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Abstract In the context of the PELskin project, a

homogenized model to study flows over and inside

poroelastic media has been developed. It allows to

simulate the fluid–structure interaction between a fluid

and an extremely dense poroelastic medium, without

limitations on physical and geometrical parameters

such as the density of the elastic material, the porosity

or the number of periodic microstructures which

constitute the medium. The model is applied to the

case of the flow in a channel driven by an oscillating

pressure gradient, with half the channel covered by a

carpet of flexible, densely packed fibers, connected to

each other to allow for the propagation of the

deformation field.

Keywords Poroelasticity � Homogenization

1 Introduction

Several phenomena are present in nature on the

interaction between fluids and poroelastic materials.

Studies both in hydrodynamics [1–3] and aerodynamics

[4] have shown that the macroscopic motion of bodies

coated by poroelastic microscopic structures is sensi-

tively affected by the properties of the coating. Starting

from this point, an European cooperation between the

University of Aix-Marseille, the University of Manch-

ester, the University of Freiberg, Wolf Dynamics s.r.l

and The City University of London, has been formed

with the ultimate goal of developing theoretical (the

present work), numerical (cf. [5, 6]) and experimental

(cf. [5, 6]) tools to better understand the physical

mechanisms behind this kind of fluid–structure interac-

tion. The modeling of these phenomena and, in partic-

ular, the behavior of poroelastic media can be

implemented in different ways. Many of them presents

theoretical or numerical limitations.

A microscopic pointwise approach which consists

in performing direct numerical simulations using the

Navier–Stokes equations in the interstitial zones

between the pores and the equations of linear elasticity

in the solid is very time-consuming in computational

terms, but yields, in principle, the accurate behavior of

the fluid and solid fields at the pore scale. Alternative

techniques based on the Immersed Boundary Method

(IBM) are less expensive and allow to understand what

happens within the pores [6, 7], but have limitations on

the geometrical configuration of the material (porosity

and density of the solid skeleton per unit volume) and

on the numerical treatment of limit cases (such as in

the case of structures which, after large deformations,

touch one another). A third category of applicable
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techniques is that of the fully macroscopic approaches

where certain laws (such as Darcy’s law in the case of

rigid porous media) which model the global behavior

of a homogenized medium, are assumed to be valid.

These latter kinds of methods are computationally

cheaper, but do not allow to analyze the flow at the

pore scale [8].

The approach pursued here is a mixedmicroscopic–

macroscopic one: adopting an upscaling procedure,

we analyze the phenomenon at two levels. The lower

level consists in deducing some microscopic physical

properties of a poroelastic medium such as the

permeability, the ‘‘effective’’ elasticity, the ‘‘bulk

compliance of the solid skeleton’’ and the ‘‘effective

fluid volume fraction’’ [9]. All of these quantities are

to be intended not only as properties of a homogeneous

continuum, which is a mixture of the elastic material

and the fluid, but also of the type of flow and regime.

The upper level consists in solving the governing

(macroscopic) equations for the homogeneous mate-

rial which can be written in closed form only if the

unknowns in the lower level are already determined.

Works which have already used this kind of approach

[9, 10], determine the unknowns at the lower level

using closure relations which are based on model

microscopic problems. In the present work, instead,

the differential problems at both levels are formally

derived using homogenization on the basis of the

theory outlined by Mei and Auriault [11], generalizing

the procedure used for rigid porous media by Zam-

pogna and Bottaro [16]: no closure problems are

needed and the method is self-consistent for

unbounded poroelastic media. The resulting model is

computationally light and allows to treat arbitrary

geometries without limitations on the porosity or

others geometrical parameters (provided that the

microscopic geometry is connected along every

direction to allow for the propagation of the deforma-

tion field). The present approach complements other

models, such as pointwise and IBM-based simula-

tions, essentially for two reasons: the computational

costs and the capability to treat very dense and flexible

poroelastic materials.

