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This paper describes a scenario of transition from laminar to turbulent flow in a spatially

developing boundary layer over a flat plate. The base flow is the Blasius non-parallel flow

solution; it is perturbed by optimal disturbances yielding the largest energy growth over

a short time interval. Such perturbations are computed by a non-linear global optimiza-

tion approach based on a Lagrange multiplier technique. The results show that non-linear

optimal perturbations are characterized by a localized basic building block, called the

minimal seed, defined as the smallest flow structure which maximizes the energy growth

over short times. It is formed by vortices inclined in the streamwise direction surrounding

a region of intense streamwise disturbance velocity. Such a basic structure appears to be

a robust feature of the base flow since it is practically invariant with respect to the initial

energy of the perturbation, the target time, the Reynolds number and the dimensions of

the computational domain. The minimal seed grows very rapidly in time while spreading,

and it triggers non-linear effects which bring the flow to turbulence in a very efficient

manner, through the formation of a turbulence spot. This evolution of the initial optimal

disturbance has been studied in detail by Direct Numerical Simulations (DNS). Using a
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perturbative formulation of the Navier–Stokes (NS) equations, each linear and non-linear

convective term of the equations has been analyzed. The results show the fundamental

role of the streamwise inclination of the vortices in the process. The non-linear coupling

of the finite amplitude disturbances is crucial to sustain such streamwise inclination, as

well as to generate dislocations within the flow structures, and local inflectional velocity

distributions. The analysis provides a picture of the transition process characterized by a

sequence of structures appearing successively in the flow, namely, Λ vortices, hairpin vor-

tices, streamwise streaks. Finally, a disturbance regeneration cycle is conceived, initiated

by the fast non-linear amplification of the minimal seed, providing a possible scenario

for the continuous regeneration of the same fundamental flow structures at smaller space

and time scales.

1. Introduction

Despite many efforts in the last century and some breakthroughs, the very nature of

transition to turbulence continues to elude the fluid mechanics community, an indica-

tion of how formidable and fascinating the process is. It is now clear that several routes

to turbulence may exist in a given flow, with different degrees of efficiency, which can

be measured in terms of the space and/or time needed to reach the final chaotic state.

The original view, consisting in the linear amplification of two-dimensional Tollmien-

Schlichting or Rayleigh waves in boundary and shear layers, followed by secondary in-

stability and a nonlinear mixing process capable to redistribute energy among different

modes, has been all but replaced by new scenarios focusing on receptivity (Saric et al.

(2002)), transient growth (Chomaz (2005)), as well as coherent flow structures (Adrian

(2007)) and their nonlinear interactions (Eckhardt et al. (2007)).
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It has been established that in the subcritical regime, when all eigenmodes are damped,

disturbances may be amplified by a non-normal growth mechanism arising from the

constructive interference of nearly anti-parallel eigenfunctions (Schmid & Henningson

(2001)). At small initial disturbance levels this growth is linear; to identify the maximum

possible growth, the concept of optimal perturbations was introduced. Optimal distur-

bances are defined as those initial flow states which yield the largest amplification of the

disturbance energy density over a time/space interval (Farrell (1988); Luchini (2000)).

For the case of the boundary layer at low Reynolds number, of interest here, the result,

obtained for a laminar profile in a local setting, is that linear optimal perturbations con-

sist of pairs of counter-rotating streamwise vortices, capable to elicit streamwise streaks

by the lift-up effect (Landahl (1980)). If growth is sufficient, such elongated structures

can experience secondary instability and breakdown (Schoppa & Hussain (2002); Brandt

et al. (2004)). For sufficiently high values of the Reynolds number and of the initial

perturbation amplitude, non-linear effects may set in and trigger bypass transition, by

generating a turbulent spot which rapidly amplifies and spreads, leading the flow towards

the fully turbulent state.

A common objection to this transition scenario is that optimal streamwise-invariant

initial disturbances can be rarely observed in a real non-parallel boundary-layer flow. In

fact, in most practical cases, the flow undergoes transition by receptively selecting and

amplifying freestream turbulence perturbations (Jacobs & Durbin (2001); Brandt et al.

(2004)), or localized disturbances, such as those arising from the presence of roughness

elements or gaps on the wall, Therefore, it is important to justify the choice of employing

an initial optimal perturbation for studying the route to transition. As already discussed

in Luchini (2000), optimal perturbations can be used to unravel the most efficient amplifi-

cation mechanisms which dominate the growth of the perturbation over short time/space
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scales. In a linear framework, this happens when the first and the second singular values

of the evolution operator are well separated, such as in the case of the boundary-layer

(Luchini (2000)). Therefore, perturbations having a large projection onto the optimal

one would provide a large contribution to the energy amplification. This could lead to

a flow dominated by optimal and near-optimal streaks even when the flow is excited

by freestream turbulence, as suggested by the comparison of the optimization results

obtained by Luchini (2000) with the experimental data of Westin et al. (1994). How-

ever, many studies have by now demonstrated that linear optimals obtained by a local

approach are inefficient at triggering transition and, for example, the so-called oblique

transition mechanism succeeds in triggering transition at a much lower initial disturbance

level than linear optimals (see, for instance, Reddy et al. (1998)).

Following these ideas, Cherubini et al. (2010b) attempted to identify, in a linear frame-

work, initial localized disturbances capable to provoke breakdown to turbulence most

effectively in a Blasius boundary layer. The procedure to find the optimal wave packet

was that of linear global optimization theory, the optimization of the perturbation energy

being performed for a laminar non-parallel boundary-layer flow without any assumption

on the shape and on the frequency spectrum of the perturbation. The results showed

that the optimal initial perturbation is characterized by a pair of streamwise-modulated

counter-rotating vortices, tilted upstream, resulting at the optimal time in streak-like

structures alternated in the streamwise direction. Such vortices trigger transition more

effectively than streamwise-independent initial disturbances via a mechanism which goes

through the formation of hairpin vortices.

Evidence for the presence of hairpin-shaped structures in transitional boundary layers

(Wu & Moin (2009); Cherubini et al. (2010b)) proves that non-linear mechanisms are

indeed crucial in the transition scenario for wall-bounded shear flows. For parallel flows,
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such as the plane Couette flow and the flow in a circular pipe, the search for a purely

non-linear route to turbulence has been pursued in the last twenty years, after Waleffe

(1995) demonstrated that the linear mechanism which yields streamwise-homogeneous

streaks cannot easily trigger transition at low-to-moderate disturbance amplitude lev-

els. Since the work of Nagata (1990), who found the first exact coherent solution of the

Navier-Stokes equations for a Couette flow, followed by the theoretical work of Waleffe

(1997, 1998), explaining the nature of the self-sustaining process responsible for main-

taining such coherent structures, many authors advocated a theory in which transition

and turbulence stem from the random walk of the systems trajectory in phase space

among non-linear mutually repelling states, which are exact, unstable solutions of the

Navier-Stokes equations (Kawahara & Kida (2001); Faisst & Eckhardt (2003); Wedin

& Kerswell (2004); Hof et al. (2004); Eckhardt et al. (2007); Schneider et al. (2007);

Gibson et al. (2009)). Many such states have been identified, initially in small, periodic

domains and very recently also as localized solutions in large domains (Duguet et al.

(2009); Mellibovsky et al. (2009); Schneider et al. (2010a,b); Cherubini et al. (2011)).

However, it is not yet clear which kind of initial perturbation is able to better switch on

the process which brings the system most efficiently to these coherent states and then to

turbulence. Recently, some studies have been carried out aimed at finding special initial

disturbances, built by a linear combination of a limited number of ”basic modes”, which

cause the disturbed velocity field to approach such coherent structures (the lower-branch

solution in a pipe flow in Viswanath & Cvitanovic (2009), and the edge-state in a plane

Couette flow in Duguet et al. (2010)).

A more generic approach for identifying a purely non-linear route to transition has been

used by Pringle & Kerswell (2010) for the pipe flow, and by Cherubini et al. (2010a) for

the boundary-layer flow. For the case of the laminar boundary-layer developing over a
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flat plate of interest here, the latter authors have used a global approach extending the

linear transient growth analysis of Cherubini et al. (2010b) to the non-linear framework.

Optimizing the energy of the perturbations in a non-linear framework, they have proved

the existence of a non-linear amplification mechanism of the disturbances which is more

effective than the linear one and is capable to lead the flow to turbulence for lower values

of the perturbation amplitude. The suitability of an energy optimization to determine

the disturbances which bring the flow more effectively on the verge of turbulence has

been confirmed by results obtained with a different optimization functional for the case

of a Couette flow in a small domain (Monokrousos et al. (2011)). Using a functional

constructed on thermodynamic considerations, better suited to target a turbulent state,

has provided similar results to those obtained by using a disturbance energy functional.

