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A model of hairy medium is developed using a homogenized approach, and the fluid
flow around a circular cylinder partially coated with hair is analysed by means of
numerical simulations. The capability of this coating to adapt to the surrounding
flow is investigated, and its benefits are discussed in the context of separation control.
This fluid–structure interaction problem is solved with a partitioned approach, based
on the direct resolution of the Navier–Stokes equations together with a nonlinear
set of equations describing the dynamics of the coating. A volume force, arising
from the presence of a cluster of hair, provides the link between the fluid and the
structure problems. For the structure part, a subset of reference elements approximates
the whole layer. The dynamics of these elements is governed by a set of equations
based on the inertia, elasticity, interaction and losses effects of articulated rods. The
configuration chosen is that of the two-dimensional flow past a circular cylinder
at Re = 200, a simple and well-documented test case. Aerodynamics performances
quantified by the Strouhal number, the drag and the maximum lift in the laminar
unsteady regime are modified by the presence of the coating. A set of parameters
corresponding to a realistic coating (length of elements, porosity, rigidity) is found,
yielding an average drag reduction of 15 % and a decrease of lift fluctuations by
about 40 %, associated to a stabilization of the wake.

1. Introduction
The manipulation of fluid flows to bring about performance enhancements on

air/water vehicles is a topic of growing interest in the fluid mechanics community.
Besides the highly stimulating and fundamental problems raised by the control of
the nonlinear Navier–Stokes equations, flow control has a tremendous economical
and ecological impact on society (see Gad-el-Hak 2000 for a detailed survey). In this
context, it is particularly worthwhile to analyse swimming and flying animals, in order
to import novel ideas into technological applications. Not surprisingly many efficient
locomotion techniques are found in nature, as they have survived the tests of evolution
over millions of years and reached a high level of adaptation. One interesting example
is represented by the feathers over the wings of birds. Even though it is difficult to
monitor their dynamics due to the rapid motion of the animals, they are believed to
play a crucial role in the aerodynamics of birds. As mentioned in the excellent review
on biological surfaces by Bechert et al. (1997) and Meyer et al. (2007), the pop-up of
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feathers observed on snapshots and movies of landing birds is probably relevant for
the control of flow separation.

Several drag-reducing biological surfaces inspired by aquatic animals have also
shown their efficiency:

(i) riblets are inspired by the skin of sharks (Bechert & Bartenwerfer 1989; Luchini,
Manzo & Pozzi 1991) and allow to reduce the shear stress compared to a smooth
surface; they have been successfully tested on large airplanes (Viswanath 2002),
although in-service application appears to be prevented by the need to replace the
riblet film every 2 or 3 years;

(ii) the presence of bumps on whale flippers can delay stall and thus enhance
hydrodynamics manoeuvrability performances (van Nierop, Alben & Brenner 2008);

(iii) the release of trapped air bubbles from the skin of a penguin appears to have
an effect on the reduction of skin friction (Xu, Maxey & Karniadakis 2002).
By looking at this short list it may appear that straightforward mimicry of nature
might lead to novel and efficient technological applications. The task is however not
so straightforward. In-depth understanding of physical mechanisms is required to
manufacture efficient actuators since a biological skin is meant to handle multiple
functions: for example the presence of mucus on the skin of fish may protect it
against parasites and infections and has a drag-reducing function as well. Thus, direct
imitation of the skin of fish in the effort to minimize drag might yield a suboptimal
solution, since the skin performs many other functions.

The so-called Gray paradox of the compliant skins of dolphins is a striking example
of the difficulty to mimic a biological surface. It was believed that the impressive
swimming ability of dolphins was due to the compliance of their skin, able to delay
transition to turbulence and/or maintain a laminar boundary layer on the surface
of their body. Many studies were inspired by the original observations of Gray &
Sand (1936), starting with the theories of Benjamin (1960) and Landahl (1962), and
later with the analyses of disturbances developing in boundary layers over compliant
plates (Carpenter & Garrad 1985, 1986). It is now clear that Gray’s premises were
flawed, as mentioned by Fish & Lauder (2006) and confirmed recently by Hœpffner,
Bottaro & Favier (2009); the latter authors have shown that compliance can yield very
large transient disturbance amplifications compared to smooth surfaces, potentially
dangerous for the onset of turbulence. Fish & Lauder (2006) have demonstrated that
the drag reduction observed on dolphins is linked mostly to behavioural functions of
the animal, mainly related to its breathing habits.

Coming back to the presence and function of feathers on the wings of birds, we
aim here at making progress in understanding the effect of the feathers (or similar
protuberances) on the aerodynamic performances. All birds have six different types
of feathers covering their body, performing different tasks during flight. They are
adapted to flight conditions, and used for many purposes, including to shape the
wings, insulate and protect the animals’ skin. This type of system is then clearly very
complex to model, but the property of interest here is the ability of the wings to adapt
to the surrounding flow to influence the aerodynamics (cf. figure 1). The assumption
that the raising of feathers during birds’ landing phases plays a role in the increase
of the lift coefficient of the wing has to be demonstrated. It is probable that this
pop-up is not coincidental, but is due to a self-adaptation of birds’ wings to the
separated flow during landing, in order to control it. Outstanding questions are then:
do the feathers act like classical slats on commercial airplanes wings which locally
increase the angle of attack? Do they behave like vortex generators stabilizing the
recirculation zone by redistributing energy? Is it more of a slowing down effect due
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(a) (b)

Figure 1. Raising of birds feathers, observed during landing phases. (a) Snapshot of a
pelican just before landing (thus gliding flight). (b) Pop-up of feathers observed on the
upper-side of the wings during the landing of an egret (courtesy of J R Compton,
http://www.jrcompton.com/birds/).

to the suddenly popped-up porous fence or another mechanism affecting the stability
of the boundary layer towards separation?

The physical mechanism is not clearly identified so far: although the impact on
the flow is as yet undefined, we believe, along with Bechert et al. (1997), that the
phenomenon is worth studying since there are indications that ‘these small feathers are
important for the flight control of birds at high lift conditions during landing’. Indeed,
the control of the recirculation zone would explain the amazing manoeuvrability
aptitudes of birds, experiencing high angles of attack with a perfect wing stability.
Incidentally it has already been found that a static porous layer can be used as a
mean of boundary layer separation control (Bruneau & Mortazavi 2008).

The study of the flow past hairy coatings finds many applications: for example
in the study of thick bundles of immersed vegetation (Sukhodolova, Sukhodolov &
Engelhardt 2004) and wind-exposed plants (De Langre 2008) in strong interaction with
the surrounding fluid flows. Another possible application of porous fuzzy coatings is
found in the realm of sports: for example the felt of a tennis ball plays an important
role on the aerodynamics of the ball (Mehta & Pallis 2001) and new techniques of
digital imaging have recently been implemented by Steele, Jones & Leaney (2006) to
properly assess the quality of the textile surface roughness, predict ball performances
and develop acceptable wear limits. Finally, as far as flow control is concerned, sensors
and actuators have been recently tested, which, through the deflection of tiny rod-like
elements, provide a measure of the wall shear stress (Brücker, Spatz & Schröder 2005;
Grosse & Schröder 2008).

In this paper we build a simplified model of hairy coating, with the following
‘feather-like’ characteristics:

(i) porous, since fluid can flow through the feathers; the non-homogenous
characteristic of the coating formed by the different types of feathers, more or
less packed, is taken into account through a density parameter,

(ii) non-isotropic, as fluid is oriented along a specific direction as it enters the layer,
just like in realistic feathers,

(iii) compliant, since the layer can bend and deform according to the surrounding
flow.
Such properties are those which appear to us as the most important in modelling birds’
feathers. The possibility of shape adaptation of this wall coating is tested and analysed
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Figure 2. The three zones of the computational domain (not to scale).

on a classical and academic configuration of separated flow: the motion around
a two-dimensional circular cylinder at Reynolds number Re = 200. The numerical
framework is presented to clearly illustrate the simulation procedures relative to fluid
and structure parts, the assumptions on which the model is built, its perspectives of
further applications and limitations.