In [11] and, in general, in the works which use

homogenization, a treatment of heterogeneities cannot

be found: the physical configurations solved are

related to unbounded homogeneous regions with no

need to dwell with boundary problems. Much effort

has been devoted in the case of rigid porous media

[12–17] to understanding if it is possible to use

homogenization when its fundamental hypotheses

(e.g. the assumption of microscopic periodicity)

decay: the answer seems to be positive. The present

work presents preliminary results for the interaction of

a poroelastic medium in contact with a pure fluid

region. A problem which does not arises when

pointwise methods are used is the treatment of the

macroscopic interface. Since the poroelastic medium

is very dense, a macroscopic interface is created at the

boundaries with the fluid region; such an interface can

be viewed as a permeable membrane and must be

modeled appropriately (see, e.g., Gopinath and

Mahadevan [10]). Concerning the interface conditions

for elastic media, one difficulty consists in the motion

of the macroscopic interface. This difficulty is often

avoided by imposing interface conditions at a fixed

interface (usually identified with the initial resting

state of the medium), assuming that the deformations

are small or, equivalently, that the phenomenon is

observed from a macroscopic point of view. The usual

choice of the conditions to be imposed at the fixed

interface is the continuity of the effective velocities

and of the effective normal stresses [10, 18–20].

Thanks to a homogenized-based treatment of the

H-medium, poroelastic phenomena which in the past

could not be analyzed due to computational limita-

tions, can now studied with applications in aerody-

namics, aeroacoustic and hydrodynamic (cf. [1–4]),

even beyond the objective of the PELskin project.

The paper is organized in three parts: after a briefly

introduction to the homogenized-based model, the

results are presented distinguishing between the

solutions of the microscopic and macroscopic equa-

tions. The macroscopic problem treated is the motion

of a fluid in an oscillating channel, covered, on one

wall, by a thick carpet of flexible fibers. The

oscillations of the carpet are analyzed and discussed

in details.

2 Set up of the problem

Let us consider the oscillating flow of a Newtonian

fluid with constant density qf and viscosity l in the

plane channel sketched in Fig. 1. The flow is forced by

an oscillating pressure gradient along the horizontal

direction e1,
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rp ¼ ARðeixtÞe; ð1Þ

where A is the real amplitude of the wave, x its

frequency and R denotes the real part. The channel is

filled over half of its height (L) by a porous medium

whose microscopic structure is shown in Fig. 1. In the

fluid F-region and in the fluid portions Vf of the H-

region, the Navier–Stokes equations (NSE) are valid.

In the former region the NSE are rendered non-

dimensional using PF and lF as pressure and length

scales:

PF ¼ qf U
2 and lF ¼ L; ð2Þ

where U is the velocity scale. The resulting NSE are

_u þ ðu � rÞu ¼ r � rF and r � u ¼ 0; ð3Þ

with rF ¼ �pI þ 2ReL
�1eðuÞ and ReL is the macro-

scopic Reynolds number, defined as ReL ¼ qf UL=l.
The dependent variables u and p denote the velocity

and static pressure fields. A dot over a variable’s name

denotes time differentiation; the operator e is defined

as eðwÞ ¼ 1
2
ðrwT þrwÞ.

In the H-region the non-dimensional NSE for the

fluid in the pores are deduced assuming that macro-

scopic pressure forces are equilibrated by local

viscous dissipation, i.e.

PH

L
¼ l

U

l2
; ð4Þ

and lH ¼ l, with l the microscopic length scale (cf.

Fig. 1). The resulting equations read

_u þ ðu � rÞu ¼ r � rH and r � u ¼ 0; ð5Þ

with rH ¼ ���1Re�1
l pI þ 2Re�1

l eðuÞ, where Rel is

the microscopic Reynolds number defined as Rel ¼

qf Ul=l and � is a small parameter, ratio of the

microscale l to the macroscale L.

In the region occupied by the solid, where

poroelastic elements of constant density qs are

present, the classical equation of linear elasticity

holds. The microscopic elasticity tensor C, associated

to an isotropic material, is rendered dimensionless

using E, the Young’s modulus of the material.

The following order of magnitude relations are

assumed:

E
Pl2

lL2
Ts ¼ PH ; U ¼ V

Ts
and

qs
T2
s

¼ E

L2
; ð6Þ

where Ts is the solid time scale. The resulting non-

dimensional equations are

�2€v ¼ r � R; ð7Þ

where R is the solid stress tensor, R ¼ C : eðvÞ, with
eðvÞ the strain tensor. The NSE and the equations of

elasticity are linked by the continuity of velocities and

normal stresses on the solid–fluid microscopic inter-

face C, i.e.

u ¼ _v; ð8Þ

R � n ¼ rH � n; ð9Þ

where n is the unit normal vector always assumed to

point towards the fluid.