The optimizations performed by Pringle & Kerswell (2010); Cherubini et al. (2010b)

and Monokrousos et al. (2011) have provided a breakthrough on the importance of non-

linearity on the amplification mechanisms leading to turbulence. Nevertheless, for the case

of the boundary-layer flow, it is still not clear whether the shape and the amplitude of the

non-linear optimal perturbations are robust features of the flow, as well as to which extent

do they depend on the Reynolds number, the domain length, the initial energy and/or

the target time of the optimization. Moreover, nothing is still known on the mechanisms

leading such optimal disturbances to turbulence, and the role of non-linearity in the

route to transition initiated by such fast growing perturbations is still to be identified.

The present work aims at providing an answer to such questions by investigating: (i) the

robustness of the non-linear optimal perturbation and its dependence on the optimization

parameters; (ii) the amplification mechanisms capable to trigger transition in a spatially-

developing boundary-layer flow following a purely non-linear route.

A Lagrange multiplier technique is employed to find the optimal perturbation of given
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initial energy for the Blasius boundary-layer flow at Reynolds number Re. The results of

the optimization procedure are provided for two values of Re and several values of the

target time and the initial energy. For values of the initial energy larger than the threshold

one, the optimal perturbation is found to be characterized by a fundamental invariant

structure, the minimal seed for turbulent transition, which is formed by a localized array

of vortices and low-momentum regions of typical length scale, capable of maximizing the

energy growth the most rapidly. Furthermore, direct numerical simulations have been

employed to study the mechanism of transition to turbulence when the flow is initialized

using the minimal seed. Finally, a disturbance regeneration cycle is conceived, initiated by

the fast growth and non-linear evolution of the optimal disturbance, providing a possible

scenario for the continuous regeneration of the same fundamental flow structures at

smaller space and time scales.

The paper is organized as follows. In the second section we define the problem and

describe the nonlinear optimization method. In the third section, a thorough discussion

of the results of the nonlinear optimization analysis is provided. In particular, in the

first part, the focus is on the characterization of the optimal perturbation, whereas the

second part deals with the optimal route to turbulence. Finally, the regeneration cycle is

conjectured and concluding remarks are provided.
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2. Problem formulation

2.1. Governing equations and numerical method

The behaviour of a three-dimensional incompressible boundary-layer flow is governed by

the Navier–Stokes (NS) equations:

ut + (u · ▽)u = −▽ p +
1

Re
▽2 u,

▽ · u = 0,

(2.1)

where u is the velocity vector and p is the pressure term (including the contribution

of conservative-force fields). Dimensionless variables are defined with respect to the in-

flow boundary-layer displacement thickness, δ∗, and the freestream velocity, U∞, so that

the Reynolds number is Re = U∞δ∗/ν, ν being the kinematic viscosity. Several com-

putational domains have been employed, the reference one having dimensions equal to

Lx = 200, Ly = 20 and Lz = 10.5, x, y and z being the streamwise, wall-normal and

spanwise directions, respectively. The Blasius base flow is obtained by integrating the NS

equations with the following boundary conditions: at inlet points, placed at xin = 200

downstream of the leading edge of the flat wall, a Blasius boundary-layer profile is im-

posed for the streamwise and wall-normal components of the velocity vector whereas

the spanwise component is set to zero. At outlet points, placed at xout = 400 for the

reference domain, a standard convective condition is employed (Bottaro (1990)). At the

bottom wall the no-slip boundary condition is prescribed. At the upper-boundary points

the Blasius solution is imposed for the wall-normal component of the velocity, whereas

the spanwise velocity component and the spanwise vorticity are set to zero. Finally, in

the spanwise direction periodicity is imposed for the three velocity components. The NS

equations are discretized by a finite-difference fractional-step method using a staggered

grid (Verzicco & Orlandi (1996)). A second-order-accurate centered space discretization
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is used. After a grid-convergence analysis, a mesh made up by 901 × 150 × 61 points –

clustered towards the wall so that the thickness of the first cell close to the wall is equal

to 0.1 – is selected for the reference domain.

2.2. Non-linear optimization

The non-linear behaviour of a perturbation q = (u′, v′, w′, p′)T evolving in a laminar

incompressible flow over a flat plate is studied by employing the NS equations written

in a perturbative formulation, with respect to the two-dimensional Blasius steady state

solution, Q = (U, V, 0, P )T . A zero perturbation condition is chosen for the three veloc-

ity components at the x−constant and y−constant boundaries, whereas periodicity of

the perturbation is imposed in the spanwise direction. The zero perturbation condition

at inflow and outflow points is enforced by means of a fringe region (Cherubini et al.

(2010b)), which allows the perturbation at the exit boundary to vanish smoothly.

In order to find the perturbation at t = 0 providing the largest disturbance growth

at a given target time, T , a Lagrange multiplier technique is used (Zuccher et al. 2004;

Pringle & Kerswell 2010). Let us define the disturbance energy density as

E(t) =

∫ Lz

0

∫ Ly

o

∫ xout

xin

[

u′2(t) + v′
2
(t) + w′2(t)

]

dxdydz =

∫

V

[

u′2(t) + v′
2
(t) + w′2(t)

]

dV ;

(2.2)

we seek for the initial perturbation q0 of given initial energy E(0) = E0 which can induce

at target time T the largest energy E(T ). Thus, the objective function of the procedure,

ℑ, is the energy gain ℑ = E(T )/E(0). The Lagrange multiplier technique consists in

searching for extrema of an augmented functional, L, with respect to every independent

variable, the three-dimensional incompressible NS equations and the value of the initial

energy being imposed as constraints. The gradient of the augmented functional with re-

spect to every independent variable is forced to vanish by means of a coupled iterative
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Figure 1. Optimal energy gain versus target time T for Re = 300, E0 = 0.1. The white

squares indicate the results of a linear optimization, the black circles indicate the non-linear

ones.

approach similar to that used by Zuccher et al. (2004) and Pringle & Kerswell (2010),

employing a conjugate gradient method. A detailed description of the optimization tech-

nique is provided in the Appendix.

3. Results

3.1. Non-linear optimal perturbations

The non-linear optimization has been performed for two values of the Reynolds num-

ber; the first one, Re = 300, is subcritical with respect to Tollmien-Schlichting waves,

whereas the second one, Re = 610, is supercritical. Figure 1 shows the value of the op-

timal energy gain versus the target time for Re = 300 and E0 = 0.1 (black circles). For

comparison, the optimal energy gain obtained by the corresponding linear optimization

(see Cherubini et al. (2010b)) is provided in the same figure (white squares). For T > 50,

the non-linear optimal energy gain is remarkably larger than the corresponding linear

one. In particular, the energy gain grows in time following a quasi-exponential curve,

unlike the linear case which shows an initial growth phase followed by a decay. The trend

of the energy gain curve obtained for Re = 300 is similar to that obtained for Re = 610

Page 10 of 52



The minimal seed of turbulent transition in the boundary layer 11

E

E
(T

)

10-3 10-2 10-110-1

100

101

102

103

0

(a)

E

E
(T

)

10-3 10-2 10-110-1

100

101

102

103

0

(b)

E

E
(T

)

10-3 10-2 10-110-1

100

101

102

103

0

(c)

Figure 2. Optimal energy at target time T for (a) Re = 300, T = 75; (b) Re = 300, T = 125;

(c) Re = 610, T = 75. The white squares indicate the results of a linear optimization, the black

circles the non-linear ones.