As this domain of investigation is naturally related to the studies of flows through
arrays of fibres, we will base our work on experimental, theoretical and numerical
results on such configurations (Koch & Ladd 1997; Howells 1998). Various models
of different orders of approximation are built for the drag per unit length, as a
function of the density of fibres, in Howells (1998). Different organizations of fibres
(parallel, random) are assessed and estimates are made to take into account the effects
of finite length, curvature and neighbouring fibres interactions, leading to results in
good agreement with experiments. These theoretical developments will be useful to
derive an expression of the volume force used in this paper.

Schematically, the domain of study is decomposed into three zones corresponding
to a solid body, a surrounding fluid in motion and a mixed fluid–solid portion
representing the hairy coating. In figure 2 the fluid area is included between the fixed
boundary (Γf ) of the fluid domain and the fixed boundary (Γs) of the cylinder. The
hairy layer between Γs and the moving boundary Γh is in interaction with the fluid.
There is no mass exchange between fluid and solid domains and the temperature is
assumed to be constant and uniform throughout.

The first few sections of the paper are dedicated to a description of the numerical
treatment of the fluid and structure parts, and how the two-way coupling between
the two is achieved. The application that follows refers to the control of the unsteady
wake and it illustrates the potential of the approach. Here the elements forming the
coating will be referred to as pillars, hair, cilia, beams or fibres, always to mean the
same thing.

2. Fluid domain
2.1. Equations

The simulation of the unsteady flow around a cylinder of diameter D is performed
by solving the discrete version of the incompressible Navier–Stokes equations in a
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Figure 3. Computational domain of the fluid problem for the flow around a coated cylinder
of diameter D. One cell over 10 is represented on the mesh. The immersed boundary method
is used for the solid cylinder through the function Mc , the hairy layer through the function
Mh and a buffer zone through the function Mb .

two-dimensional periodic domain. The equations are given below, with U Eulerian
velocity, p pressure, μ dynamic viscosity, ρ density and F a volume force:

ρ

[
∂U
∂t

+ (U · ∇)U

]
= −∇p + μ∇2U + F ; ∇ · U = 0. (2.1)

A sketch of the domain over which (2.1) have been discretized is provided in figure 3.
The Reynolds number is defined as Re = ρ||U∞||D/μ, with U∞ the free stream velocity.
The volume force F in (2.1) is decomposed into three contributions F = Fc + Fb + Fh:

(a) Fc is introduced to account for the presence of the solid cylinder, i.e. it renders
equal to zero the fluid velocity inside the circular obstacle. This volume force is
computed using the immersed boundary method described in Peskin (2002), i.e.

Fc = Mc

(
αc

∫ t

t0

(0 − U) dt + βc(0 − U)

)
. (2.2)

Mc is a non-dimensional scalar field equal to one inside the cylinder, zero outside, as
shown in figure 3. Appropriate values of the positive constants αc and βc are found
to be, respectively, 1 and 6/�t , with �t the time step of the computations. With
this set of parameters, the velocity within the cylinder section is always such that∫

V1
||U ||/||U∞|| dx dy < 10−5, where the volume of integration V1 is the volume of the

cylinder per unit depth.
(b) A buffer zone of thickness �Xb is imposed with a volume force Fb to damp

the unsteady structures in the wake of the cylinder, before they reach the end of the
domain. Since the domain is periodic, this buffer volume force is also used to ensure
that the inflow speed is equal to U∞ on the left-hand side of the domain (figure 3):

Fb = Mb

(
αb

∫ t

t0

(U∞ − U) dt + βb(U∞ − U)

)
. (2.3)

Mb is equal to one inside the buffer layer, zero outside. Here αb and βb are set to 0.8
and 15/�t , such that the velocity at the exit of the buffer zone in a control volume
V2 of thickness D is

∫
V2

(1 − ||U ||/||U∞||) dx dy < 10−5.

(c) The hairy layer is imposed with a force Fh, evaluated as the drag force past a
cluster of tiny beams of various density and orientation (cf. § 3.1). Fh vanishes strictly
outside the volume occupied by the coating.
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Figure 4. Spatial convergence of the fluid solver. (a) Domain geometry with fluid and solid
parts non-aligned with the mesh. (b) Norm of the error versus grid spacing.

For the three immersed boundary domains, it is necessary to smooth the edges of the
filter functions by using a progressive interpolation. A hyperbolic tangent function is
used on Mb for the buffer zone, and a distributed interpolation approach is employed
for the cylinder and the hairy layer (Mc and Mh), following the methodology described
in Dauptain, Favier & Bottaro (2008).

2.2. Resolution and convergence

To solve (2.1), a finite-difference formulation is used on a regular Cartesian mesh
made up by 800 × 400 cells in a 40D × 20D domain; we have ensured that this
resolution yields grid-converged results for the flow past a cylinder. Staggered flow
variables are used. The solver uses the explicit Adams–Bashforth scheme for the
convective part, and the semi-implicit Crank–Nicolson method for the viscous part.
The Poisson equation for the pressure and the implicit step are treated by the
conjugate gradient method (due to the periodic boundary conditions the matrices
involved are symmetric and positive definite). This method is second order in time
and space. Moreover, the periodicity of the domain and the use of the immersed
boundary method allow straightforward and accurate computations of the energy
balance terms and of aerodynamic loads. The time scales of fluid and structures
phenomena are comparable; a restrictive condition on the time step of the simulation
is imposed to make sure that interaction phenomena are properly captured.

To validate the immersed boundary method, a convergence study is performed on a
two-dimensional Poiseuille flow (figure 4a). The domain is a periodic square, and the
walls are not aligned with the mesh, with an inclination of 45◦. The error E plotted
in figure 4(b) is the norm of the difference between the theoretical profile Uth and the
velocity U on a cross-section of the duct at the computational nodes i = 1, . . . , N:

E =
1

NUmax

√√√√ N∑
i=1

(
Uth

i − Ui

)2
. (2.4)

Grids ranging from 21 × 21 to 105 × 105 are tested to check the global order of the
solver. Figure 4 demonstrates second-order convergence of the spatial resolutions for
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Figure 5. Homogenized model of the furry coating and sketch of the volume force Fh imposed
on the fluid. (a) Hairy layer covering a cylinder and relative fluid velocity Uh at any point P of
the layer, while the single element moves at velocity V h. (b) Gray scale of the packing density
φ and vector d orientation of the elements within the hairy layer. At point P, tangential and
normal velocity components used to estimate the two components of Fh are displayed.

grids finer than 36 × 36. As far as the laminar flow past a cylinder is concerned, the
lift and drag coefficients found in the literature (He et al. 2000; Bergmann, Cordier
& Brancher 2005) are well reproduced (see § 6.1) and this is sufficient evidence for the
solver to be considered suitable for the present investigation.

2.3. Communications with the structure part

The link between the fluid and the structure problems is done via the volume force Fh,
either expressed in the fluid discretization space (Fh

ij ) or in the structure discretization
space (Fh

k ). The state variables of the fluid equations (U , p and F) are discretized in
the space of dimensions Nx × Ny (U ij , pij and Fij ). On the other hand, the dynamics
of the hairy layer is described via the angular positions θk of each reference element,
with k = 1, . . . , Nc (cf. 3.2), corresponding to a discretization in a space of dimension
Nc.