As already mentioned in the introduction, we

follow a homogenization, multiscale procedure to

develop a set of equations which holds in the

homogenized domain (H-region in Fig. 1). The result-

ing model, in case of Stokes flow inside the poroelastic

region, at leading order [21, 22] is:

ð1� #Þ€v ¼ r � C : eðvÞ � ap½ �;

hr � gi _p�r � K � rp ¼ hr � vi : eð _vÞ � #r � _v;

hui � # _v ¼ �K � rp;

8
>><

>>:

ð10Þ

where h�i denotes the average over the microscopic

unit cell V (cf. Fig. 1) defined as the weighted

integral on the whole microscopic cell; # is the

porosity of the medium defined as Vf =V . In system

(10) the quantities K, v, g, C and a are microscopic

unknowns which can be derived by homogenization.

K ¼ hKi is the effective permeability tensor solution

of

Fig. 1 Configuration of the problem, no-slip and periodic

conditions are imposed on the top and vertical boundaries of the

fluid domain in the F-region, respectively. A zoom inside the

homogenized, poroelastic H-region highlights the microscopic

fibrous structure which constitutes the poroelastic medium. Vf

and Vs are the fluid and solid volumes inside the elementary cell,

V ¼ Vs [ Vf , C is the fluid–structure interface
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rA �r2K ¼ I;

r � K ¼ 0;

(

ð11Þ

over Vf , plus V-periodicity. The unknown vector A

which appears in the problem for K arises from

homogenization, but is not used in the governing

macroscopic equations.

The quantities v and g allow to define the effective

elasticity tensor C and the matrix a via the following

equations:

C ¼ hC : eðvÞi þ hCi and a ¼ #I þ hC : eðgÞi
ð12Þ

and satisfy the problems

r � C : eðvÞ ¼ 0;

C : eðvÞ � n ¼ �C : ðI � IÞ � n on C;

(

ð13Þ

r � C : eðgÞ ¼ 0;

C : eðgÞ½ � � n ¼ n on C;

(

ð14Þ

defined over Vs, plus V-periodicity. Once systems

(11), (13) and (14) are solved, and the averaged

quantities are computed, system (10) can be solved.

Using the domain decomposition technique, the

solution in the F-region is coupled with the solution in

the H-region using the following conditions imposed

at the interface, x3 ¼ 0:

huijH ¼ ujF; ð15Þ

hRi � n ¼ �rF � n: ð16Þ

Furthermore, the condition:

ðn � KÞ � rpjH ¼ Kf

df
P�jF�H ; ð17Þ

proposed by Gopinath and Mahadevan [10] is used to

express the pressure jump through the interface,

imagined to behave as a semipermeable thin mem-

brane of thickness df and isotropic permeability Kf ,

with P�jF�H the pressure difference across the skin.

The ratioKf =df is a priori unknown and must be tuned

for each configuration of the flow.

3 Microscopic results

As already noted, the microscopic variables are V-

periodic. The chosen geometry (shown in Fig. 1)

consists of cylinders, with longitudinal axis normal to

the surface to which they are hinged, linked to one

another by thin transversal cylinders. The lattice

formed allows the cylinders to interact avoiding

problems related to the microperiodicity assumption

[19, 21]. Starting from a simple vertical cylinder,

Table 1 shows how the porosity changes by varying

the ratio dt=d, where dt is the diameter of the

transversal connecting cylinders and d that of the

main fiber aligned along x3. All the solvers for the

microscopic problems are based on OpenFoam: time-

marching solvers, with the Euler scheme, are used to

solve problems (11, 13, 14). We refer to [21] for

further details about numerical tests and schemes.

3.1 The permeability tensor Kij

The solution of problem (11) has already been

described in [16], we limit here only to showing how

the permeability changes by varying the ratio d=dt for

some chosen physical parameters. We observe that

even if # varies only by about 4 % (except in the limit

case of d=dt ¼ 1) with respect to the reference value of

# ¼ 0:8 of the unconnected case, for which dt ¼ 0, the

changes in the permeability are rather relevant. The

values assumed by the effective permeability are

shown in Table 2 for the Stokes flow case. The fact

that the permeability tensor changes much even if the

porosity does not, is desirable because it is an

indication that the information related to the structure

passed to the macroscopic equations is not a simple

function of porosity. The permeability decreases

monotonically when the porosity is reduced, i.e. when

the ratio d=dt decreases; for all cases analyzed the

structure is cubic symmetric and this is confirmed also

by the form of Kij.