(see Fig. 2 in Cherubini et al. (2010a)). However, a higher increase of the gain is obtained

for Re = 610 with respect to Re = 300. The influence of the parameter E0 on the value

of the optimal energy is shown in Figures 2 (a), (b), and (c), for two values of the target

time and of the Reynolds number. In all cases, a threshold on the initial energy exists

(hereafter called non-linearity threshold) from which strong modifications are observed in

the non-linear optimal energy with respect to the linear one. Such a threshold decreases

when the Reynolds number or the target time increase (as one can observe by inspec-

tion of Figure 2). Moreover, crossing such a threshold yields strong modifications in the

shape of the optimal perturbations. This is clearly shown in Figure 3, which provides the

optimal initial perturbations obtained for Re = 610 and T = 75, for five values of the

initial energy, E0. For the lowest one, E0 = 0.001 (top frame), the perturbation is similar

to that obtained by the linear optimization (Cherubini et al. (2010b)); it is character-

ized by elongated vortices aligned along x, localized in the middle of the domain. For

0.001 < E0 < 0.005, the shape of the optimal perturbation changes remarkably, moving

close to the inlet, and decreasing its streamwise size. For E0 > 0.005, the structure of

the optimal perturbation changes slightly, being characterized by a basic building block

(cf. Cherubini et al. (2010a)), which is replicated one or more times along x and/or z
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for increasing values of the initial energy. The same basic building block is observed for

larger target times, for values of the initial energy larger than the non-linearity threshold,

and will henceforth be called the minimal seed , i.e., the smaller structure by which the

maximum energy growth is achieved over short times. It is characterized by alternated

vortices inclined with respect to the streamwise direction (yellow and blue surfaces in-

dicating the positive and negative streamwise vorticity, ω′
x, respectively), which lay on

the flanks of a region of negative streamwise velocity disturbance (green surfaces). The

inclined vortices are shown in Figure 4, which provides four x−constant sections of the

optimal initial perturbation obtained for T = 75, E0 = 0.01 and Re = 610. The vortices

are inclined with respect to the mean flow, both in the wall-normal and in the spanwise

direction. The upstream tilting with respect to the wall-normal direction, which can be

observed in Figures 4 (a) and (b) for the vortices A and B, in Figures 4 (b) and (c) for the

vortices C and D, and in Figures 4 (c) and (d) for the vortices E and F, is linked to the Orr

mechanism (see Schmid & Henningson (2001)). This inclination is observed also in the

linear optimal case, as shown by Cherubini et al. (2010b) and Monokrousos et al. (2010),

due to the fact that a transient energy growth is produced when the mean flow tilts

downstream the structures initially opposing the base flow. On the other hand, spanwise

tilting is not observed in the linear case, in which the optimal perturbations are charac-

terized by elongated vortices perfectly aligned with the streamwise direction (see Figure 3

(a)). Another remarkable difference with respect to the linear optimal perturbation con-

cerns the relative magnitude of the velocity components. Figure 5 provides a section of

the flow at y = 1.4 showing the contours of the streamwise (shaded), wall-normal (black

lines) and spanwise (white lines) velocity components of the initial optimal perturbation

obtained for T = 75, Re = 610 and E0 = 0.01. The component of the initial velocity

perturbation having the highest absolute value is the streamwise one (u′−
max = −0.018,
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Figure 3. (Color online) Initial perturbations obtained by the non-linear optimization for

Re = 610 and target time T = 75: iso-surfaces of the optimal perturbations (green for the

negative streamwise component, blue and yellow for negative and positive streamwise vorticity,

respectively) with initial energy (from top to bottom) E0 = 0.001 (surfaces for u′ = −0.0005,

ω′

x = ±0.005), E0 = 0.0025 (u′ = −0.001, ω′

x = ±0.01), E0 = 0.005 (u′ = −0.007, ω′

x = ±0.03),

E0 = 0.05, and E0 = 0.1 (u′ = −0.01, ω′

x = ±0.05). Axes are not in the same scale.

u′+
max = 0.011), unlike the linear case in which the streamwise component is the smallest

one (u′
max = ±0.00026, not shown). Moreover, unlike the linear optimal case, regions

with high negative streamwise component of the velocity disturbance are associated with

high positive values of the wall-normal component (compare the dashed lines with the

green regions in Figure 5, as well as the upwards arrows with the green regions in Figure

4).
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Figure 4. Contours and vectors of the velocity components of the initial minimal seed obtained

for Re = 610, T = 75, and E0 = 0.01, on the planes x = 224 (a), x = 228 (b), x = 232 (c), and

x = 236 (d). Shaded contours indicate the streamwise disturbance velocity (dark for negative

values, light for positive ones), vectors represent the wall-normal and the spanwise disturbance

velocity components. Axes are not in the same scale.

What comes out from the optimal perturbations at T is shown in Figure 6, for the

same five values of the initial energy used in Figure 3. One can observe Λ-shaped low-

momentum structures, along with streamwise inclined vortices tilted downstream. Such

structures are observed for all of the initial energies larger than the non-linearity thresh-

old, although one can notice that, when the initial perturbation occupies more space in

the spanwise and streamwise direction, the minimal seeds interact non-linearly, leading
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Figure 5. Section at y = 1.4; contours of the velocity components of the initial opti-

mal perturbation obtained for Re = 610, T = 75, and E0 = 0.01. Shaded contours indi-

cate the streamwise disturbance velocity component (dark for negative values, light for pos-

itive ones), black and white lines represent the wall-normal and the spanwise disturbance

velocity components, respectively (solid for negative values, dashed for positive ones). The

values of the contours are v′ = −0.004,−0.003,−0.002,−0.001, 0.001, 0.0015, 0.002, 0.0025,

w′ = ±0.01, 0.008, 0.006, 0.004, 0.004. Axes are not in the same scale.

to more chaotic, small scale structures over a finite time (see, in particular, the bottom

frame of Figure 6).

Similar optimal perturbations are obtained at different target times and Reynolds

numbers, when the initial energy is larger than the corresponding non-linearity threshold.

As an example, Figure 7 shows the streamwise components of the velocity perturbation

(green surfaces) as well as the streamwise vorticity perturbation (yellow and blue surfaces)

for the optimal perturbation obtained for Re = 300, T = 125 and E0 = 0.01. One can

observe two minimal seeds (top frame), having the same structure and a similar spatial

extent as those found at Re = 610 (see Figure 3), with inclined vortices staggered in x.

They are tilted downstream by means of the Orr mechanism (second frame), yielding at

larger time Λ structures and vortices with a finite (positive) inclination with respect to

x.

It is important to establish whether the optimal perturbation maintains its charac-

teristic shape and size varying the streamwise or spanwise domain length. Thus, further
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Figure 6. (Color online) Outcome at t = T = 75 and Re = 610 of the optimal initial pertur-

bations injected at t = 0.: iso-surfaces of the perturbations (green for the negative streamwise

velocity component, blue and yellow for negative and positive streamwise vorticity, respectively)

with initial energy (from top to bottom) E0 = 0.001 (surfaces for u′ = −0.01, ω′

x = ±0.015),

E0 = 0.0025 (u′ = −0.02, ω′

x = ±0.05), E0 = 0.005 (u′ = −0.08, ω′

x = ±0.08), E0 = 0.05 and

E0 = 0.1 (u′ = −0.2, ω′

x = ±0.5). Axes are not in the same scale.

optimizations have been performed for different streamwise and spanwise domain lengths,

maintaining the same local grid resolution of the previous case (namely, the number of

points in the streamwise or in the spanwise direction is scaled with Lx or Lz, respectively).

Optimizations performed with streamwise domain lengths Lx = 100 and Lx = 400 (for

Re = 610, E0 = 0.01 and T = 75), indicate that the optimal disturbance is practically

independent of the streamwise domain length. Similarly, optimizations carried out with

Lz = 15 and Lz = 7 show that the optimal perturbation and energy gain is but slightly
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The minimal seed of turbulent transition in the boundary layer 17

Figure 7. Time evolution of the optimal perturbation obtained by the non-linear optimization

for T = 125, E0 = 0.01 and Re = 300, at time t = 0 (top frame) and t = T (bottom frame).

The green surfaces indicate the negative streamwise component of velocity (u′ = −0.006 at

t = 0, u′ = −0.04 at t = T ), the blue and yellow ones indicate negative and positive streamwise

vorticity, respectively (ω′

x = ±0.04). Axes are not in the same scale.

dependent on the spanwise domain size, the variation on the optimal energy gain being

lower than 10%. However, it is noteworthy that the shape of the minimal seed is qualita-

tively unchanged. Figure 8 shows the initial optimal disturbances obtained at Re = 610,

E0 = 0.01 and T = 75 for the three values of the spanwise domain length considered here:

the shape of the perturbation remains the same. Moreover, the spanwise extent of the

optimal perturbation varies only slightly with Lz, hinting at the fact that the spanwise

length scale selected by the optimizations is a robust feature of the problem.

The persistence of the minimal seed structure at different values of the initial energy,

Reynolds number, domain sizes and target times indicates that the structure obtained

here, which maximizes the disturbance energy over a finite time, has an intrinsic funda-

mental importance for the boundary layer.
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Figure 8. Initial optimal perturbations obtained by the non-linear optimization at T = 75,

E0 = 0.01, and Re = 610, for three different spanwise domain lengths, Lz = 7 (top frame),

Lz = 10.5 (middle frame), and Lz = 15 (bottom frame). The green surfaces indicate the negative

streamwise component of velocity (u′ = −0.01); the blue and yellow ones indicate negative and

positive streamwise vorticity, respectively (ω′

x = ±0.05).

