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A nonlinear streamwise traveling-wave solution is obtained by homotopy for square duct flow. For a par-
ticular symmetry of the perturbations, this wave comes into existence at about Reb=600 �based on half-duct
width and bulk speed� for a streamwise wave number �=0.85. The resulting four-vortex mean flow resembles
the transitional flow structures observed in previous simulations.
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I. INTRODUCTION

The study of transition to turbulence in a square duct flow
started with Nikuradse in 1926 �1�. Under turbulent condi-
tions, a secondary mean flow was observed in the shape of an
eight-vortex state with two vortices near each corner of the
cross section �2–4�. Secondary flow refers here to the time-
averaged corner vortices produced by anisotropic turbulent
fluctuations. To characterize the flow through a duct, one can

use the bulk Reynolds number Reb= Ûbb̂ / �̂, where Ûb, b̂, and
�̂ are the bulk speed, the half-duct height, and the kinematic
viscosity, respectively. For a square duct �i.e., aspect ratio
A=1�, the flow is linearly stable at all values of Reb; it be-
comes linearly unstable at A�3.2 for Reb�23 000 �5�. For a
square duct, all disturbances decay monotonically below
Reb

�e�=38 �6�. Furthermore, numerical simulations indicate
that the lower limit for transition in a square duct is between
865 and 1077 �7,8�. Fully developed turbulence is observed
beyond Reb=2000.

Previous research on square duct flow has mostly focused
on the mechanism generating the secondary flows under tur-
bulent conditions. Recently, it has been shown that the flow
at transitional Reynolds numbers can feature a four-vortex
state; when averaging over a long-time interval, the well-
known eight-vortex state emerges out of the instantaneous
four-vortex structure. In the turbulent regime, the mean flow
was shown to be always in the eight-vortex state �7�. The
optimal disturbance �i.e., the initial flow structure inducing
the largest linear transient amplification� in a square duct is
either a streamwise-independent two-vortex �6,9� or 4-vortex
state �6�. These structures are very robust when used as small
amplitude initial conditions for nonlinear simulations and
produce flows which inevitably revert slowly to the laminar
state. Transition to turbulence is easily initiated only when
streamwise-dependent traveling waves �TWs� are used to ini-
tialize the simulations �6�.

Canonical laminar flows such as square duct or pipe flow
are linearly stable; hence, transition cannot be viewed as a
step-by-step series of supercritical bifurcations from a known
laminar state. The onset of chaos is believed to be related to
the emergence of unstable equilibrium solutions, such as
TWs or steady states in a frame moving with the wave ve-
locity, caused by a perturbation of finite amplitude that takes

the flow out of the basin of attraction of the laminar state.
The TWs are disconnected from the laminar solution for lin-
early stable flows and their emergence provides a lower
bound Reb

�TW� in-phase space. They are believed to constitute
the skeleton around which a time-dependent trajectory in-
phase space is organized �10�. The fact that TWs are unstable
explains why a flow never settles onto such states. The very
first nonlinear equilibrium solutions were discovered numeri-
cally by Nagata �11� in 1990 for plane Couette flow. Later,
for plane Poiseuille flow solutions were found down to
Reb

�TW��1000 �12,13�. Earlier numerical and experimental
studies have identified nonlinear TW solutions in pipe flow
�10,14,15�. Later on, additional TW states were discovered
for pipe flow �16,17�, asymmetric solutions �18�, and relative
periodic orbits �19�. The review by Eckhardt et al. �20� sums
up current views on the transition to turbulence in pipe flow
and Kerswell �21� discussed the TW and their implications in
the dynamics of the transition.

No nonlinear TW solutions have yet been reported for the
square duct flow, although numerical evidence �7,8� seems to
indicate the existence of a four-vortex mean flow in the tran-
sitional regime.