3.2 The effective elasticity tensor Cijpq

In order for definition (12) and equations (13) and (14)

to make sense we introduce the microscopic elasticity

Table 1 Behavior of the porosity as function of the ratio dt=d
for a porosity # in the vicinity of 0.8

Main cyl. d=dt ¼ 7:5 d=dt ¼ 5 d=dt ¼ 2:5 d=dt ¼ 1

# ¼ 0:8 # ¼ 0:797 # ¼ 0:793 # ¼ 0:768 # ¼ 0:583

r ¼ 0:252 rt ¼ 0:034 rt ¼ 0:050 rt ¼ 0:101 rt ¼ 0:252
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tensor Cijkl, expressed as a 6� 6 matrix in Voigt’s

contracted notation [23]. If we consider an isotropic

elastic material, Cijkl assumes the following form:

Cijkl ¼

kþ 2l k k 0 0 0

k kþ 2l k 0 0 0

k k kþ 2l 0 0 0

0 0 0 l 0 0

0 0 0 0 l 0

0 0 0 0 0 l

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

ð18Þ

where k and l are the Lamé constants of the isotropic

material, normalized by Young’s modulus of elastic-

ity. In terms of Poisson’s ratio mP, the following

relations hold:

k ¼ mP
ð1þ mPÞð1� 2mPÞ

and l ¼ 1

2ð1þ mPÞ
:

ð19Þ

We consider here a soft (E ¼ 3� 10�4 GPa) poly-

urethane foam with mP ¼ 0:40, that is

k ¼ 1:42; l ¼ 0:36. The tensor vpqi in system (13)

represents a microscopic displacement; such a system

is formed by linear PDE’s obtained as a combination

of the entries of the pointwise elasticity tensor Cijkl and

of the jacobian of vpqi , valid over the solid structure

inside the microcell. In Fig. 2 an example of the

microscopic fields is shown. Several symmetries can

be observed also at a macroscopic level in the effective

stiffness tensor (C1111 ¼ C2222, C1122 ¼ C2211, C1313 ¼
C2323 and C1133 ¼ C2233 ¼ C3322 ¼ C3311), so that the

tensor has the form:

Cijkl ¼

� � b 0 0 0

� � b 0 0 0

b b F 0 0 0

0 0 0 | 0 0

0 0 0 0 | 0

0 0 0 0 0 €

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

;

ð20Þ

in agreement with [24, 25]; in particular, the specific

values computed for the linked cylinders geometry are

shown in Table 3. As one can observe, the structure

realized with d ¼ dt shows cubic symmetries (i.e.

there are 9 planes of symmetry) and the structure of

Cijkl agrees with the theory of solid mechanics [25]. For

the case d ¼ 2:5dt the presence of the transverse

cylinders is important, and this can be seen in the

effective stiffness tensor which also in this case shows

cubic symmetries; information about the transverse

isotropy of the principal cylinder is maintained as it

can be inferred observing that C1212 6¼C1313 ¼ C2323.
Increasing the ratio d=dt, Cijkl approaches the tensor

computed for the case of disconnected cylinders

(dt ¼ 0). A further confirmation of the fact that the

elasticity tensor has a physical behavior is done by a

parametric study for varying #. For # ! 0 we recover,

in facts, the values of the pointwise elasticity tensor C.

The parametric study conducted demonstrates that a

range of porosities exists for which the shear modulus

is negative. Whereas this might appear strange at first

sight, there is no theoretical law which establishes the

Table 2 Values of the non-zero components of the tensor K
for varying the ratio d=dt and # � 0:8

K11 ¼ K22 K33

d ¼ dt 9:4� 10�5 9:4� 10�5

d ¼ 2:5dt 2:0� 10�4 4:1� 10�4

d ¼ 5dt 2:5� 10�4 4:7� 10�4

d ¼ 7:5dt 5:2� 10�3 1:1� 10�2

dt ¼ 0 1:9� 10�2 3:9� 10�2

The case dt ¼ 0 corresponds to disconnected fibers aligned

with x3, for Re ¼ Oð�Þ

Fig. 2 Example of one vector field v11i ; magnitude for four

different values of the ratio d=dt: 1, 2.5, 5, 7.5

Meccanica (2017) 52:1797–1808 1801
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positive definiteness of the tensor. On the other hand,

composite materials with negative shear modulus have

been reported in the literature [26, 27].