3.2. The route of the minimal seed to turbulence

3.2.1. Description of the overall transition process

In this section, we study in detail the route to turbulence of the minimal-seed per-

turbation, employing DNS. For most of the computations the minimal seed obtained for

T = 75, E0 = 0.01 and Re = 610 has been used to initialize the flow field. Computations

have been performed in a domain three times longer in x than the one used for the op-

timizations, in order to follow the flow evolution for a sufficiently long time before the

disturbance wave packet leaves the domain. A 2701 × 150 × 61 grid has been used, so
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Figure 9. Energy gain versus time obtained by DNSs initialized using the linear (dashed lines)

and non-linear (solid lines) optimal perturbations computed for T = 75 (thick lines) and T = 125

(thin lines), E0 = 0.01 and Re = 610. The black squares and circles represent the energy gain

obtained by the linear and non-linear optimization, respectively.
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Figure 10. Streamwise distribution of the spanwise-averaged skin-friction coefficient extracted

at t = 25, 50, 75, 150, 200 (solid lines from left to right) from a DNS initialized by the non-linear

optimal perturbation obtained for T = 75, E0 = 0.1, and Re = 610. The laminar and turbulent

distributions of Cf (bottom and top dashed lines, respectively) are also reported for comparison.

that the local grid resolution is the same of the optimization runs. Figure 9 provides the

energy gain computed by DNSs initialized with four optimal perturbations, two linear

ones and two non-linear ones, obtained for two target times, and for the same value of

the initial energy, E0 = 0.01. Both non-linear optimal perturbations grow very rapidly

in time, reaching an energy gain close to 8000 in about 200 time units. On the other

hand, the linear optimal perturbations do not show a rapid energy growth: that obtained
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for the smaller value of T starts to decay right after the target time (for t ≈ 85); the

other one experiences saturation for a considerable amount of time followed by decay

(at t ≈ 475, not shown). Evaluating the spanwise-averaged skin friction coefficient Cf ,

we have verified that when the DNS is initialized by the minimal seed perturbation with

E0 = 0.01, Re = 610 and T = 75, the Cf reaches values which are typical of turbulent

flows for t > 200 (see Fig. 5 in Cherubini et al. (2010a)); on the other hand, when the

simulation is initialized by the optimal perturbation resulting from a linear optimiza-

tion with the same initial energy and target time, Cf reaches values which are at most

1.5% larger than those of the laminar reference curve (not shown). Thus, for the same

value of the initial energy, the non-linear optimal perturbation is able to lead the flow

to turbulence, whereas the linear one is not. Optimal perturbations obtained for larger

initial energies are even more efficient in inducing transition. Indeed, observing in Figure

10 the skin friction coefficient corresponding to the evolution of the non-linear optimal

perturbation obtained for T = 75 with E0 = 0.1, one can conclude that transition to

turbulence occurs earlier in space and time with respect to the case with E0 = 0.01 (cf.

the results in Cherubini et al. (2010a)). In particular, turbulence is reached at the target

time, whereas for the lower value of E0 transition is reached about 175 time units after

the target time. In both cases one can notice the presence of an elongated calmed region

localized at the trailing edge of the wave packet, a common feature of turbulent spots.

It is thus interesting to investigate the route to turbulence followed by the minimal

seed. A qualitative picture of the transition process initiated by the non-linear optimal

perturbation has been given in Cherubini et al. (2010a). In the present paper we provide

a more detailed analysis of the transition route which was firstly sketched in our previous

paper. Figure 11 shows the contours of the streamwise and wall-normal components of

the velocity perturbation, as well as of the Q-criterion (Hunt et al. (1988)), on the y = 1.8
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Figure 11. Snapshots of the perturbation on the plane y = 1.8 at t = 0, 35, 65, 95, and 125

(from top to bottom) obtained by the DNS initialized by the non-linear optimal for T = 75,

Re = 610, and E0 = 0.01. The shaded contours refer to the streamwise component of the

velocity perturbation; the solid and dashed black lines to the negative and positive values of the

wall-normal velocity component, respectively; the white lines to the Q-criterion. Each variable

has been normalized using its maximum value at each time; solid contours show the values

Q = 0.02, v′ = ±[0.1, 0.2, 0.3, 0.4].

plane at t = 0, 35, 65, 95, 125 (to allow a comparison among several times, each variable

has been normalized using its maximum value at each time). One can observe that the

Λ-vortices at t = 35 (white contours on the second frame) almost overlap on the Λ-

shaped low-momentum zones. This is a completely different picture from the linear case.

It is known that in a linear framework the amplification of the optimal perturbation
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Figure 12. Contours and vectors of the velocity components of the optimal perturbation at

t = 75 obtained for Re = 610 and E0 = 0.01, on the planes x = 264 (a), x = 268 (b),

x = 270 (c), and x = 274 (d). Shaded contours indicate the streamwise velocity component

of the perturbation (dark for positive values, light for negative ones), vectors represent the

wall-normal and the spanwise velocity component. Axes are not in the same scale.

is mainly due to the transport of the base flow momentum by a pair of streamwise

vortices (the lift-up effect), which induces streamwise streaks at a finite time. Thus, the

bypass route to transition goes through secondary instability of the streaks and non-linear

mixing which sustains the streamwise vortices. On the other hand, in the present case,

the optimal perturbation is characterized by streamwise-inclined vortices; they transport

the flow momentum causing an amplification of the streamwise component of velocity
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along them and inducing the creation of low- and high-momentum zones modulated

in x, i.e., Λ−shaped low-momentum zones and sinuous high-momentum ones. Due to

such a streamwise modulation of the momentum, the flow can bypass the mechanism

of secondary instability and reach transition via a more rapid route. Moreover, it is

worth pointing out that both the base flow momentum and the finite amplitude initial

streamwise perturbation are transported by the inclined vortices, inducing defects in

the base flow and dislocations of the initial disturbance. Here, defects are defined as

modifications of the base flow with zero temporal frequency, which can affect the stability

properties of the base flow (cf. Biau & Bottaro (2009)), whereas dislocations are defined

as regions of strong interaction between neighboring flow structures of finite amplitude,

resulting in the merging or splitting of the initial structures. Such flow modifications are

mostly due to the spatial correlation of regions of high streamwise velocity with regions of

low wall-normal velocity components, and viceversa, as it can be observed in Figure 11.

Therefore, the low-momentum perturbation is rapidly transported up in the boundary

layer, whereas the high-momentum one is convected close to the wall. Such effects can

be clearly observed looking at planes perpendicular to the streamwise direction (Figure

12), providing the contours and vectors of the disturbance velocity components of the

optimal perturbation at t = 75. Comparing it with Figure 4 (t = 0), one can notice

that the regions of negative streamwise perturbation are lifted up in the wall-normal

direction (light contours), whereas the positive ones (dark contours) plunge towards the

wall. As a result, the horizontal shear layers present in Figure 4 increase in magnitude

and change in shape, inducing strong modifications and inflection points in the base flow

profile. The shapes of the low- and high-momentum zones are strongly reminiscent of

those characterizing Görtler and Dean vortices (Guo & Finlay 1991; Bottaro (1993))

while undergoing an Eckhaus instability.
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Figure 13. Profiles of the instantaneous streamwise velocity at three times, t = 50, 75, 100

(from left to right frame), along with iso-surfaces of u′ at each time. The black dots indicate the

locations where the velocity profiles have been extracted.

The creation of inflection points can be more clearly observed in Figure 13, showing

the profiles of the instantaneous streamwise velocity at three times and positions within

the flow, along with the iso-surfaces of the streamwise perturbation velocity at each time.

An inflection point is firstly established in the flow at t = 75, when dislocations have

already formed; then, at larger time, t = 100, the main Λ structure breaks up into smaller

disturbance patches. This suggests that the inflection points of the mean-flow profile are

related to the rupture of large scale structures into smaller ones.

The correspondence of regions of streamwise and wall-normal velocity components of

opposite sign and finite amplitude is an important feature of the minimal-seed pertur-

bation, since it strongly recalls the dynamics of a turbulent boundary-layer flow. In fact,

it has been demonstrated that the mechanisms responsible for creating Reynolds shear

stress in a boundary layer are mostly related to negative streamwise fluctuations being

lifted away from the wall by positive wall-normal fluctuations (ejections), as well as to

positive streamwise fluctuations approaching the wall (sweeps, see Corino & Brodkey

(1969); Willmarth & Lu (1972)). Such mechanisms have been linked to the burst phe-
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nomenon and, later, to the presence of hairpin vortices (Robinson (1991)), so that they

can be considered the kinematic basis of boundary layer turbulence.