3. Hairy domain
The coating is a dense cluster of hair and is described with a homogenized approach,

as a non-isotropic compliant layer of variable porosity. The motion in time of the layer
is modelled by a set of non-linear equations derived from the dynamical equilibrium
of the system. The coupling with the fluid part is described hereafter.

3.1. Homogenized drag model

The interaction of the hairy medium with the flow is taken into account with an
estimate of the drag force past the cluster of hair sketched in figure 5(a). This force
per unit volume Fh is assumed to be decomposed into a normal and a tangential
component:

(i) Fh
t estimated as the drag force past a cluster of very long thin cylinders aligned

with the flow,
(ii) Fh

n approximated by the drag force past a random cluster of cylinders
orthogonal to the flow.
In order to evaluate these components, we introduce the packing density
φ = Vhair/Vlayer , ratio of the volume occupied by the hair (solid) over the total
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Figure 6. Configuration for the evaluation of the normal component of the drag force.

sampling volume. This quantity varies continuously between 0 (no cilia) and 1 (solid)
inside the layer. Another variable is defined inside the layer, the unit orientation
vector d, characterizing the direction of each element of the coating. Both of these
variables are schematically shown in figure 5(b).

In the fixed reference frame of the cylinder, we can define for any point P belonging
to a reference element, its associated velocity V h. The velocity in P relative to a fibre-
like element is thus Uh = U − V h. Its component tangent to the element is the
projection Uh

t = (Uh · d), while the normal component is Uh
n = Uh − Uh

t . The drag force
component tangential to each element of the coating is assumed to depend on φ and
Uh

t : ∥∥Fh
t

∥∥ = f1

(
φ, Reh

t

)
. (3.1)

A similar hypothesis is made for the normal component:∥∥Fh
n

∥∥ = f2

(
φ, Reh

n

)
, (3.2)

with Reh
t and Reh

n the Reynolds numbers based on the elements’ diameter and the
local fluid velocity Reh

t = ||Uh
t ||dh/ν and Reh

n = ||Uh
n||dh/ν.

Each element of the coating is assumed to be a rigid fibre of circular cross-section,
so that Fh

n corresponds to the force exerted by an array of random cylinders as
sketched in figure 6. It is quite complex to cope with the multiple interactions among
the cylinder wakes when Re becomes large, and the approximation of the normal
contribution Fh

n is thus limited to moderate values of the Reynolds numbers Reh
n , up

to 180. We use theoretical and empirical scaling models presented in Koch & Ladd
(1997) to estimate this contribution of the force, as a function of Reh

n , and the packing
density φ. According to their results, it is acceptable to employ a linear function of
Reh

n as

Fh
n

μ
∥∥Uh

n

∥∥ = c0(φ) + c1(φ)Reh
n, (3.3)

Fh
n being the normal force per cilium and unit length, such that ||Fh

n|| =(4φ/πd2
h)Fh

n.
The coefficient c0 represents the Stokes’ drag and c1 is the inertial drag which governs
the behaviour in the larger-than-zero Re regime. These two coefficients are function
of the packing density φ of the porous medium corresponding to the configuration of
figure 6. The coefficient c0 is estimated using Brinkman’s law at Reh

n = 0 (Stokes’ flow
limit); c1 is evaluated from the behaviour of the ratio c1/c0 over a wide range of φ given
in Koch & Ladd (1997). Their work also shows that this mixed theoretical/empirical
approximation provides good agreement with the measurements.
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Figure 7. Configuration for the evaluation of the tangential component of the drag force.

For the non-dimensional tangential contribution Fh
t /μ||Uh

t ||, we derive an analyti-
cal expression, in the Stokes approximation, on the configuration of figure 7
corresponding to the axial flow between concentric cylinders. Using cylindrical
coordinates and assuming a steady fully developed axisymmetric flow (∂/∂z = ∂/∂θ =
∂/∂t = 0) with ur = uθ = 0, we obtain an expression for the radial velocity around one
cylinder between a fibre of radius r1 = dh/2 and the average pore of radius r2 = r1/

√
φ

u(r) =
F h

t

4μ

(
2r2

2 ln
r

r1

+ r2
1 − r2

)
. (3.4)

F h
t refers to the tangential component of the force per unit volume. To introduce

the incoming velocity ||Uh
t || of the model, we then compute the mass flux D of the

flow passing through the cilia interspace D = ρπ(r2
2 − r2

1 )||Uh
t ||(1 − φ), which is also

equal to

D = ρ

∫ 2π

0

dθ

∫ r2

r1

u(r)r dr. (3.5)

After substituting u(r) by its expression in (3.4), integrating and introducing the
packing density φ = r2

1/r2
2 , the following expression is found:

F h
t

μ
∥∥Uh

t

∥∥ =
8φ(1 − φ)

r2
1

(
φ − 1 + (2/(φ − 1)) lnφ − 2

) . (3.6)

At this point, we recall that F h
t is a force per unit volume of fluid (which is equal

to (1 − φ)Vlayer ). The force per unit length of cilium is finally Fh
t = F h

t (1 − φ)πr2
2 ,

leading to

Fh
t

μ
∥∥Uh

t

∥∥ =
8π(1 − φ)2

φ − 1 + (2/(φ − 1)) lnφ − 2
. (3.7)

Similarly to the normal contribution, Fh
t is the tangential force for one pillar and

per unit length of the pillar, such that the volume force is ||Fh
t || =(4φ/πd2

h)Fh
t . We

then assume for the tangential force the same scaling in Reynolds number as for the
normal contribution, obtaining the behaviour displayed in figure 8.

The angle that each element makes with the wall determines the relative magnitude
of the tangential and normal velocity components. In the case of equivalent tangential
and normal velocity magnitudes (i.e. when a fibre element is inclined at 45◦), the
tangential component of the force is typically much smaller than the normal one, as
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n
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encountered in the simulations. The theoretical values obtained by Howells (1998) for the
longitudinal drag (diamond) and the normal drag (circles) in slow flow are shown. Vertical
dashed lines indicate the minimum, maximum and mean values of φ used for the results of
§ 6.3.

illustrated in figure 8. This difference in the two contributions tends to align the fibres
with the flow. Once the elements are parallel to the flow, the normal component of the
force becomes negligible with respect to the tangential one. These approximations of
the forces are in good agreement with the theoretical results by Howells (1998). Slight
differences are observed on the tangential contribution, which we have computed
analytically, mainly because the effect of the finite length of the cylinders is taken
into account in Howells’ model (cf. § 1).

Using this approach, the hairy layer is now described in terms of homogenized
volume forces, allowing the communications with the fluid. The next section deals
with the dynamics of the coating, i.e. its evolution in time as a result of the forcing
exerted by the fluid.

3.2. Dynamical model for the hairy coating

Modelling a realistic coating would normally require an extremely large number
of fibres. The high number of degrees of freedom needed in this case is reduced
using a homogenized approach: we thus assume that a few reference elements are
sufficient to approximate the dynamics of the whole layer (figure 9a). The forces at
play are supposed to be concentrated on reference cilia, which are equally spaced. A
control volume surrounds each reference cilium. The model describing the dynamical
evolution in time of the reference cilia is illustrated in figure 9(b). Each element is a
thin rigid pillar of length l hinging on the wall, and its mass is placed in the middle
of the rod. A pillar can oscillate in the plane around its equilibrium angle θeq . To
model the behaviour of the layer realistically, all cilia are linked to their immediate
neighbours with a nonlinear spring of stiffness Ks , which is active only when two
elements become too close to one another (to counteract the compression effect).
Another feature of the model, controlled by the parameter Kr , is used to mimic the
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Figure 9. Model of the hairy coating. (a) Reference cilia (in bold) governing the dynamics
of the layer. The control volume around one reference cilium is shown in grey. (b) Dynamical
model of reference cilia based on mass, interaction, inertial, losses and rigidity effects.

tendency of each reference cilium to stay around θeq . These mechanisms of interaction
and rigidity are explained below; they are inspired by a model developed by Py, De
Langre & Moulia (2006) to study the effect of the wind over a flexible crop canopy.