4 Macroscopic solution

The macroscopic solver, written in Matlab, provides a

solution of the NSE in the F-region written as in (3).

Using the normalizations in (2) to scale the pressure

and the displacement, the resulting macroscopic

model valid in the H-region becomes:

ð1� #Þ€v ¼ �4
ReL

Ca

� �2

r � C : eðvÞ � Caap½ �;

Cab _p� �2ReLr � K � rp ¼ hr � vi : eð _vÞ � #r � _v;

hui � # _v ¼ ��2ReLK � rp;

8
>>>>><

>>>>>:

ð21Þ

where Ca denotes the Cauchy number defined by Ca ¼
qx2L2=E and b ¼ hr � gi is the bulk compliance of

the solid skeleton. The interface conditions (15) and

(17) remain unchanged while equation (16) becomes

�Ca p n þ 2
Ca

ReL
eðuÞ � n ¼ C : eðvÞ � n: ð22Þ

Since a study of the numerics is out of scope of the

paper we refer to [21] for further details on this.

4.1 Fluid simulation without poroelastic medium

A Navier–Stokes solver has been developed using the

fractional step method in order to decouple pressure

and velocity. The spatial operators have been dis-

cretized using fourth-order finite differences and the

Adam–Bashfort schemes is adopted for the time

integration. In order to validate the code, a fluid

simulation has been performed in a 2� 2 channel with

periodic inlet–outlet and no-slip conditions at the

lower and upper walls. The pressure gradient reads as

in equation (1) where A ¼ x ¼ 1 and ReL ¼ 100. The

fluid solver has been validated using the analytical

solution [28]. In Fig. 3 the velocity profiles of the

analytical and numerical solution, for a fixed x1 are

represented at different instants in a cycle. The

comparison shows a good match between the two

solutions.

4.2 Test cases for the behavior of a poroelastic

layer

A second solver has been developed in order to solve

the homogenized equations (21), based on the same

numerical schemes to integrate in space and time. To

ensure that the homogeneous model simulates the

behavior of a linear elastic solid, we propose here two

simplified tests. In the first case we neglect the fluid

flow, solving only the first equation of system (21)

without the pressure contribution. An infinitely long

and wide layer of thickness L is considered. At

Table 3 Values of Cijpq, for varying the ratio d=dt and # � 0:8

� � b

d ¼ dt 2:024� 10�1 2:862� 10�2 2:862� 10�2

d ¼ 2:5dt 4:928� 10�2 1:841� 10�2 8:767� 10�2

d ¼ 5dt 4:433� 10�3 1:061� 10�3 2:239� 10�4

d ¼ 7:5dt 4:687� 10�4 2:336� 10�4 1:648� 10�4

dt ¼ 0 0 0 0

F € |

d ¼ dt 2:024� 10�1 �3:395� 10�2 �3:395� 10�2

d ¼ 2:5dt 2:688� 10�1 �6:658� 10�3 �1:067� 10�2

d ¼ 5dt 1:985� 10�1 �6:001� 10�3 �8:349� 10�3

d ¼ 7:5dt 2:613� 10�1 �4:629� 10�3 �2:307� 10�3

dt ¼ 0 2:055� 10�1 0 0

The case dt ¼ 0 corresponds to the simple (disconnected)

cylinder geometry; in this case there is a single non-zero entry

of the effective stiffness tensor (20) and there is no propagation

of the displacement field [19, 21]

Fig. 3 Horizontal velocity profiles for x1 ¼ 1 at different

instants during a cycle. Symbols star represent the analytical

solution and the solid lines the numerical ones

1802 Meccanica (2017) 52:1797–1808
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x3 ¼ �1, zero displacement is imposed, while on the

top (x3 ¼ 0) constant shear and zero normal stresses

are enforced. In this case ReL ¼ 100, Ca ¼ 9:15�
10�8 and � ¼ 4� 10�5. The simulation is performed

with the values of C for d ¼ 2:5dt in Table 3. With

these boundary conditions we find a steady solution

which represents the behavior of a linear elastic

material: the horizontal displacement, constant along

x1, has a linear distribution along x3, and the vertical

displacement is zero (Fig. 4).