At this stage of the transition process, due to the tilting of the initial vortices and

to the dislocations induced by the interactions of finite amplitude perturbations, the

downstream part of the vortex, which is the most distant from the wall, is convected

downstream faster than the upstream part; since it experiences higher base flow velocity,

the vortex is stretched in the streamwise direction. This is shown in the third frame of Fig-

ure 11 (t = 65), where one can notice that the vortical structures and the low-momentum

regions increase their intensity due to the vortex-stretching mechanism. Only after the

two main vortices connect in their downstream part (third frame), the main Λ-structure

breaks up into two main legs connected by a vortex filament (fourth frame, t = 95). The

creation of a hairpin vortex characterizes the breakdown phase of the transition path

initiated by the minimal seed (see also the movie included as supplementary material). It

is worth pointing out that the streamwise streaks begin to develop only after the creation

of the hairpin head (see the fifth frame of Figure 11 at z ≈ 2.8, z ≈ 8.4, and the first

frame of Figure 14). Thus, as already conjectured in Wu & Moin (2009) and Cherubini

et al. (2010a), the formation of long streamwise streaks appears to be a simple kinematic

consequence of the presence of hairpin vortices. The same behaviour has been observed

for all of the spanwise domain lengths considered here. In particular, to ascertain that

the transition process involves the same spanwise length scales, the spanwise spacing

of the streaks has been measured in the late stage of transition (at t = 200) for three

DNSs having Lz = 7, Lz = 10.5, and Lz = 15, each one initialized by the minimal

seed perturbations obtained using the corresponding computational domain (cf. Figure

8). Normalizing the spanwise spacing with respect to the wall shear stress, one obtains

λ+ ≈ 114.5 for Lz = 15 and Lz = 10.5, which is close to the streak spacing commonly
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Figure 14. Iso-surfaces of the negative streamwise component of the velocity perturbation

(green, u′ = −0.2) and of the Q criterion (blue, Q = 2000) obtained at t = 100 by a complete

DNS (a) and by a DNS with U multiplied by 0.9 at t = 111 (b), both initialised by the

minimal-seed perturbation.

observed in turbulent boundary layers (e.g., Kline et al. (1967)), whereas a smaller value,

λ+ ≈ 98, is found for Lz = 7, due to the limited spanwise length of the computational

box. A similar behaviour is recovered for all values of Reynolds numbers, initial energies,

and target times considered here, as soon as the non-linearity threshold is overtaken.

3.2.2. Analysis of the basic mechanisms of the transition process

In the discussion above we have described the route leading the minimal-seed pertur-

bation to transition. Now, we are going to identify in a more quantitative way the basic

mechanisms of this amplification process, as well as the role of the linear and non-linear

convective terms. Such an analysis is performed using DNSs, switching off or rescaling one

by one the convective terms of the Navier-Stokes equations, and comparing the results to

those obtained solving the complete NS equations. All of the computations discussed in
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this subsection have been performed initializing the flow by means of the minimal-seed

perturbation obtained for Re = 610, E0 = 0.01 and T = 75.

Among the linear terms, we have found that those which mostly affect the route of

the flow to transition are: (i) the term of convection of the streamwise component of

the base flow by the wall-normal component of the perturbation, v′Uy; (ii) the terms of

convection of the perturbation by the streamwise component of the base flow, namely,

Uu′
x,Uv′x,Uw′

x. Other linear convective terms have been found to play a small role due

to the weak non-parallelism of the flow.

The term v′Uy is usually associated with the lift-up mechanism, in which slow/fast

fluid is transported upwards/downwards in the boundary layer creating slow/fast streaks

of streamwise perturbation and increasing the perturbation energy. In the present case,

a mechanism similar to the lift-up is found, since, when such a term is switched off,

no energy increase is found, and the maximum value of the streamwise velocity drops

quickly (at t = 25, u′
max is 20 times lower than in the optimal case), inhibiting the

triggering of non-linear effects within the flow and leading to a fast relaminarization.

This indicates that transition relies on the lift-up mechanism to allow an initial growth

of the perturbation.

Concerning the terms of transport of the perturbation by the streamwise component

of the base flow, they have a large effect on the flow dynamics, due to the much larger

value of U with respect to V , u′, v′, and w′. Thus, in such a case we have used a different

diagnostic: three simulations have been performed in which the linear terms containing

U are multiplied by a factor h smaller than one. The first and second frame of Figure

14 show the disturbance structure at t = 100 for the complete DNS, and at th = t/h

for a DNS with h = 0.9, where the time has been scaled in order to take into account

the different base-flow convection velocities. The most striking difference with respect
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to the complete case is the absence of the head of the hairpin vortex. In fact, reducing

the convection of the perturbation by the base flow, the flow structures experience less

stretching in the streamwise direction, and the Λ vortices are not able to join on their

downstream part to create the hairpin head.

The linear convective terms discussed above have an important role in transition.

However, non-linear terms are necessary to trigger turbulence, and have a major effect in

the development of the perturbation. This can be first verified by performing a simulation

in which all of the non-linear terms are switched off. Figure 15 (a) shows the evolution

of the energy gain in such a case (dashed line), compared to the complete DNS (solid

line). One can notice the strong differences between the two curves for t > 25, the

first one showing a decrease of the energy gain and a drop of the perturbation down

to the laminar flow, the second one showing a fast growth of the energy, followed by

transition to turbulence. Thus, such curves confirm that, whereas for t 6 25 the energy

amplification is related to linear mechanisms, for t > 25 it is non-linearity which causes

the disturbance energy to grow. The left frames of Figure 16, providing the perturbations

for the linear (top) and the non-linear (bottom) case at t = 25, show that the structure of

the perturbations is almost identical in the two cases. On the other hand, at t = 50 (right

frames of Figure 16) strong modifications appear; in particular, the contribution of the

non-linear terms is fundamental to induce the lateral inclination of the vortices. In fact,

in the absence of non-linear terms, at such a time instant the vortices are aligned with

the streamwise direction and the streamwise perturbation is much less intense compared

to the non-linear case. At larger times, both the vortices and the streaks continue to

decrease their amplitude, leading to the relaminarization of the flow. This means that

the lift-up mechanism alone is not capable to sustain the perturbation, and that the

inclination of the vortices is a fundamental feature at the onset of transition.

Page 28 of 52



The minimal seed of turbulent transition in the boundary layer 29

t

E
(t

)/
E

(0
)

0 50 100 150 200100

101

102

103

104

Non linear
Linear

(a)

t

E
(t

)/
E

(0
)

0 50 100 150 200100

101

102

103

104

(ww) =0
(wv) =0
(wu) =0
(vw) =0
(vv) =0
(vu) =0
(uw) =0
(uv) =0
(uu) =0

z

z

z

y

y

y

x

x

x

(b)

Figure 15. Evolution of the energy gain in time for several simulations intialised by the mini-

mal-seed perturbation: linear (dashed line) and non-linear (solid line) DNS (a); DNSs performed

by switching off one by one the non-linear terms indicated within frame (b).

Figure 16. Iso-surfaces of the perturbation obtained at t = 25 (left frames) and t = 50 (right

frames), for a linear simulation (top frames) and a complete non-linear one (bottom frames).

The green surfaces indicate the negative streamwise component of the perturbation velocity

(u′ = −0.05 for t = 25 and u′ = −0.08 for t = 50), the blue and red ones indicate negative and

positive streamwise vorticity, respectively (ω′

x = ±0.15 for t = 25 and ω′

x = ±0.2 for t = 50).

It is interesting to investigate which ones of the non-linear terms are capable to sustain

the inclination of the vortices against the mean flow. To this purpose, we performed

nine numerical simulations in which the non-linear terms (in conservative form) are
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switched off one by one. The corresponding energy growth curves are given in Figure 15

(b), and show that some terms provide a dissipative contribution, others contribute to

production of E(t). It is found that the most important term is the one which couples the

spanwise disturbance with its spanwise derivative: (w′w′)z . Such a term plays a key role

in sustaining transition, since it leads the flow to relaminarization when it is switched off.

Comparing Figures 15 (a) and 15 (b), it appears that the energy gain curve is very similar

to the one previously found in the linear case; moreover, observing the perturbation

structure at t = 25 and t = 50, shown in Figure 17 (first and second frame, respectively),

one can notice that the effect obtained on the perturbation evolution switching off only

such a term is very similar to that obtained switching off all of the non-linear terms. Also

in this case the vortices rapidly loose their initial inclination, inducing a decrease in the

perturbation growth, although in such a case the streamwise disturbance decreases more

slowly, and maintains for some time a Λ shape. This behaviour confirms the fundamental

role of the inclination of the vortices in the transition process studied here, and proves that

the non-linear term (w′w′)z is responsible to maintain such an inclination. This finding

could be important for the design of efficient control strategies, since a relaminarization

of the flow might be obtained by compensating the (w′w′)z coupling term by a careful

use of sensors and actuators at the wall.