II. DEFINITIONS

The isothermal incompressible flow through a square duct
is considered. The dimensional Cartesian coordinates em-
ployed are x̂, ŷ, and ẑ and define the streamwise and cross-
stream directions, respectively. The corresponding unit vec-
tors are i, j and k, with û= ûi+ v̂j+ ŵk as the velocity vector,
�̂ as the fluid density, p̂ as the pressure, and �̂ as the kine-
matic viscosity. The flow is forced by a constant applied

pressure gradient P̄̂x. The fluid is confined by four walls and

the domain is −b̂� ŷ , ẑ� b̂. The duct is infinite in the x̂ di-
rection; hence, we impose periodicity in x̂ and no slip at the

walls, i.e., û�t̂ , x̂ , ŷ , ẑ�= û�t̂ , x̂+ L̂x , ŷ , ẑ� and û�t̂ , x̂ , ŷ= � b̂ , ẑ�
= û�t̂ , x̂ , ŷ , ẑ= � b̂�=0. The governing equations are nondi-
mensionalized by using the following scales for length, time,

velocity, and pressure: b̂ , b̂ / Ū̂max, Ū̂max, �̂Ū̂max
2 , where Ū̂max is

the maximum �centerline� laminar streamwise velocity of the
flow. The mean velocity over x is defined by an overbar, i.e.,
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ū= 1
Lx

�xudx where u represents the dimensionless streamwise
velocity component. The bulk velocity is defined by Ub

= 1
4�−1

+1�−1
+1ūdydz. The Reynolds number Re and the bulk Rey-

nolds number Reb are defined as Re= Ū̂maxb̂ / �̂ and Reb

= Ûbb̂ / �̂. The latter definition is used to relate the solutions to

turbulent data. The skin friction is defined as �=8û�
2 / Ûb

2,

where û�
2= �−2b̂ /4�̂�P̄̂x. The cross-sectional energy is defined

as EU= 1
4�−1

+1�−1
+1 1

2 �ū2+ v̄2+ w̄2�dydz. We impose a perturbation

u�= �u� ,v� ,w�� and p� on the laminar base flow Ū�y ,z� and

P̄x. The nondimensional governing equations for the pertur-
bations are thus

��t + Ū�x + u� · �−
1

Re
�2�u� + i�v��y + w��z�Ū + �p� = 0

�1�

and � ·u�=0. The disturbance is expressed as:

u� = 	
b=−Nx

Nx

ũ�b��y,z�eIb��x−ct�

= 	
b=−Nx

Nx

	
i=0

Ny

	
j=0

Nz

ûbij	i�y�	 j�z�eIb��x−ct�, �2�

where I=
−1, � is the streamwise wave number and c is the
wave speed. By considering a frame of reference moving
with velocity c, a time-independent problem with −c�x in
place of �t is found in Eq. �1�. The functions 	n are modified
Chebyshev polynomials satisfying �depending on the veloc-
ity component� either homogeneous Dirichlet boundary con-
ditions or homogeneous Dirichlet and Neumann boundary

conditions. The steady laminar flow velocity u= Ū�y ,z�i sat-

isfies �2Ū=Re P̄x with no-slip conditions at the four walls

and Ū�0,0�=1 for a given P̄x.

III. HOMOTOPY APPROACH

Our search for nonlinear solutions is based on the study
by Wedin et al. �22�, which used the self-sustaining process
�SSP� to identify approximate solutions to the Navier-Stokes
equations. For the nonlinear study, we arrive at a system of
equations for the wavy part v� and w� and the mean flow

ũ�0��y ,z� �the streaks� and 
̃�0��y ,z� �the stream function�.
The superscript of the mean flow refers to the zeroth stream-
wise mode �cf. Eq. �2��. There are various symmetries in this
system and we have imposed both S and Z below,