The temporal evolution of reference cilia is parametrized by S =(θ(1), . . . , θ(Nc))
T

where θ(k) is the angular position of the kth cilium and Nc is the number of reference
elements. In the moving reference frame defined by (t, n), with t and n unit vectors
tangential and normal to the reference fibre, considering that the external forces are
applied in the middle of each element (and the lever arm is thus l/2), the moments at
play are listed as follows:

Rigidity:

Mrigidity (k) = −Krf1[θ(k)]. (3.8)

In this expression f1 is a nonlinear function defined as f1(θ) = (P [θ(k)] − P (θeq))/
P ′(θeq), where P = tan(aθ + b) with a and b constants, chosen to produce the
behaviour illustrated in figure 10; a = π/(θmax − θmin) and b = − a(θmax + θmin)/2. The
role of Mrigidity is to model the structural flexibility of the hairy layer with the rigidity
parameter Kr (unit: kg m2 s−2) of the reference elements, and to control the oscillation
potential of each cilium based on the maximum deflection angles θmin and θmax , and
the equilibrium angle θeq . Note that the slope of the curve represented on figure 10(b)
is Kr , i.e. (df1/dθ)(θeq) = 1. This property will be useful in § 4.

Interaction: Minteraction(k) is only activated when the reference cilia become too close
to one another; this term models the interaction between two neighbouring elements
via a nonlinear function governed by the stiffness parameter Ks (unit: kg m2 s−2),
which is the same for all cilia

Minteraction(k) = −Ksf2[θ(k)]. (3.9)

Here, another function f2 is introduced:

f2[θ(k)] = tan

{
2l sin[θ(k) − θm]

h cos(θm)

}
with θm =

θ(k) + θ(k + 1)

2
,

where h is the cilia interspace and l the length (figure 9). The reaction is higher when
two neighbouring cilia are close to one another (figure 11).
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Figure 10. Moment of rigidity as a function of the angle of one reference cilium θ (k). The
angle of equilibrium is chosen to be θeq = 20◦, and θmin and θmax are set to −40◦ and 60◦,
respectively.
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Figure 11. Moment of interaction as a function of the angle of one reference cilium θ (k),
when the angle of the neighbouring cilium θ (k − 1) is equal to −60◦, −30◦, 0◦ and 30◦ (left)
and the angle of the neighbouring cilium θ (k +1) is equal to −30◦, 0◦, 30◦ and 60◦ (right). The
reference cilia interspace is taken to be equal to the length of each element.

Losses:

Mlosses (k) = −Cl θ̇(k). (3.10)

This term is included in the model to take into account the structural losses of the
oscillating reference fibres. It is taken to be a linear function of speed, with the loss
parameter Cl (unit: kg m2 s−1) controlling the magnitude of the term. It is linked to
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the energy dissipation by plastic deformation of each hair, and to friction occurring
between neighbouring elements.

Inertia:

Minertia(k) = ml2a θ̈(k). (3.11)

This moment is related to the mass of the reference elements (which is the sum of
the true masses of the cilia present in a reference control volume, cf. figure 9) and the
length la = l/2, assuming that the mass is placed in the middle of the rod.

External force:

Mext (k) = laFext (k). (3.12)

This moment refers to the moment of the external force exerted by the fluid on each
fibre, calculated by the integral of the volume force Fh over the control volume of
each reference fibre Vcontrol (k):

Fext (k) =

∫
Vcontrol (k)

∥∥Fh
n

∥∥ dV. (3.13)

Clearly, the tangential force Fh
t of the fluid onto the element exerts no moment.

We recall here that θ(k) is defined around the equilibrium angle of each cilium
θeq(k).

3.3. Non-dimensional model and characteristic numbers

To assess the physical mechanisms involved in the coupling between the fluid and
the hairy layer, we define in this section non-dimensional numbers, characteristics of
the fluid part, the structure part and also numbers built on the coupled behaviour of
fluid and structures.

3.3.1. Hairy layer

The equilibrium of the system composed by all cilia is found by writing the balance
of all the moments above, for all k. We obtain the following governing equation, for
all cilia:

ml2a θ̈ + Krf1(θ) + Ksf2(θ) + Clθ̇ = laFext . (3.14)

Along the lines of Doaré, Moulia & De Langre (2004), we define the following
frequencies: ωr =

√
Kr/ml2a , ωs =

√
Ks/ml2a and ωl = Cl/ml2a , which are, respectively,

the characteristics frequencies based on the rigidity, interaction and dissipation effects
of the rods. We now render time dimensionless by introducing t∗

c = tωr ; the non-
dimensional external force is μext = Fext/mlaω

2
r , and (3.14) in dimensionless form

reads

θ̈ + γ θ̇ + f1(θ) + κf2(θ) = μext (t
∗
c ), (3.15)

by introducing the parameters γ = ωl/ωr and κ = ω2
s /ω

2
r . These parameters will be

useful here to assess the relative importance of each constitutive term of the structure
model.

3.3.2. Fluid

Important dimensionless numbers for the fluid are the Reynolds number, the drag
coefficient Cd = Fd/(1/2)ρ||U∞||2S, with Fd the modulus of the drag force and S the
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projected frontal area, and the lift coefficient Cl =Fl/(1/2)ρ||U∞||2S, Fl modulus of
the lift force. The Strouhal number is also introduced, St = D/Tflow ||U∞||, with Tflow

the characteristic period of vortex shedding. In the graphs showing the evolution of Cd

and Cl , we will employ the non-dimensional time t∗
f = t/Tflow , built on a characteristic

time specific to the fluid.

To analyse the different effects of the contributions listed in § 3.2, we compute the
energy (per unit time) terms relative to each moment j by

Pj =

∫ Nc

1

Mj (k)θ̇j (k) dk. (3.16)

The non-dimensional energy per unit time is then defined by P ∗
j = Pj/(1/2)ρ||U∞||3S.

3.3.3. Fluid–structure interaction numbers

We also introduce non-dimensional parameters built on the characteristics of both
fluid and structural features, to assess the coupling between the two (De Langre
2006):

(i) the mass number of the whole layer Mlayer = ρ/ρlayer , where ρ is the density of
the fluid and ρlayer is the density of the whole hairy layer, i.e. hair plus fluid, given by
ρlayer = m/Vcontrol + ρ(1 − φ),

(ii) the mass number of hair Mhair = φMlayer , characteristic of the density of hair
only, compared to the fluid density.

3.4. Numerical resolution

The governing equations for all reference cilia (3.15) are solved using two numerical
methods, explicit or implicit, depending on whether the inertial terms are included
in the analysis or not. In fact, whereas an explicit approach requires necessarily a
non-zero mass of the fibres to prevent divergence of the algorithm, an implicit method
does not suffer from this restriction.

The explicit scheme is a Runge–Kutta method in four steps. Between two iterations
i and i + 1 of the global fluid–structure resolution algorithm, the dynamics of the
structure is computed explicitly at each temporal subiteration. Thus, the equilibrium
of the cilia is found after a sufficient number of subiterations in time. This method
is quite stable but, in the case of very small values of m, oscillations can appear and
delay the achievement of the final equilibrium. In this case, or when m = 0, an implicit
resolution is preferred.