In the second case we solve also for the fluid

pressure field (i.e. we consider the first two equations

of system (21)): the pressure is supposed to be linear at

the top of the poroelastic layer (x3 ¼ 0) and a

homogeneous Neumann condition is imposed at x3 ¼
�1 (to guarantee no-penetration of the fluid). Since we

want to simulate an infinitely long layer, periodic

pressure gradient is imposed at the vertical boundaries

of the computational domain in order to maintain the

periodicity of the effective velocities [which can be

recovered a posteriori using the third equation of

system (21)]. Also in this case we obtain a steady

solution shown in Fig. 5: the horizontal displacement

is the same of the previous case, while a non-zero

vertical displacement arises from the boundary con-

dition (which includes the pressure) imposed at the top

of the layer for v � e3. The horizontal effective velocity

ðhui � # _vÞ � e1 is constant, equal to ��RelK33rp �

e1jx3¼0 ¼ �0:5213 and the vertical effective velocity

is zero. Since the third equation of system (21), in the

steady case, reduces to Darcy’s law, we reproduce the

same solution obtained with the model described in

[16], an indication of the fact that the model, for this

Fig. 4 Horizontal and vertical displacement for the first test

case described in Sect. 4.2

Fig. 5 From top to bottom horizontal and vertical displacement,

horizontal and vertical effective velocity and pressure for the

second test case described in Sect. 4.2

Meccanica (2017) 52:1797–1808 1803
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steady case, is reliable. At this point, we can move to

an unsteady configuration.

4.3 Two-way simulation with poroelastic medium

The solvers introduced in Sects. 4.1 and 4.2 have been

coupled to solve a case in which a homogeneous

poroelastic medium fills the lower half of the channel

(cf. Fig. 1). As already done in the second test case, the

first two equations of system (21) are solved in the H-

region and the velocity is recovered a posteriori from

the displacement and pressure fields (i.e. from the

modified Darcy’s law). For this reason, only boundary

conditions for displacement and pressure are needed.

The two solvers are coupled with a domain decom-

position technique to find the solution in the mixed

domain (F plusH-regions). We refer to [29] where it is

shown that the method used is suitable also for

unsteady problems. This technique consists in solving

for the pure-fluid and the homogeneous material

iteratively. Conditions (15, 17, 22) are used at the

boundary between F andH—the interface—to transfer

information: equation (15) from the poroelastic region

to the fluid region and equations (17, 22) in the

opposite sense.

Also with this configuration, in order to allow for

periodicity along x1, periodic conditions are imposed

for the displacement and for the pressure gradient at

the vertical boundaries of H. The simulation shown

here is done for the following conditions: the fluid is

air (m ¼ 1:55� 10�5m2=s), ReL ¼ 100 and the mate-

rial is a very soft and dense polyurethane foam with a

microscopic structure organized as in Fig. 2 with

d=dt ¼ 2:5. With these values Ca ¼ 9:15� 10�8. The

parameter � is chosen equal to 4� 10�5, which, in

other words, means that the microstructure is repeated

about 2:5� 104 times per unit length. The parameter

Kf and df are such thatKf ¼ �RelK33 and df ¼ �: since

the thickness of the membrane has been chosen equal

to the height of one elementary cell, the membrane’s

permeability can be assumed equal to the vertical

component of K. As before, the oscillating pressure

bFig. 6 Disturbance velocity field ~u in the F-region at six

different instants during the periodic cycle. The contours

represent the local kinetic energy of the disturbance field and

the arrows its velocity

1804 Meccanica (2017) 52:1797–1808
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gradient is characterized by non-dimensional ampli-

tude and frequency equal to 1.

The new fluid velocity in the F-region can be

written as

u� ¼ u þ ~u; ð23Þ

where u is the solution computed imposing an

impermeable wall at x3 ¼ 0 and ~u is the disturbance

due to the effect of the poroelastic medium. The

amplitude of such disturbances has the same order of

magnitude of the effective velocity in the H-region

defined as u� � # _v, i.e. about Oð�RelK). In Fig. 6 the

fluid flow disturbances at different instants during the

periodic cycle are represented. The contours represent

the kinetic energy of ~u, while the white arrows display
the disturbance velocity field.

The effective fluid velocity field in the H-region is

represented in Figs. 7 and 8, normalized by the

constants �Relðe1 � K � e1Þ and �Relðe3 � K � e3Þ for

the x1 and x3 components of the velocity, respectively.