Also other non-linear terms have a significant effect on the development of the per-

turbation and its route to turbulence. A decrease of the energy gain around t ≈ 50 is

observed when the term (w′v′)y is switched off. Figure 18 shows the iso-surface of the

streamwise vorticity at t = 50 for a complete DNS, and for a DNS with the (w′v′)y term

switched off. One can notice that, in the latter case, the vortices are weaker and lie closer

to the wall, since the spanwise/wall-normal components of the velocity perturbation are

not transported in the wall-normal direction. This inhibits the self-sustainement of the
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Figure 17. Iso-surfaces of the perturbation obtained at t = 25 (left frame) and t = 50 (right

frame) by a DNS with the term (w′w′)z switched off. The green surfaces indicate the negative

streamwise component of the perturbation velocity (u′ = −0.05 for t = 25 and u′ = −0.08 for

t = 50), the blue and red ones indicate negative and positive streamwise vorticity, respectively

(ω′

x = ±0.15 for t = 25 and ω′

x = ±0.2 for t = 50).

Figure 18. Iso-surfaces of the perturbation obtained at t = 50 by a DNS (left frame) and by a

DNS with the term (w′u′)y switched off (right frame). Red and blue surfaces indicate positive

and negative streamwise vorticity perturbation (ω′

x = ±0.25).

vortices, causing a substantial drop in the energy of the perturbations, eventually lead-

ing to the relaminarization of the flow (not shown in Figure 15 (b)). A large impact is

also produced by the (u′u′)x term, since, switching it off, the energy gain is one order

of magnitude smaller with respect to the complete case at t = 250 (see Figure 15 (b)).

The amplification mechanisms linked to such a term play a role at slightly larger times

than in the previous case. Figure 19 show that at t = 75 (first frame) large differences

are present with respect to the complete case (second frame). In particular, by switch-

ing off such a term, fewer dislocations in the plot of the streamwise component of the
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Figure 19. Iso-surfaces of the perturbation (negative streamwise component of the velocity,

u′ = −0.15) obtained at t = 75 by a DNS having the term (u′u′)x switched off (left frame),

by a complete DNS (middle frame), and by a DNS having the term (u′v′)y switched off (right

frame).

perturbation are found, and the creation of Λ low-momentum structures is inhibited. As

a result, the streamwise disturbance tend to be realigned with the streamwise direction,

creating an array of elongated streaks. A similar effect is induced by switching off the

term (u′v′)y, although the underlying mechanism is slightly different, since this is now a

dissipative term (switching it off, an increase of the energy gain of 10 times is observed

at t = 150). Figure 19 (c) shows that also in this case the resulting flow is populated

by streaky structures localized close to the wall. In fact, the role of the term (u′v′)y in

the non-linear optimal transition scenario is to displace the streamwise finite amplitude

perturbation up and down in the boundary layer, creating peaks of low momentum fluid

at higher wall-normal positions, as well as peaks of high-momentum fluid close to the

wall. Thus, when such a term is switched off, transition occurs following a route which

does not privilege the creation of hairpin vortices. As shown in Figure 20, at transition

the flow is dominated by streamwise streaks and vortices, with remarkable differences

with respect to the non-linear optimal case (cf. Figure 14 (a)). In fact, transition appears

to be due to the secondary instability of the streaks, which dominate the flow before

breakdown. One can also notice that the flow structures observed in such a case closely
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Figure 20. Iso-surfaces of the negative streamwise component of the velocity perturbation

(green for u′ = −0.2) and Q criterion (blue for Q = 1500) obtained at t = 100 by a DNS having

the term (u′v′)y switched off.

recall those of one of the edge states identified by Cherubini et al. (2011), obtained by

initializing the perturbation with a linear optimal disturbance. A similar behaviour is

observed also when the dissipative term (u′w′)z is switched off, although the effect is

now weaker.

Finally, it has been observed that switching off the term (v′u′)x inhibits the formation

of the hairpin head, delaying the transition to turbulence. This is probably due to the

fact that this term contributes to defining the spanwise vorticity, which is precisely the

component which is needed in forming the head of the hairpin. The remaining terms cause

only weak modifications of the perturbation structure, and do not affect the features of

the transition scenario discussed so far.

3.2.3. A conjecture about a disturbance regeneration cycle

It is possible to summarize the above results by outlining a transition scenario based

on the following successive steps:

(a) Tilting and amplification of the initial minimal seed by means of the linear Orr

mechanism, resulting in a staggered array of elongated inclined vortices on the flanks of

a low-streamwise-momentum region.
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(b) Lift-up of the disturbance field induced by the linear term v′Uy, resulting in a

further amplification of the streamwise disturbance alongside the vortical structures.

(c) Appearance of dislocations in the perturbation field induced by non-linear coupling

terms with (i) further streamwise tilting of the initial vortices due to the term (w′w′)z,

and sustainement of the vortical structures from the term (w′v′)y; (ii) dislocations of

the initial localized patches of finite amplitude streamwise disturbance associated with

non-linear terms like (u′u′)x and (u′v′)y, generating Λ-shaped structures of slow and fast

fluids.

(d) Transport of the vortical structures by the mean flow, which stretches them in

the streamwise direction, due to the terms Uu′
x,Uv′x,Uw′

x; this causes an interaction of

the vortices in their downstream part, resulting in the creation of Λ-vortices of finite

amplitude.

(e) Redistribution of the vorticity due to non-linear mixing (mostly related to the

term (v′u′)x), inducing the creation and the rise of a spanwise arch vortex; as a result, a

hairpin is created.

(f) Release of smaller scale vortices and hairpin structures from the main one (see also

Adrian (2007)).

It is noteworthy that such mechanisms can be observed at smaller scales for larger

times. We have analyzed at different times the regions of the flow where the main con-

vective terms involved in the transition process are active, i.e., where they achieve a large

value. For instance, observing the iso-surfaces of the lift-up term v′Uy at time t = 75,

provided in the first frame of Figure 21, one can notice that such a term is active in

the inclined elongated regions corresponding to the alternated inclined vortices charac-

terizing the optimal disturbance at such time. Similar inclined elongated structures are

observed at smaller scales for t = 125 (see the boxed regions on the second frame of
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Figure 21. Iso-surfaces of the lift-up term v′Uy = ±0.04 (top frames) at t = 75 and t = 125

(left and right frames, respectively); of the term (w′w′)z = ±0.025 (middle frames) at t = 75

and t = 125 (left and right frames, respectively); of the Uv′

x = ±0.13 term (bottom frames) at

t = 100 and t = 150 (left and right frames, respectively).

Figure 21), meaning that the step (b) of the transition process outlined above is repeated

at smaller scales. At the same times, also the regions where the non-linear term (w′w′)z

is large show similar shapes and are characterized by smaller scales at larger times, as

provided in the middle frames of Figure 21. Likewise for the Uv′x term (bottom frames

of Figure 21) at t = 100 and t = 150; it can be observed that such a term is active at

t = 100 in the zone where the main hairpin head is created (compare with the first frame

of Figure 14 at x ≈ 290), and it is active again at t = 150 in the region corresponding to

the head of a secondary hairpin (for x ≈ 310 and z ≈ 8), confirming the role of such a

term in the creation of main and subsidiary hairpin vortices. Thus, it appears that also
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Figure 22. Sketch of the cycle of transition and disturbance-regeneration for the boundary-layer

flow. The iso-surfaces in the figures (following the cycle, up to the caption ”Growth of disloca-

tions”) represent the negative streamwise component of the perturbation velocity (green) and

the positive and negative streamwise disturbance vorticity (yellow and blue, respectively). In

the last two frames, the green regions still represent patches of low streamwise perturbation

velocity, while isosurfaces of the Q-criterion have been plotted in blue to visualize regions of

intense vorticity.

at larger times the mechanisms summarized in the previous subsection are at work, each

one playing its role in a similar way but at smaller scales.
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Figure 23. Iso-surfaces of the streamwise component of the velocity (green, u′ = −0.25) and

streamwise vorticity perturbations (yellow and blue for ω′

x = 0.6 and ω′

x = −0.6), respectively.

The top frame shows the entire view of the wave packet, whereas the bottom ones provide the

local view of the three regions of the flow marked by black rectangles on the top.