S:�x,y,z� → �x + �/�,− y,z�, �u,v,w,p� → �u,− v,w,p� ,

Z:�x,y,z� → �x,y,− z�, �u,v,w,p� → �u,v,− w,p� . �3�

To find nonlinear solutions of the Navier-Stokes equations,
the SSP is converted into a continuation procedure by involv-
ing a forcing function f�y ,z� with an amplitude �
�13–15,23,24�. Figure 1 shows the f�y ,z� that forces the non-
linear system. We begin the search for nonlinear solutions by
establishing a bifurcation point by forcing streaks ũ�0��y ,z�
and the stream function 
̃�0��y ,z� using f�y ,z�, without the
wavy part, i.e.,

�f�y,z� =
1

Re
�4
̃�0� + N�
̃�0�� , �4�

�
̃z
�0��y − 
̃y

�0��z −
1

Re
�2�ũ�0� = �− 
̃z

�0��y + 
̃y
�0��z�Ū , �5�

with N as the nonlinear terms. A linear stability analysis of

the basic flow of the forced system, i.e., �Ū+ ũ�0� , 
̃�0��, is
then performed. Typically, a neutrally stable mode is found
near that which was identified in �22� from where we can
start searching for nonlinear solutions. The initial conditions
in parameter space are the same as in Wedin et al. �22�
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FIG. 1. �Color online� The forcing function f�y ,z� used for forc-
ing the mean four-vortex flow. The color coding goes from most
negative �dark� to most positive �light�.
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FIG. 2. �Color online� The continuation branch for Re=3000
and �=1.5. The curve is traced out with a resolution �Nx ,Ny ,Nz�
= �4,15,15�, which is acceptable. The amplitude of the TW is de-
fined as A3D=
	 j=0

NZ �û10j�2+ �v̂10j�2+ �ŵ10j�2, with û10j as the solution
coefficients of Eq. �2�. The right vertical axis shows the phase ve-

locity c �dashed� of the wave scaled by Ū̂max.
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�Re=3000�, with either �=1.5 or �=0.282 and Re=5000
with �=3.415, with the aim to reduce � to zero while main-
taining a nonlinear state. The initial conditions at �=0.282
and �=3.415 did not cross �=0 in the course of the itera-
tions, which explains why the direct numerical simulations in
�22� relaminarized. Therefore, focus is put on the solution at
�=1.5. This initial condition leads to the continuation branch
in Fig. 2. The two solutions at �=0 are used as starting points
for mapping out the solutions in parameter space.

IV. SEARCH FOR NONLINEAR SOLUTIONS

The point in Reb��� where the TW emerges is located by
a search over �. The absolute minimum �Reb�=598.2 occurs

for �=0.85. Table I sums up the properties of the solution
found.

The structure of the nonlinear solution is shown in Fig. 3.
In the streamwise direction, the rolls �represented by arrows�
move up and down in the y direction with a pronounced
swirl next to y=+1 or y=−1 depending on the streamwise
position x. The streamwise high-speed streaks �light yellow
contour levels online� move about little with x, as observed
also in pipe flow �14�, whereas the low-speed streaks �light
red online� move rapidly in the center.

This streamwise behavior is similar to that of the so-
called N1-solution discovered by Pringle et al. �17�. Averag-
ing over x results in the four-vortex state shown in Fig. 3
with one vortex in each quadrant, similar to the mean state
observed in direct numerical simulations �DNS� of transi-
tional square duct flow �7�. It is clear that the solution rotated
by 90° also exists. DNS display solutions which alternate in
time, first with the vortex upwash near the vertical walls and

TABLE I. Properties of the TW solution at the turning point for two truncations. The streamwise velocity
is defined as u� and the roll structure is defined as u�� =v�j+w�k; DOF means degrees of freedom.