The displacement of the poroelastic structure is

represented in Figs. 9, 10 and 11. Figure 9 shows how

the displacement changes in time, along x3 and for a

fixed x1 in the channel. Figure 10 shows the correla-

tion in time between the horizontal and vertical

displacements. After one cycle the curves overlap

and the motion of the structure is fully periodic. In

Fig. 11 the vertical position of the macroscopic fluid–

structure interface is represented: even if the interface

conditions (15, 17, 22) have been imposed for a fixed

x3 ¼ 0, thanks to the continuity of normal stresses, the

procedure lets the interface move in the vertical

direction of a distance smaller than �.

5 Conclusions and outlook

An upscaling technique based on homogenization has

been used to study the flow over and through a

poroelastic medium coating one wall of a channel. The

flow studied is forced by an oscillating pressure

gradient. A general strategy suitable for every kind of

micro-periodically connected geometry and, in

bFig. 7 Horizontal component of the effective velocity field

(ðu� � # _vÞ=�2) in the H-region at six different instants during

the periodic cycle
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bFig. 8 Vertical component of the effective velocity field

(ðu� � # _vÞ=�2) in the H-region at six different instants during

the periodic cycle

Fig. 9 Horizontal (upper frame) and vertical (lower frame)

displacement along x3 for x1 ¼ 1:5 in the channel at six different
instants during the period

Fig. 10 Mean horizontal displacement of the interface of the

homogenized structure versus maximum and minimum vertical

displacement
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particular, for bio-inspired structures has been used.

The work has been developed from two points of view:

the microscopic and the macroscopic one. The micro-

scopic equations provide a characterization of the

particular geometry of the porous medium, resulting in

an estimate for the components of the permeability and

the effective elasticity tensors, in agreement with

previous results. From a macroscopic point of view a

solver for the present configuration has been devel-

oped and validated, in the free-fluid region, on the

basis of the results present in the literature. The

particular microscopic structure used and the high

density of the poroelastic medium (i.e. the large

number of microstructures per unit volume) render a

comparison with other numerical results difficult.

Qualitative observations can however be made:

• even if small, the displacement of the interface is

not constant (both along the horizontal and the

vertical direction) and the interface assumes a

wavy configuration. This fact indicates that a

honami-like effect can be simulated, laying the

groundwork for new studies;

• different portions of the poroelastic continuum

positioned in different parts of the domain do not

oscillate in phase when subject to harmonic

volume forcing. This means that a real elastic

behavior of the structure can be encountered;

despite the fact that homogenization is based on

the hypothesis of microscopic periodicity, this

does not bear onto the macroscopic behaviour.
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elasticitätsconstanten isotroper körper. Ann Phys

274(12):573–587

24. Cheng AHD (1997) Material coefficients of anisotropic

poroelasticity. Int J Rock Mech 34(2):199–205

25. Cowin SC (2013) Continuum mechanics of anisotropic

materials. Springer, New York

26. Lakes RS, Lee T, Bersie A, Wang YC (2001) Extreme

damping in composite materials with negative-stiffness

inclusions. Nature 410:565–567

27. Wu Y, Lai Y, Zhang ZQ (2011) Elastic metamaterials with

simultaneously negative effective shear modulus and mass

density. Phys Rev Lett 107:105506

28. Landau LD, Lifshitz EM (1959) Fluid mechanics. U.S.S.R.

Academy of Science, Pergamon Press, Oxford

29. Quarteroni A, Valli A (1999) Domain decomposition

methods for partial differential equations. Oxford Univer-

sity Press, Oxford

1808 Meccanica (2017) 52:1797–1808

123

http://dx.doi.org/10.1007/s11012-016-0513-0
http://dx.doi.org/10.1007/s11012-016-0521-0
http://dx.doi.org/10.1007/s11012-016-0521-0
http://arxiv.org/abs/1604.02880v2

	The PELskin project---part III: a homogenized model of flows over and through dense poroelastic media
	Abstract
	Introduction
	Set up of the problem
	Microscopic results
	The permeability tensor {{\mathcal {K}}}_{ij}
	The effective elasticity tensor {{\mathcal {C}}}_{ijpq}

	Macroscopic solution
	Fluid simulation without poroelastic medium
	Test cases for the behavior of a poroelastic layer
	Two-way simulation with poroelastic medium

	Conclusions and outlook
	Acknowledgments
	References