In the implicit approach, temporal subiterations are not needed and the equilibrium
solution, if it exists, is found directly by minimizing the response surface of dimension
Nc formed by the sum of all the moments. A nonlinear conjugate gradient method is
used to find the minimum and the equilibrium is generally reached rapidly.

4. Frequency analysis of the dynamics of reference cilia
We perform here a linear stability analysis of (3.15) by using the following

decomposition:

θ = θeq + θ ′, (4.1)

i.e. the angles of cilia are the sum of a steady equilibrium angle θeq and a small
perturbation θ ′. We consider (3.15) without external forcing from the fluid

θ̈ + γ θ̇ + f1(θ) + κf2(θ) = 0, (4.2)
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Figure 12. Response of the model of reference cilia without the fluid to an impulse forcing
identical on all cilia. (a) Time evolution of all reference cilia angles in degrees, as a function
of the non-dimensional time t∗

c ; the dashed line represents e−Im(ω∗
c )t

∗
c with arbitrary initial

amplitude. (b) Fourier transform of the signal (for t∗
c > 16) as a function of ω∗

c (the values used
for rigidity, interaction and loss parameters are those of § 6.3).

and focus on the natural frequency response of the system. By introducing the
decomposition (4.1), and neglecting nonlinear terms issued from the products of
perturbations θ ′, we obtain

θ̈ ′ + γ θ̇ ′ + θ ′
[
df1

dθ
(θeq)

]
= 0. (4.3)

Here we have neglected the contribution of the parameter of interaction κf2(θeq + θ ′),
assuming that the action of neighbouring cilia is negligible near equilibrium, as cilia
do not get in contact with each other (cf. the definition of interaction in § 3.2). Note
also that the rigidity time scale dominates the dynamics (cf. § 3.3.1).

Then, by definition of the moments of rigidity (cf. § 3.2) we have

θ̈ ′ + γ θ̇ ′ + θ ′ = 0. (4.4)

We assume that the perturbations θ ′ behaves as θ ′ ∼ eiω∗
c t

∗
c , where the non-dimensional

frequency is ω∗
c = ωc/ωr , ωc being the characteristic frequency of the structure model.

We obtain the following equation for ω∗
c :

ω∗
c

2 − iγω∗
c − 1 = 0, (4.5)

yielding ω∗
c = (1/2)[iγ ±

√
−γ 2 + 4].

By using a value of γ =0.05 small compared to other terms, as it is done in § 6.3,
we have ω∗

c = ±0.999+0.025i. The frequency of the resonant mode of the structure is
ωc 
 ωr , and the growth rate is negative, indicating that the system is asymptotically
stable.

Strong of this result, we solve numerically (4.2) under the assumption that all
cilia are subject to the same impulse forcing, using the parameters used in § 6.3
Kr = 6.75 × 10−8 kg m2 s−2, Ks = 1.35 × 10−8 kg m2 s−2, Cl = 8.21 × 10−9 kg m2 s−1,
with 14 reference elements of mass m =1 g.

The evolution of all cilia angles is represented in figure 12(a), as a function of
the characteristic time t∗

c . We anticipate that with these settings, there are about four
periods of oscillations of the structure for one period of vortex shedding of the fluid
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in uncontrolled conditions. Figure 12(b) shows the Fourier spectrum as a function of
the non-dimensional frequency ω∗

c . We obtain a clear peak at ω∗
c =1, indicating that

the dynamics of cilia is driven by ωr , i.e. rigidity effects, as obtained theoretically. The
decrease in time e−Im(ω∗

c )t
∗
c of cilia angles is also recovered. Here, the interaction effects

between neighbouring cilia are clearly negligible, as all cilia have the same evolution
and oscillate in parallel to each other.

Figure 13 shows the response of the model in the case of an impulse forcing only
on the middle reference cilium (number 7). In this configuration, the contribution
of the interaction parameter becomes significant, as cilia get closer to one another
many times during the oscillations. Moreover, the oscillations in time of cilia angles
(left panel) are not the same and each cilium displays a slightly different frequency
content (right panel). The peak is modified compared to the previous case and for all
cilia, the interaction parameter tends to add other harmonics to the dynamics, while
the lowest frequency of the model remains dictated by rigidity.

5. Summary of the two-way coupling
The numerical simulation of this coupled problem corresponding to the unsteady

flow past a compliant porous structure requires the simultaneous solution of structural
and fluid dynamics equations. To do so, we use a partitioned procedure, staggered in
time because the two parts are integrated in succession (figure 14). The coupling is
efficiently performed by PALM, a software tool developed for data assimilation and
meteorological applications by CERFACS (Buis, Piacentini & Déclat 2005).

Si =
(
θ1, . . . , θNc

)T

i
refers to the set of state variables relative to the structure part,

and Fi denotes the volume force exchanged by the different blocks. At a given
iteration i of the global fluid–structure procedure, the external force Fi drives the
movement of the reference cilia. The equilibrium of the system is then computed by
the structure solver (with the explicit or the implicit technique). Starting from the new
position of each element, the packing density φ inside the hairy layer is estimated, and
the reaction on the fluid by the layer is computed using the homogenized approach
(cf. § 3.1). This force is then interpolated on the fluid mesh to update the new
configuration of the structure at iteration i + 1. Then, the fluid solver computes the
configuration of the flow at i + 1. It is clear that this procedure is highly dependent
on the choice of the time step of integration, since the time scale of the different
constituents of the problem is not unique.

6. Application to the open-loop control of the cylinder wake
6.1. No control

We first consider the configuration of the circular cylinder at Re = 200 without
control elements (figure 15a). The time-averaged drag coefficient (Cd = 1.368) and
the Strouhal number (St = 0.20) are in good agreement with those obtained by He
et al. (2000) (Cd = 1.356 and St = 0.198) and Bergmann et al. (2005) (Cd = 1.390 and
St = 0.199). The time evolution of drag and lift coefficients is illustrated in figure 22
in dashed lines.

The choice of this flow configuration at Re = 200 is motivated by the desire to
consider a flow regime dominated by a strong unsteady separated wake. Moreover,
this critical Reynolds number is close to that for the onset of secondary instabilities
leading to turbulence (Williamson 1996). Although three-dimensional effects start to
appear before Re = 200, the purpose of our exercise is to develop, test and assess
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Figure 15. Static configurations. (a) Smooth wall. Cilia oriented (b) normal to the wall and
(c) parallel to the free stream speed.

the feasibility of the proposed passive control approach, rather than develop in-depth
understanding of the controlled flow physics at low Reynolds number. Furthermore, at
Re = 200, three-dimensional effects are still small enough so that excellent agreement is
generally obtained by comparing Strouhal number and mean drag coefficient against
three-dimensional results (Williamson 1996).

6.2. Static test cases

We explore the influence of the initial orientation of the hairy layer, in a static
configuration, i.e. the reference control elements are fixed in their initial position,
but the action of the coating on the flow is present (one-way coupling). The initial
reference position of the fibres has a strong influence on the dynamics of the whole
system in the case of two-way coupling, because of the definition of the equilibrium
angles. This is why the position of equilibrium of the elements are studied a priori:
reference cilia normal to the wall (figure 15b) or parallel to the free stream velocity
(figure 15c), compared to a smooth wall (figure 15a). The circumferential extent of
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Figure 16. Visualisation of the density of hair (random organisation) on the unwrapped
surface of a cylinder, for a packing density φ = 0.006, in a section of a hairy coating of length
0.25 m (i.e. 40% of the perimeter of a cylinder of diameter 0.2 m) and span 0.1 m; 750 cilia
of diameter 0.5 mm are represented by black circles in this control volume of 250 cm2.
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Figure 17. Aerodynamic coefficients corresponding to the static layers of figure 15. (a) Drag
coefficient. (b) Lift coefficient. Dashed lines correspond to the configuration (a) with smooth
walls; thin solid lines correspond to the configuration (b) with an orientation normal to the
wall; bold lines correspond to the configuration (c) with an orientation parallel to the flow.

the hairy layer is 40 % of the perimeter of the cylinder and the coating is placed
symmetrically around the rear stagnation point. The cylinder has diameter D =0.2 m
and the length of reference cilia is D/5.