� min�Reb� � c �u��� �u�� Truncation DOF

0.85 598.2 0.074 0.475 0.021 0.570 �7,20,20� 13231

0.85 596.1 0.074 0.477 0.021 0.569 �4,15,15� 4609
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FIG. 3. �Color online� The disturbance velocity field at the turn-
ing point �see Table I� at three stations in x and the mean flow. The
contour levels represent the streamwise velocity u� and range be-
tween the minimum and the maximum of u� of the chosen stations
in x or −0.586 to 0.126 in steps of 0.05. An online video provides a
clear visualization of the TW �25�. The bottom right figure shows
the mean flow in the shape of a four-vortex structure, similar to that
observed in transitional duct flow �7�. The contour levels represent
the mean streamwise velocity u� and range between the minimum
and the maximum of u�, −0.570 to 0.099 in steps of 0.032. Com-
pare with Figs. 3�a� and 3�b� of Uhlmann et al. �7�. The color
coding goes from most negative �dark� to most positive �light�. The
arrows represent the cross-stream velocity components.
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FIG. 4. �Color online� The skin friction � �red solid curve� as a
function of Reb for �=0.85 and resolution �4,15,15�. The plus �+�
represent results with resolution �6,20,20�, showing good agreement
with the coarser grid simulations. The dashed black line represents
the laminar flow and the solid blue line turbulent experimental data
�26� approximated by �−0.5=2 log10�2.25 Reb �0.5�. The two dotted
vertical lines at Reb=865 and 1077 correspond to the transitional
limit according to Biau and Bottaro �8� �blue diamond� and Uhl-
mann et al. �7� �black empty circle; see also the three additional
points shown with empty circles of the same authors for larger Reb�.
The red asterisk ��� at Reb=2205 is the result from Gavrilakis �2�.
To see the effect of periodicity, pieces of the curves for �=1.5 and
2.0 have been added �in green, respectively, with dash-dotted and
dashed lines�.

THREE-DIMENSIONAL TRAVELING WAVES IN A SQUARE… PHYSICAL REVIEW E 79, 065305�R� �2009�

RAPID COMMUNICATIONS

065305-3



then near the horizontal walls. The skin friction � of this TW
is shown in Fig. 4 together with the values of the laminar
flow, experimental data on turbulence �26�, and results from
simulations �2,7,8�. We observe a fairly good match with the
simulations �7,8� and, in particular, the portion of the lower
branch computed for �=0.85 almost overlaps onto the value
of Biau and Bottaro �8�, whereas the lower branch for �=2
approaches the transitional limit identified by Uhlmann et al.
�7�. The difference between the transitional limits found by
these two groups must be ascribed to the different choice of
computational domain length. We have also compared the
value of the streamwise averaged energy of the simulation of
the transition process by Biau et al. �6� with the value found
here. At Reb=1042 in the turbulent regime, the average value
of EU was found to be 0.0594 in �6�, whereas here EU varies
between 0.0613 �for �=2� and 0.0779 �for �=0.85�. The
agreement is acceptable and supports the conjecture that the
flow at the lower limit of transition spends most of its time in
the vicinity of the four-vortex state identified here. Compar-
ing with experimental data �26� and DNS �2� at high Reb, the
solution identified here displays a lower skin friction on both
branches for Reb
1100, indicating that other nonlinear TW
or periodic orbit solutions are likely to play a part of the
dynamics of the turbulence as Reb increases.

V. CONCLUSION

A nonlinear TW solution has been discovered in a square
duct down to a bulk Reynolds number of Reb

�TW�=598.2 at a
streamwise wave number of �=0.85. At transitional Reb, the
value of the skin friction on the lower branch lies in the
neighborhood of values observed in direct numerical simula-
tions �7,8�. There must exist heteroclinic connections with
other solutions; but based on the shape of the secondary flow,
the values of skin friction, and the streamwise averaged
mean energy, we conjecture that during transition the flow
spends most of the time in the neighborhood of the state
found here. Our solution is similar to a corresponding TW
state identified in the circular pipe �17� highlighting the simi-
larity between these two flow cases. Other solutions with
different symmetries are currently being investigated to pro-
vide a complete picture of available states.
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