These results suggest the existence of a regeneration cycle initiated by streamwise-

inclined vortices, which turn into Λ and hairpin structures and induce the release of

smaller vortices from the main ones, allowing the cycle to be repeated over faster (smaller)

time (space) scales. In fact, being advected downstream, the main hairpin vortex increases

in size; then, from the main quasi-streamwise vortices smaller vortical structures separate

(see also Adrian (2007)), probably due to inflectional instabilities linked to the appear-

ance of defects (see Figure 13 and related discussion). If such vortical structures have a

small streamwise inclination (which is very likely), the optimal amplification cycle can

be replicated, as sketched in Figure 22. Figure 23 shows the disturbance wave packet at

t = 200, when transition to turbulence has occurred. The bottom frames show the local

view of three regions of the flow highlighting the presence of small scale arrays of inclined

vortices along with negative streamwise disturbance patches. These perturbations have

a downstream inclination, closely recalling the elongated inclined vortices formed by the
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minimal seed in the second step of the transition scenario (see the second frame from

the top in Figure 22). Similar small scale structures have been identified at different

times, and for different initial perturbations (for E0 and T larger than the non-linearity

threshold), leading us to postulate the existence of a disturbance-regeneration cycle. Such

a cycle is here initiated by the minimal seed perturbation, but its inception might be

likely due also to freestream turbulence or other finite amplitude disturbances naturally

occurring in a real flow (cf., for instance, the results in Wu & Moin (2009)). This cycle

thus appears to be a good candidate to explain the late stages of transition to turbulence

in a boundary-layer flow, based as it is on the regeneration of Λ−structures and hairpin

vortices, preponderant features in this kind of flow (Adrian (2007); Wu & Moin (2009)),

and grounded on well-recognizable amplification mechanisms.

3.2.4. Comparison with other transition scenarios

The transition scenario described here shows some features which recall the structures

already observed in classical transition scenarios analyzed in the literature. For example,

the development of Λ-structures and hairpin vortices was also observed in the late stage

of oblique transition (Berlin et al. (1999)). In this scenario, transition is induced by

exciting oblique modes at the inflow, which grow and generate new modes through triad

interactions. The streamwise-invariant modes which emerge grow much more rapidly than

the others, due to the lift-up effect, inducing streaks which finally experience secondary

instability and breakdown. On the other hand, in the case considered here the initial

forcing is spatially localized, impulsively injected, and characterized by a superposition of

several modes. A comparison between the two scenarios can be performed by analyzing

the most amplified modes characterizing the time evolution of the non-linear optimal

perturbation. We have extracted such modes by means of a two-dimensional Fourier

transform, identifying them by a pair of wavenumbers, α and β, in the streamwise and
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Figure 24. Two-dimensional Fourier transform providing the variation in time of the modes

extracted by a DNS initialized by a non-linear optimal perturbation with E0 = 0.01 (a) and a

linear optimal with E0 = 0.1 (b). The modes are labeled as (n, m).

spanwise direction, respectively. The minimal seed with E0 = 0.01, T = 75 and Re = 610

has been chosen to initialize the computations. Figure 24 (a) shows the time-history

of the energy associated to such modes, labeled as (n, m), where n = α/(2π/Lz) and

m = β/(2π/Lz), with 2π/Lz the fundamental spanwise wavenumber defined by the

characteristic length of the computational domain (the spanwise length Lz has been

chosen because z is the only homogeneous direction). It is possible to compare this

Page 39 of 52



40 S. Cherubini, P. De Palma, J.-C. Robinet, and A. Bottaro

time-history to that emerging from the oblique-transition scenario, for instance, the one

provided in Fig. 3 by Berlin et al. (1994), in which the computations where performed

at Re = 400 and for an initial amplitude of the perturbation A = 0.01 (thus close to the

parameters used here). Unlike the case of the oblique-transition scenario, the increase

of the (0, 2) mode is not very rapid (for instance, the mode increases by two orders of

magnitude in 100 time units, instead of 30 time units as in the oblique scenario). Indeed,

this mode appears to grow at a rate which is similar to that of the other modes, especially

mode (0, 1), whose growth is not observed in the oblique scenario. When transition occurs

(t ≈ 250), such zero-streamwise-wavenumber modes attain energy values which are higher

than those associated with the non-zero streamwise wavenumber components. It is worth

specifying that the most part of the energy of such modes is not linked to the development

of streaks or streamwise invariant perturbations, but it is due to the fact that, the flow

not being periodic in the streamwise direction, the disturbances have mean value in the

streamwise direction different from zero. Moreover, mode (1, 1) has a low energy level

at the initial time, the most energetic modes being (0, 1), (0, 2) and (2, 1). The first

two modes account for the fact that the initial perturbation has a mean value in the

streamwise direction which is non-zero, whereas the third one accounts for the spatial

localization of the disturbance. Mode (2, 1) does not experience a large growth in time,

unlike the other ones, which increase their energy due to the combined effect of lift-

up, non-linear mixing and vortex regeneration. This behaviour is remarkably different

from the oblique transition scenario. Since the amplitude of the perturbation is very

close to that used in Berlin et al. (1994), this behaviour is mostly due to its particular

shape. This can be easily shown by comparing such a transition path to that induced

by a linear optimal perturbation. Thus, to initialize the computations, a linear optimal

perturbation with initial energy ten times larger than that used in the non-linear case
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(a) (b)

Figure 25. Space-time diagram of the streamwise component of the velocity perturbation ex-

tracted at y = 1, z = 5 by a DNS initialized by a non-linear perturbation with E0 = 0.01 (a)

and a linear optimal disturbance with E0 = 0.1 (b). The contours show 10 values of velocity

from |u′| = 0.05 to |u′| = 0.5.

has been chosen (E0 = 0.1), in order to reach transition. The time-history of the energy

associated to the most amplified modes characterizing the linear optimal perturbation

is provided in Figure 24 (b). It can be observed that, in the linear case, a very rapid

increase of the (0, 2) mode is observed, due to the streaks generation induced by the

initial streamwise vortices, followed by a saturation. A similar behaviour is displayed by

mode (0, 1), although a slower increase is observed. At the same time, the mode (1, 1)

experiences an initial increase, and then oscillates around a constant value. Modes (2, 1)

and (2, 2) experience a first increase at short times, due to non-linear effects induced by

the growth of modes (1, 1) and (0, 2), and a second increase at t ≈ 350, due to the onset

of a secondary instability of the streaks. Most of these features have been observed in

previous works on the oblique transition scenario (see Fig. 3 in Berlin et al. (1994)); this

means that the linear optimal disturbance reaches turbulence by following a path which is

similar to the oblique one, which appears to be the most efficient in triggering transition
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for parallel flows in small domains (Reddy et al. (1998), Duguet et al. (2010)). On the

other hand, in the case of a non-linear optimal disturbance, streamwise streaks are not

observed until transition is initiated, so that the mechanism of secondary instability of

the streamwise streaks is skipped. Instead, non-linear effects cause an increase of all the

modal components of the perturbation at short times, explaining the differences between

such a scenario and the oblique one.

These differences result in a different spreading of the disturbance, which can be visu-

alized in Figure 25, providing the space-time diagram of the streamwise component of the

velocity measured at y = 1, z = 5, for a non-linear and a linear optimal initial conditions.

It is clearly shown that in the non-linear optimal case (Figure 25 (a)) the disturbance

has a larger spreading rate in space, both at the leading and at the trailing edge of the

wave packet. In particular, the leading edge of the wave packet is convected downstream

at the velocity Ulead ≈ 0.9U∞, whereas the trailing edge is advected at Utrail ≈ 0.5U∞

(the presence of the main hairpin vortex at the leading edge explaining the large value

of Ulead). Such values of velocity are very close to the advection velocities of the edges of

a turbulent spot reported in the literature (Singer (1996)). Moreover, the spreading rate

at small times appears to be the same of that of the turbulent spot, which is established

in the flow at t ≈ 250. On the other hand, for a linear initialization the spatial spreading

is much smaller in the first phase of the oblique transition, when streamwise streaks are

generated (clearly visible in Figure 25 (b)), and it only increases when a turbulent spot is

established (t ≈ 450). Such results thus confirm that the non-linear optimal perturbation

is able to initialize turbulence very rapidly, with a fast spreading in space and time, until

a turbulent spot forms.
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4. Summary

We have used a variational procedure to identify non-linear optimal disturbances in

a boundary-layer flow developing over a flat plate, defined as those initial perturbations

yielding the largest energy growth at a given target time T , for given Reynolds number

Re. The analysis has been performed for two values of Re and several values of T and

initial energy density, E0. For all values of Re and T a threshold value of E0 exists,

called non-linearity threshold, from which remarkable modifications are observed with

respect to the linear case, in particular for the value of the non-linear optimal energy

at T . The non-linearity threshold decreases when Re and/or T increase. Moreover, for

values of the initial energy larger than the threshold, the optimal perturbation changes

slightly and is characterized by a fundamental structure, called here the minimal seed,

which has been analyzed in detail. The same minimal-seed structure, characterized by

similar size and amplitude, is recovered also for different domain lengths, target times,

and Reynolds numbers, demonstrating that this is a robust feature of the considered flow.

Unlike the linear optimal perturbations, the minimal seed contains vortices inclined in

the streamwise direction surrounding a patch of intense streamwise disturbance velocity.

These features induce a more rapid energy growth with respect to the linear case, due

to the streamwise modulation of the momentum and to the significant distortion of the

base flow profile.