Note that only reference fibres are represented in the figure, but in between each
pair of elements the layer must be seen as a continuum of more or less densely
packed cilia. The packing density of the layer is fixed to 0.006, by considering cilia
diameter of 0.5 mm and 3 cilia cm−2. To give an idea of the packing density obtained
with these values on a realistic hairy layer, figure 16 shows the clustering of cilia on
a cylinder of diameter 0.2 m, 0.1 m of span, the circumferential length of the layer
being 0.25 m. Even for this low packing density, we can intuitively expect a relatively
high resistance offered by the layer slowing down locally the oncoming flow.

Figure 17 shows the drag and lift coefficients obtained for the three configurations
of figure 15, functions of the non-dimensional time t∗

f defined in § 3.3.2. We obtain
a drastic drag increase (130 %) with an orientation normal to the wall (figure 15b),
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Figure 18. Position of the control zone on the wall cylinder and reference cilia numbers. The
angular parameter αc determines the extent of the layer with respect to the rear stagnation
point.

compared to the smooth wall case. This is due to the parasitic drag created by
the reference elements placed at the extremities of the layer, generating a strong
resistance to the oncoming flow. Conversely an orientation of the hairy layer parallel to
the flow shows the opposite trend, with a drag reduction of 4.7 % and oscillations
of the lift coefficient of moderate amplitude. This orientation tends to render the
cylinder similar to an airfoil, possibly guiding the flow in the proximity of the trailing
edge. Here, we will study the dynamics of the hairy layer around this equilibrium
state.

6.3. Results of the two-way coupling

Once the Reynolds number and the equilibrium orientation of the layer are fixed, the
space of control parameters is rather large:

(i) five parameters of the dynamical model which specify the structural properties
of the coating in terms of rigidity (Kr ), stiffness (Ks), losses (Cl), number and mass
of reference pillars (m),

(ii) one parameter for the homogenized model controlling the density of hair (set
by the diameter dh of the fibre and the number of hair per square centimetres),

(iii) two more parameters describing the location of the control zone in the physical
space: the position of the hairy layer on the wall cylinder and its thickness, i.e. the
length of the fibres.

After an exploratory study at Re = 200, and according to the modal response
analysis of § 4, we have found a set of five efficient parameters for the model of the
layer in a flow of air: Kr =6.75×10−8 kg m2 s−2, Ks =1.35×10−8 kg m2 s−2, Cl = 8.21 ×
10−9 kg m2 s−1, with 14 reference cilia of mass m =1 g on a cylinder of diameter
D =0.2 m. The packing density of the layer is fixed at 0.006 when the hair layer is
at rest, corresponding to real cilia diameter of 0.5 mm and a packing of 3 cilia cm−2

(cf. figure 16). Finally, the control zone is located over the downstream part of the
cylinder (αc = 72◦; figure 18). The thickness of the layer is set to l/D =0.2, which is
a typical value of feathers length for a wide range of birds. The initial position and
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Re γ (Losses/Rigidity) κ (Interaction/Rigidity) μmax
ext (Fluid forcing/Rigidity)

200 0.05 0.2 9.36

Table 1. Non-dimensional numbers for the fluid and the reference cilia; μmax
ext is the maximum

amplitude of the non-dimensional force exerted by the fluid onto the structures, in the fully
developed regime.
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Figure 19. Power terms relative to the structural control parameters. (a) Minor contributions:
structural losses (dashed line) and interaction parameter (continuous line). (b) Major
contributions: rigidity parameter (dashed line) and external forcing (plain line). dEcs/dt is
also plotted in bold lines. It is strictly equal to the sum of all terms and its time average
vanishes.

orientation of the hairy layer at the instant of the activation of control is set as in
figure 15(c) (reference angle of θeq = 0◦), with the fibres initially parallel to the free
stream velocity. Note that the configuration with the feathers initially flush to the
surface has also been tested. However, it has caused numerical problems because of
the very fine near-wall grids required to correctly capture the coupling between fluid
and structures. Also, for many of the cases tested, the reference elements remained
stuck to the wall, with no interesting results in terms of the drag reduction. Thus, we
focus on the effect produced on a separated flow region by a set of feathers which
are already popped up from the surface.

Table 1 presents the relevant non-dimensional numbers corresponding to this case.
The value of the parameter γ is small compared to the other terms of (3.15), indicating
that the characteristic time of the waves related to the structural dissipation ω−1

l is
much larger than ω−1

r . The value of the ratio κ/γ 2 = ω2
s /ω

2
l is here equal to 80. Thus

ω−1
l is also larger than ω−1

s , characteristic time of the oscillations due to the interaction
between reference cilia. The force of the fluid can dominate the other terms of (3.15),
as indicated by the maximum value of μmax

ext in table 1, as large as nine times the
rigidity restoring force.

As indicated in § 4, the waves propagating in the hairy layer are mainly controlled
by the fluid force and the rigidity parameter, with smaller contributions due to the
interaction between reference cilia and losses. This will be discussed further down in
the context of figure 19.

The mass number of the whole layer, fluid and structures, is equal to Mlayer = 0.49,
indicating that the layer has comparable inertia to the fluid. In fact, since ρlayer 
 2ρ,
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Figure 20. Time evolution of the angles α (in degrees) with respect to the horizontal axis of
the seven reference cilia shown in figure 18.

the layer would sink when immersed in the fluid, like typical birds’ feathers. The
low value of the mass number of hair alone Mhair =0.003 suggests that the mass of
fluid displaced by the control elements is very small. By taking ρ = 1.2 kg m−3, it
is obtained ρhair = ρ/Mhair = 400 kg m−3, which is of the same order of magnitude
as the keratin fibre of birds’ feathers (Barone & Schmidt 2006 report a volume of
890 kg m−3).

Starting the simulation with the hairy coating from a steady symmetric regime
(no von Kármán shedding) would yield a transient regime to an unknown developed
state without direct link to the oscillating state described in the literature. Here, the
hairy layer is activated starting from a fully established unsteady regime (i.e. the
configuration without coating), and the dynamics of the fluid and structure part is
monitored together with the drag and lift coefficients Cd and Cl .

With these settings the different terms in the energy balance are represented
in figure 19; the balance is satisfied for both implicit and explicit methods
(
∑

j Pj = dEcs/dt) discussed in § 3.4. The structural losses of the hairy layer and
the interaction parameter (figure 19a) have a contribution which is about two orders
of magnitude smaller than the contributions of the other terms. The opposition to
the external forcing is mainly done by the fibres’ rigidity term (figure 19b). These time
evolutions are related to the oscillating motion of reference cilia as represented in
figure 20. Only the evolution of the first seven cilia of the top of the layer are shown,
since the other seven evolve symmetrically with respect to the horizontal axis. The
time origin of the graphs corresponds to the instant when the control is activated.
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Figure 21. Instantaneous contours of vorticity in the presence of beating cilia (continuous
lines: positive, dashed lines: negative). The time evolution of the vorticity field together with
the fluctuating lift and drag is shown in movie 1 (available with the online version of the
paper).
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Figure 22. Aerodynamical coefficients without control (dashed lines) and with control (bold
lines). (a) Drag coefficient. (b) Lift coefficient. The instants relative to the snapshots of
figures 25 and 26 are represented in white circles (equally spaced in time).

