ p%BNfN — profo + ko[ngofo — Epl

and an extremum is found when the following equation is satisfied:

N-=2
DL DL

—5f,
0+ Dfy

Df0 —0 Dfn—H

n=

for arbitrary variations Jof,, of

n+1

and of,



This leads to the following Euler-Lagrange equations:

[ Dr T . ¢Tn,

= Po By + 240fy My =0 optimality condition at x = 0

o
N—2 N-2

DL T

n=0 n+l n=>0

DL

B — pETBN =0
\ “N

Hence, the discrete adjoint problem is

!l
qu_lpﬂ — B£+]pf?+1 —2 ‘\'In—|—1ff?—|-1

to be solved by marching backward from x = 1 to x = 0, with the
terminal condition p, = 0.



Classical iterative procedure

(i+1) direct iteration from n =0 to n=N -1

>
£ = (1 gy +%[11§ ~'glp!)
24
direct equation [ adjoint equation }
Po Py = 0

<

(i+1) adjoint iteration with £ as source term
« The Lagrange multiplier A, is chosen so that the constraint Ej,(fo) = Ey

is satisfied.

 The relaxation parameter k£ [1[0,1] allows to relax the optimality
condition (which is recovered for k = 1).

« Iterations are stopped when the objective function converges to
the required tolerance.



Mean gain for different initial energy values

E, =107

1 1 I | | I
| _— linear result
. 0001 T / optimal perturbations
i [ e E, = 500
\5 " R
L 1_—"" very large initial
' m/ disturbance amplitude
| 1 | | | 1
0.3 04 05 06 07 038
3
7 . - s
€ o
6 ° % i 3, J
sk w*i’; E** O;‘X
K el b Comparison between the optimal
| “%.: . linear streak and the u,, results
& .
) o) ok by Westin et al. (JFM 1994)
1+ 4
¢ 02 04 06 08 1.0
U

max

FiGgure 1. Comparison between the streamwise velocity component of the downstream response to
an optimal perturbation, and the y-r.m.s. data in a flat-plate boundary layer subject to free-stream
turbulence (—, Reynolds-number-independent theory). The symbols represent experiments from
Westin et al. (1994) (O, Res = 203; +, Res = 233; x, Rey = 305, *, Res = 416; &, Res = 517).
Here y has been made non-dimensional—and the Reynolds number is defined —using the Blasius
length scale & = (Lv/U,)" 2.
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Fig. 5. Surfaces v (v, z)/+/ Eg at fixed wavenumber g = 0.5 for different Ey. (a) Eg = 1; (b) Ep = 100.
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Fig. 6. Disturbance velocity vector plots in the cross-stream plane (v, z) at x =0, for 8 =0.5. (a) Eg = 1; (b) Ep = 100.
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Fig. 8. Comparison at fixed wavenumber 8 = 0.5. Mode zero at x = 1 for increasing Ej).

U-velocity profiles are highly inflectional both along y and along z ...



THE BREAKDOWN OF STREAKS: TW SOLUTIONS

The streaks are assumed to evolve slowly compared to the evolution
of the “secondary” wavy instability, itis appropriate to focus only on a
“parallel” base flow U(.2) Z U(»)e"™ (the Blasius flow plus the

k=—o0

spanwise periodic streak, neglecting cross-stream velocity components)

( —|— 3 _|_ e — 0

and conduct a local, inviscid analysis: Uy T Uy T Wz =1,
u, + Uu, +Upv + U.w = —p,,

v+ Uvy = —py,

w, + Uwy = —p-,

together with slip boundary conditions at the wall and decaying
disturbances in the free stream. It is simply to reduce this equation to:

( -+ L—) Ap —2U,py, —2U.p. =0
¢

| 0x



The disturbance pressure reads:  p(X, y,z, 1) = Re {p(y, z)e"*="}

o0
with  p(y,z) = E pr(1)e® 7 and y0O[0, 0.5] Floquet exponent.
k=—a0

A temporal analysis is carried out (c eigenvalue, a real wave number)
separating the solutions according to the possible symmetries:
sinuous or varicose instabilities
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FiGure 2. Sketch of streak instability modes in the (x,z)-plane over four streamwise and two
spanwise periods, by contours of the streamwise velocity. The low-speed streaks are drawn with
solid lines while dashed lines are used for the high-speed streaks.



Inviscid stability results
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Frgure 12, Contours of constant absolute values of the streamwise velocity component of four
different kinds of modes obtained using the nonlinear mean fields. The dashed lines represent
the contours of the constant value of the mean field corresponding to the phase velocities of the
disturbances. The sinucus modes are caleulated uvsing the nonlinear mean field corresponding to
the circled line in figure 3(a), at streamwise position x = 2, where 4 = (.36, for a streamwise
wavenumber & = 0280 (¢, = 0821 and m, = 00144 for the fundamental mode; ¢, = 0839 and
oy = 0125 for the subharmonic mode). The varicose modes are calculated vsing the mean field
with largest streak amplitude (see figure 5h) at position x = 2, where 4 = 0L373, for a streamwise
wavenumber & = 0.275 (¢, = 0866 and ay = 000218 for the fundamental mode; ¢, = 0876 and
oy = 000243 for the subharmonic mode). In all caleulations Re; = 430 and § = 045,



Effect of detuning
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FGure 17. Temporal growth rate (a) and phase speed (b) versus the Floquet parameter for
sinuous modes, for four different amplitudes of the primary disturbance (symbols as in figure 16).
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Froure 19, Neutral curves for streak instability in the (4, 2)-plane for {a) the fundamental sinuous
mode, (&) the subharmonic sinuous mode (contour levels: w, = O, 0.0046, 0.0002),



To provide a conservative estimate of the threshold amplitude of the initial
disturbance at x = 0 that eventually leads to streaks that can break down,
we take a “critical” amplitude of the nonlinear streaks A equal to 20%, with
Since the results obtained for optimal nonlinear streaks give the functional
form A = A(x;E,, B ), we can, for each given saturation value of A and for

each (3, retrieve the corresponding initial energy level E,. In a real physical

situation the initial energy level capable of yielding the given value of A at
saturation will be larger, since leading edge conditions in a wind tunnel are
not optimal (in the sense considered here) = conservative bound

Fig. 12. Curve of initial perturbation energy Fg as a function of 8 for which A = 0.2 somewhere in the domain.



It can be argued that for initial disturbance energies E, at x = 0 lower

than about 23 (a value which needs to be further divided by Re to yield
a physically relevant number) the threshold amplitude needed to trigger
an instability of the streaks is not met. In this case

no streaks breakdown nor by-pass transition (?)

no self-sustained process

—>
—>



Outlook and conclusions

Optimal nonlinear streaks have been computed in a non-parallel boundary

layer by a variational technique which relies on direct-adjoint iterations

Streaks considered are steady and streamwise elongated - no “short” TW ...

The cost functional used is loosely related to the “secondary” instability
of the streaks (possibly a “better” functional could be adopted)
A locally parallel, inviscid secondary stability analysis has been conducted

to assess the potential of initial disturbances to produce downstream flow
states with TW

It appears that a minimal initial disturbance energy E, = 23/Re is required
for the possible onset of TW

Put vortices, streaks and TW together in a unique variational formulation is
not simple, but it is indispensable to capture vortical states

(is DNS the only way to go?)