DNS has then been employed to study the mechanism of transition to turbulence

when the flow is initialized using the minimal seed. It has been shown that, for the same

value of the initial energy, the non-linear optimal perturbation is able to lead the flow to

turbulence whereas the linear one is not. The non-linear optimal perturbation has been

found to trigger and spread out turbulence very efficiently, its spreading rate in space

and time being very close to that of a turbulent spot. The present transition scenario
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is quite different from the oblique-transition scenario, as well as from other classical

scenarios, and this leads us to outline a new path of turbulent transition in the boundary

layer, based on the fast growth and non-linear evolution of the initial minimal seed. The

mechanisms which characterize such a route to turbulence has been analysed performing

DNSs, initialized by the minimal-seed perturbation, in which the convective terms have

been switched off or rescaled one by one to infer their effect. We have thus found that

the transition scenario is basically composed by the following steps:

(a) Tilting and amplification of the initial minimal seed by means of the Orr mech-

anism, resulting in a staggered array of elongated inclined vortices on the flanks of a

low-streamwise-momentum region.

(b) Transport of the base flow momentum by the disturbance (lift-up) along the in-

clined vortices, resulting in a further amplification of the streamwise disturbance.

(c) Dislocation of the initial localized patches of finite amplitude disturbance due to

the self-interactions of the perturbation field, generating Λ-shaped structures of slow and

fast fluids, and sustaining the initial inclination of the vortices.

(d) Transport of the vortical structures by the mean flow, which stretches them in the

streamwise direction, resulting in the creation of Λ-vortices of finite amplitude.

(e) Redistribution of the vorticity due to non-linear mixing, inducing the creation and

the lift-up of a spanwise vorticity zone (the arch vortex) connecting two neighboring

vortex structures, constituting a main hairpin vortex.

(f) Release of smaller scale vortices from the main hairpin because of inflectional in-

stabilities related to the base flow modifications.

In particular, observing the activation in time of the convective terms connected to

the amplification mechanisms summarized above, we have found that when the main

hairpin releases smaller scale vortical structures, new, elongated, inclined disturbances
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are generated, allowing the cycle to repeat over faster (smaller) time (space) scales. Such

a cycle is here initiated by the minimal seed perturbation, but its inception can also be

due to freestream turbulence or other finite amplitude disturbances occurring in a flow.

Future work will aim at evaluating the effects of such initial forcing on the non-linear

optimal disturbance, trying to include the receptivity mechanisms in the optimization

procedure.
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Appendix A. Non-linear optimizations

The non-linear optimization has been carried out using a Lagrange multiplier tech-

nique, similar to that used by Zuccher et al. (2004) for a boundary-layer flow described

by the (spatially parabolic) boundary layer equations, and by Pringle & Kerswell (2010)

for a pipe flow. This technique consists in seeking extrema of the augmented functional

L with respect to every independent variable. Such a functional is written as:

L = ℑ−

∫ T

0

∫

V

a
(

u′
x + v′y + w′

z

)

dV dt

−

∫ T

0

∫

V

b
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u′
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−
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−

∫ T

0

∫

V

d

[

w′
t + Uw′

x + V w′
y + (w′u′)x + (w′v′)y + (w′w′)z + p′z −
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−λ0

[

E0

E(0)
− 1

]

,

(A 1)
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where the NS equations (direct problem) and the value of the energy at t = 0, E0, have

been imposed as constraints, and a, b, c, d, λ0 are Lagrange multipliers. Integrating by

parts and setting to zero the first variation of L with respect to u′, v′, w′, p′ leads to the

adjoint equations:

−bt = 2bxu′ + byv′ + bzw
′ + bxU + (bV )y − cVx + ax +

bxx

Re
+

byy

Re
+

bzz

Re

−ct = cxu′ + 2cyv′ + czw
′ + (cU)x + cyV − bUy + ay +

cxx

Re
+

cyy

Re
+

czz

Re

−dt = dxu′ + dyv′ + 2dzw
′ + dUx + (dV )y + az +

dxx

Re
+

dyy

Re
+

dzz

Re

0 = bx + cy + dz

(A 2)

where q† = (a, b, c, d)T is defined as the adjoint vector. The adjoint equations are linked

to the direct ones by the presence of direct variables in the advection terms. By using

the boundary conditions of the direct problem, it is obtained:

b = 0 , c = 0 , d = 0 , for y = 0 and y = Ly,

b = 0 , c = 0 , d = 0 , for x = xin and x = xout;

(A 3)

moreover, the compatibility conditions (Zuccher et al. 2004) are:

2u′

E0
− b = 0 ,

2v′

E0
− c = 0 ,

2w′

E0
− d = 0 , for t = T. (A 4)

The direct and adjoint equations are parabolic in the forward and backward time direc-

tion, respectively, so that they can be solved by a coupled iterative approach, similar to

the one used by Cherubini et al. (2010b). By solving the direct and adjoint equations at

each step of the iterative procedure, the first variation of the augmented functional with

respect to q and q† is set to zero. Moreover, the gradient of L with respect to the initial

state q0 has to vanish within a reasonable number of iterations. Different methods can be

used to achieve this goal. For instance, one can set to zero the gradient of L with respect

to the initial state at each step of the iteration, achieving directly an estimate of the

initial condition for the next step of the procedure (an ’optimality’ condition, currently
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used in linear optimization problems). This strategy is effective in a linear framework

in which the optimization procedure is guaranteed to converge to the global optimum

(see Corbett & Bottaro (2000) and Cherubini et al. (2010b)), but it does not guarantee

efficient convergence in a non-linear problem such as the one considered here. Therefore,

in order to achieve convergence efficiently, a conjugate gradient algorithm is used, similar

to that employed in Marquet et al. (2008). The initial state is updated in the steepest

ascent direction, denoted as ∇q0
L, namely:

∂L

∂u′
0

= −2u′
0
(E(T ) − λ0E0)

E(0)
+ b(0),

∂L

∂v′0
= −2v′0

(E(T ) − λ0E0)

E(0)
+ c(0),

∂L

∂w′
0

= −2w′
0
(E(T ) − λ0E0)

E(0)
+ d(0),

(A 5)

with an adjustable step length α, so that q
(n+1)
0 = qn

0 + αn∇q0
Ln. After the first it-

eration in the steepest ascent direction (with α sufficiently large for the solution to be

significantly modified), the successive steps are taken along a conjugate direction, Λq0,

which is computed on the basis of the gradient at two consecutive iterations according

to Λq
(n+1)
0 = ∇q0

L(n+1) + β(n+1)Λqn
0 . In the present work the value of the parameter

β(n+1) is computed by means of the Polak–Ribière formula (Polak & Ribière (1969)),

β(n+1) =
(∆q

(n+1)
0 )T (∆q

(n+1)
0 − ∆qn

0 )

(∆qn
0 )T ∆qn

0

(A 6)

Periodically, this value should be reset to zero in order to avoid conjugacy loss (which

corresponds to updating the solution in the steepest ascent direction). The step length

α has been chosen carefully in order to ensure convergence to the optimal value, as

described below, with values in the range [0.001/E0, 0.1/E0].

The optimization procedure for a chosen target time T can be summarized as follows:

(a) An initial guess is made for the initial condition, q0, with associated initial energy
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E0 (in most of the computations, the perturbation obtained by a linear optimization has

been used as initial guess).

(b) The direct problem (A1) is integrated up to t = T .

(c) The adjoint variables, b(T ), c(T ), d(T ), are provided by the compatibility condi-

tions (A 4).

(d) The adjoint problem (A2) is integrated backward in time from t = T to t = 0.

(e) At t = 0, the initial direct state is updated in the direction of the conjugate gradient

with step length α and β computed according to the Polak–Ribière formula (β = 0 is

imposed at the first iteration).

(f) The objective function E(T ) is evaluated:

(i) if its increase between two successive iterations is smaller than a chosen thresh-

old, e, the loop is stopped, otherwise the procedure is continued from step (b);

(ii) if a decrease of the objective function is found, the value of α is halved, and

the value of β is set to zero.

Each iteration requires the integration of the three-dimensional Navier-Stokes and

adjoint equations forward and backward in time up to the target time; moreover, due to

the presence of the direct variables in the advection terms of the adjoint equations, the

whole direct-variable field needs to be stored at each time step, requiring a remarkable

storage capacity. Considering that about 200 iterations are needed to achieve convergence

within machine accuracy, the computational effort required to optimize the solution for

a single set of the independent parameters (T , Re, and E0) is very high. To keep the

computational cost affordable, the optimizations have been performed up to a target

time T = 125 and a threshold value equal to e = 10−6 has been chosen, after having

verified that it produces an error on the value of E(T ) smaller than 0.5% (a more detailed

convergence study is provided in Cherubini et al. (2010a)).
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