After an initial transient, all cilia reach an established regime beating with a period
Tcilia =1.03 Tflow . The cilium placed at the extremity of the layer hardly moves and the
amplitudes of the angles increase when the reference cilia approach the horizontal axis
of symmetry. The biggest amplitudes, around 50◦, are observed for the cilia closest to
the axis during the transient regime when the two-way coupling is turned on and the
layer adapts to the flow.

Figure 21 shows a snapshot of the contours of vorticity together with the position
of reference cilia. According to the time evolutions of the angles, the hairy layer tends
to orient itself as a function of the position of the near-wall recirculating zone and
the sign of the near-wall vorticity, alternatively positive and negative over one period
of shedding. Movie 1 (available with the online version of the paper) provides a better
appreciation of this behaviour.

The drag and lift coefficients corresponding to this case are displayed in figure 22.
When the control is activated, the drag coefficient is reduced by 11.5% at the end
of the simulation, when the controlled flow reaches a fully developed regime, and the
amplitude of the fluctuations is reduced by half. Moreover there is a reduction of
33 % on the amplitude of oscillations of the lift coefficient. The wake is stabilized by
this passive actuation on the flow, as shown by the effect on the mean and fluctuating
global coefficients.
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Figure 23. Isocontours of the streamfunction of the vector field (〈Uc〉 − 〈U〉)/||U∞|| in plain
lines with arrows. Background contours are coloured by the norm of the vector.
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Figure 24. Contours of the non-dimensional scalar field (〈P c〉 − 〈P 〉)/ρ||U∞||2. The zero
isocontours are shown in black dashed lines; white plus and minus signs refer to positive and
negative zones.

From figure 22(b), we estimate the Strouhal number St = 0.200 associated to the
vortex shedding. With the presence of the hairy layer, St is reduced to the value
of 0.193, and both structure and fluid are beating at this frequency. Thus, the
shedding frequency deviates from its natural frequency as it is generally found when
an oscillating fluid instability is coupled to a vibrating structure (De Langre 2006; Py
et al. 2006). The frequency common to the fluid and the hairy layer is not however
that of the resonant mode of the structure, which is about four times larger (cf. § 4).
Hence, the structures lock onto a frequency very close to the natural frequency of
oscillations of the fluid system.

6.4. Physical analysis of the control

The influence of the control on the mean flow is displayed on figures 23 and
24. To extract the action of the control on the mean velocity field we focus on
the mean quantity (〈U c〉 − 〈U〉)/||U∞||, defined by the non-dimensional difference
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between the local time-averaged velocity, with and without control. A few observations
apply

(i) near the wall (x � D/2 where x is measured from the rear stagnation point
on the cylinder’s wall), the vortices attached to the cylinder have a lower circulation
when the hairy layer is present: indeed, the difference between the velocity fields
with and without control shows an action opposed to the flow inside the separation
bubble;

(ii) further downstream (D/2 � x � 2D), the field on the figure indicates a
deceleration of the flow: there are large amplitude disparities from right to left at the
centre of the figure, and consequently, a modification of the vortex shedding process;

(iii) as a consequence of the two previous observations, there is a connection
between the near-wall region and the far-field zone, to satisfy the divergence-free
condition. The topological boundary between the two regions takes the form of a
saddle point located about D/2 downstream of the wall.

The effect of the control on the mean pressure field is shown in figure 24, with
contours of the non-dimensional quantity (〈P c〉 − 〈P 〉)/ρ||U∞||2. As a consequence
of the modifications to the velocity fields, the differences between the controlled and
uncontrolled cases are mainly concentrated on a high-pressure zone, whose maximum
coincides with the saddle point.

The pressure field is modified by the control and pressure is larger downstream of
the cylinder, while the ‘dead water’ region is enlarged. A similar control effect has
been observed by Pastoor et al. (2008), described as a delay of the appearance of
asymmetries in the flow, thus suppressing the effects of the wake instability. This is
directly related to the decrease of the drag coefficient observed.

Note that a comparison of the modes issued from a proper orthogonal decom-
position of the fluctuating velocity and pressure fields, with and without control,
shows small phase shifts between the two cases, linked to the modification of the
Strouhal number. The POD modes are not shown for the sake of brevity. The modes’
energy for the controlled case is slightly lower than in the case without control but the
spatial organisation of the modes is very similar for the two cases, indicating that the
effect of the hairy layer is primarily on the mean flow. Figure 25 presents snapshots
of the near-wall flow (contours of vertical velocity), together with the instantaneous
position of the reference cilia, at six time instants within the initial transient state (cf.
figure 22).

From time t1 to t6 the angles of the cilia during this transient go from their
minimum to their maximum values (from −40◦ to 55◦ for the cilia placed near the
axis of symmetry). At particular time instants (t2 and t5 for instance), oriented bundles
of reference cilia can be seen in the lower region for snapshot t2 and in the upper
region for snapshot t5. In these configurations when the reference cilia approach to
one another, the density of cilia increases (cf. the homogenized model). The magnitude
of the force is a function of the density of cilia, and there is the tendency for stronger
forcing when two reference cilia are close to one another. In other words, when
the reverse flow at the back of the cylinder is compressing the coating, the control
force naturally increases to counteract this effect. This appears to be linked to the
wings of birds, whose feathers pop-up during landing. Together with the movement
of reference cilia, the control force (exerted by the hairy layer on the fluid) is shown
at six other time instants corresponding to a fully established controlled regime (cf.
figure 22). As time progresses, the force tends to have an orientation opposed to the
velocity field induced by the presence of the vortices about to be shed: when the
flow is going from top to bottom (t8) the force is opposed (cf. figure 26). The same
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Figure 25. Motion of the reference cilia at the six time instants t1 to t6 shown in figure 22,
arranged as in a comic strip (from left to right, and top to bottom). Snapshots of vertical
velocity contours are displayed in the background (plain lines: positive, dashed lines: negative).
The movement of the reference fibres is shown with the evolution of the vertical velocity in
time in movie 2 (available with the online version of the paper).
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Figure 26. Force exerted by the hairy layer on the fluid at the six time instants t7 to t12 shown
in figure 22, arranged as in a comic strip (from left to right, and top to bottom). Snapshots
of vertical velocity contours (plain lines: positive, dashed lines: negative). The evolution in
time of the force field is shown with the evolution of the vertical velocity in time in movie 2
(available with the online version of the paper).
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Figure 27. Effect of the resonant mode of the structure model on the drag, by varying
the rigidity parameter from Kr = 3.7 × 10−9 kg m2 s−2 (Tflow/Tcilia = 1) to Kr = 3.6 × 10−7

(Tflow/Tcilia = 10). The drag coefficient is plotted as a function of R = ωcTflow/2π; vertical bars
indicate the amplitude of the temporal fluctuations of the drag coefficient.

counteracting behaviour occurs at snapshot t11, when the flow goes from bottom
to top (movie 2 provides a better appreciation of this effect). This is related to a
lock-in mechanism mentioned in § 6.3. Indeed, the recirculating zone is forced to
lock onto a frequency slightly different from the natural one, and the instability is
mitigated.

Thus, the hairy layer acts like a self-adapting actuator, passive (as no input energy
is required) and leading to substantial improvements in the lift and drag forces.

6.5. Parametric study

We explore in this section a part of the space of control parameters described in
§ 6.3, by considering variations around the values tested so far. The influence of the
packing density is analysed first and we investigate afterwards the effect of the spatial
properties of the hairy coating. We first test the influence of the resonant frequency
of the structure model by varying the rigidity parameter. The loss parameter Cl is
fixed at the low value of 8.21 × 10−9 kg m2 s−1, in order to minimize this effect
compared to the others. Indeed, a very dissipative layer would slow the flow too much
by converting the flow kinetic energy into structural losses, an effect which does not
appear to characterize an effective hairy coating. The interaction parameter is fixed
at the value of 1.35 × 10−8 kg m2 s−2, so that the frequency response due to this
parameter is that described in § 4. The number, mass and length of reference cilia are
the same as in § 6.3, i.e. 14 reference cilia of mass m =1 g and length l = 0.04 m, to
consider a density of the layer close to that of real hairy coatings.

6.5.1. Resonant mode of the hairy layer

The rigidity parameter is varied to modulate the compliance of the layer, thus
modifying the frequency of the waves propagating within the set of reference cilia.
Figure 27 shows the influence on the mean drag of the resonant mode of the reference
cilia model. It is found that the best performances in terms of mean drag coefficient
are obtained for a value of R = ωcTflow/2π = 3; also, the amplitude of the temporal
oscillations of the drag coefficient (vertical bars in the figure) are minimized around
R =3. For lower values of R, large fluctuations in Cd are indicated by the bars,
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Figure 28. Effect of the inner density of the hairy layer φ on the drag. The two horizontal
lines indicate the values of the time-averaged drag coefficient for the uncontrolled case (top
dashed line) and for the case of the static configuration displayed in figure 15(c) (long dashed
line).

as the structure model is close to its natural resonant frequency. In this case, the
variations of reference cilia angles become large and the resulting force on the fluid
induces strong fluctuations, which make the flow more unstable. Note that the value
of Kr = 6.75 × 10−8 kg m2 s−2 chosen in § 6.3 corresponds to R =4.38.

6.5.2. Packing density of the hairy layer

Figure 28 shows the evolution of the drag as the packing density φ is varied.
In practice, we keep the same diameter of cilia (0.5 mm) and change the number
per square centimetres from 1.5 to 50 (see figure 16 for reference). It is found that
after the value of φ = 0.006, the drag is increased as the hairy layer tends to behave
like a static porous layer (Cd = 1.3 for the configuration c) of figure 29). To obtain
significant gains in performances, the packing density needs to be kept low enough,
so that a hydroelastic-like surface wave develops on the coating. An optimal value is
found in this configuration at about φ =0.006.

6.5.3. Position of the hairy layer

The influence of the position of the hairy layer is investigated through the variation
of the parameter αc, characterizing the extremities of the control zone (figure 18).
Figure 29(a) shows the drag coefficient obtained when αc varies from 0◦ (no control)
to 90◦ (the whole downstream portion of the cylinder is covered with the coating). It
is found that for αc greater than 36◦, the results change very little. However, the drag
increases for values of αc between 0◦ and 36◦, indicating that the control zone has to
be at least larger or equal to the recirculating zones shown in figure 26.

6.5.4. Thickness of the coating

The influence of the thickness of the hairy layer is illustrated in figure 29(b). The
parameter l/D is varied from 0 (no control) to 0.5. Beyond this value the layer is
thicker than the cylinder radius, which is the characteristic dimension of flow features
near the wall, and a model based upon rigid reference cilia with a single degree of
freedom does not appear to be suitable.

A local minimum is found for l/D = 0.3 which corresponds to a drag reduction
of 15 % associated to a drastic reduction of the lift fluctuations of 44 %. The drag
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Figure 29. Effect of the position of the control zone on the drag. (a) Drag coefficient as a
function of the angular position αc of the control zone. (b) Drag coefficient as a function of
the hairy layer thickness l/D.

increases with l/D, until l/D reaches the value of 0.5, which is the length of the
recirculation bubble at this Reynolds number. The points beyond l/D = 0.5 are
shown simply to give an idea of the possibilities of flow manipulation provided by
the use of longer and rigid elements. Even if the model is not designed for this case,
drag appears to be even further reduced after l/D = 0.5; however, this is probably a
shape-adaptation effect, and it would be more realistic to allow for each individual
element to bend, to mimic the behaviour of real flexible cilia.

7. Conclusions and perspectives
We have studied the passive control of flow separation using a fuzzy coating. To

test and analyse this concept of flow manipulation, a numerical methodology has
been developed and used to solve a fluid–structure interaction problem. A partitioned
approach has been set up to solve nonlinear coupled equations for the fluid and
solid parts, based on a coupler previously used in Dauptain et al. (2008). Besides the
numerical aspects, an original model for a hairy layer has been proposed and tested.
Directly inspired from the natural properties of birds feathers, i.e. porosity, anisotropy
and compliance, it is easily extendable to other configurations.

It is found numerically that such a coating is capable of increasing global
aerodynamics performances of an immersed body, by adapting to the separated
flow. The effects of the control are of order one, and appear on the mean pressure
and velocity fields. The topology of the flow is changed in the vicinity of the wall but
also further downstream, thus modifying the vortex shedding process, and positively
affecting the pressure distribution, to reduce lift fluctuations and drag. An effect of
the control is to mitigate the flow instability by an elongation of the recirculation
bubble, a phenomenon termed ‘direct opposition control’ in Pastoor et al. (2008). The
analysis of the forces produced by the hairy layer on the fluid shows that the coating
naturally adapts to counteract the near-wall separated flow: a lock-in effect appears
in which the coating synchronizes onto a frequency which is close to the natural
frequency of the fluid system.
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A set of efficient control parameters is found, by linking physical mechanisms to the
characteristic dimensions of the system. The thickness of the hairy layer has to match
the size of the recirculation bubble close to the wall. Its packing density must reach a
minimum value of 0.006 to obtain the largest drag reduction. With this combination
of parameters, the drag reduction obtained is about 15 % and the fluctuations in lift
coefficient are reduced by 44 %.

The central argument in favour of this type of control is that it does not require
any input of energy, and this makes it very attractive for industrial applications,
compared to active control devices which are often very demanding in terms of power
requirements, and thus expensive to implement on realistic conditions. The use of
this type of passive actuators to control flow separation appears to be promising,
particularly for applications which do not require strong constraints on the lift force
(road or underwater vehicles, MAVs, etc.).

Additional work on different configurations is needed to study the robustness of
this passive control technique. In particular, it is of great importance to assess the
behaviour of the coating under turbulent conditions. Concerning realistic applications,
the presence of the environment is also very important: weather conditions (rain, cold,
etc.) or the alteration of the coating characteristics over time are typical issues to take
into account to ensure a robust control procedure.

Three aspects are primarily concerned for the perspectives. The first one concerns
the application of this numerical tool to a more complex configuration at higher
Reynolds number on an airfoil, to approach real applications or birds’ flight
conditions.

The second perspective is to add a third spatial component to the model of the hairy
layer and to the fluid domain. We can reasonably think that the general conclusions
would not be qualitatively affected by doing so. Indeed, as far as the structure model
is concerned, adding a degree of freedom does not add any conceptual difficulty and
should not alter dramatically the physics of the control, at least for flows – such as
the present one – which present one dominating stream direction.

Finally, to get closer to realistic layers, and to explore the possibilities allowed by
the employment of long fibres, it is interesting to let the reference elements bend,
by adding several layers of rigid elements linked to each other through articulated
connections, along the lines of Lindström & Uesaka (2007). We expect the bending
to change the results, but probably not the general conclusions in terms of the effect
of the passive control. Indeed, the ability to adapt to the flow will be increased, and
we could anticipate even better results in terms of performance enhancement.
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