
Proceedings of ASME Turbo Expo 2011: Power for Land, Sea and Air
ASME 2011

June 6-10, 2011, Vancouver, Canada

GT2011-45969

A QUANTITATIVE COMPARISON BETWEEN A LOW ORDER MODEL AND A 3D FEM
CODE FOR THE STUDY OF THERMOACOUSTIC COMBUSTION INSTABILITIES

Giovanni Campa∗
Sergio Mario Camporeale

D.I.M.eG.
Politecnico di Bari

via Re David 200, 70125 Bari, Italy
Email: g.campa@poliba.it

Anaı̈s Guaus
Julien Favier

Matteo Bargiacchi
Alessandro Bottaro

D.I.C.A.T.
Università di Genova
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ABSTRACT
The study of thermoacoustic combustion instabilities has

an important role for safety operation in modern gas tur-
bines equipped with lean premixed dry low emission combus-
tion systems. Gas turbine manufacturers often adopt simula-
tion tools based on low order models for predicting the phe-
nomenon of humming. These simulation codes provide fast re-
sponses and good physical insight, but only one-dimensional or
two-dimensional simplified schemes can be generally examined.
Large Eddy Simulation (LES) techniques are proposed in or-
der to investigate the instability phenomenon, matching pressure
fluctuations with turbulent combustion phenomena to study ther-
moacoustic combustion oscillations, even if they require large
numerical resources. The finite element method can overcome
such limitations, because it allows to examine three-dimensional
geometries and to search the complex eigenfrequencies of the
system.

The finite element approach solves numerically the differen-
tial equation problem converted in a complex eigenvalue problem
in the frequency domain. Complex eigenvalues of the system al-
low us to identify the complex eigenfrequencies of the combustion
system analyzed, so that we can have a valid indication of the
frequencies at which thermoacoustic instabilities are expected
and of the growth rate of the pressure oscillations at the onset of
instability. Through the collaboration among Ansaldo Energia,

∗Address all correspondence to this author.

Genoa University and Polytechnic University of Bari, a quantita-
tive comparison between a low order model, called LOMTI, and
the three-dimensional finite element method has been created, in
order to exploit the advantages of both the methodologies.

NOMENCLATURE
A cross sectional area
c speed of sound
cp specific heat at constant pressure
f frequency of oscillation
g growth rate
H enthalpy
Jn Bessel function of the first kind of order n
i imaginary unit
ℑ imaginary part
k acoustic wave number
L length
LHV Lower Heating Value
ṁ mass flow rate
M Mach number
MM Molecular Mass
Nb number of burners
p pressure
q volumetric heat release rate
Q rate of heat release per unit area

1 Copyright c© 2011 by ASME



R gas constant
Ri radius of duct i
RR Rate of Reaction
ℜ real part
t time
T temperature
u velocity vector
u axial velocity
v radial velocity
w azimuthal velocity
x position vector
Yn Bessel function of the second kind of order n

α area ratio
γ ratio of specific heats
δ thickness of duct i
ζ pressure loss coefficient
κ interaction number
λ eigenvalue =−iω
χn,m mth solution of the Bessel function of order n
ρ density
τ time delay
ω angular frequency

¯ mean quantity
′ fluctuating quantity
ˆ complex quantity

d downstream
eff effective
i generic section
u upstream

INTRODUCTION
Modern gas turbines for power generation are generally

equipped by lean-premixed (LP) combustion technology burners
in order to satisfy the strict regulations for pollutant emissions.
LP combustion systems are often affected by combustion insta-
bilities that emerge as a problem to be avoided since they may
generate structural vibrations able to lead to failure of the system
in the worst case.

Thermoacoustic combustion instability is a very complex is-
sue and, over the years, several different approaches have been
developed to model as well as possible this phenomenon. The
methods adopted can be grouped into three different categories:
low order models [1–3], LES codes [4, 5] and FEM approaches
[6–8]. In low order models the whole combustor system is de-
fined as a series of subsystems, using mathematical transfer func-
tion matrices to connect to each other the lumped acoustic ele-
ments. Usually, in these acoustic networks only one-dimensional
or two-dimensional simplified configurations can be considered.

In contrast with these simplified configurations, LES codes are
proposed in order to investigate the whole phenomenon of com-
bustion instability, matching pressure oscillations with turbulent
combustion phenomena, even if they require large numerical re-
sources. The finite element solution of the forced wave equa-
tion can overcome such limitations; it allows to examine three-
dimensional complex geometries and to search for the complex
eigenfrequencies of the system. This approach solves numeri-
cally the differential equation ruling the system, after it has been
converted into a complex eigenvalue problem in the frequency
(or time) domain. Complex eigenvalues of the system allow us
to understand if the corresponding mode is unstable or if the os-
cillations will decrease in time, i.e. the mode is stable. A choice
has to be made at the beginning of a thermoacoustic combus-
tion instability analysis: a simplified analysis with simple one-
or two-dimensional geometries can be carried out, possibly ac-
counting for some important acoustic parameters, or a more com-
plex analysis can be decided for, with a geometry very close to
the real one, but with strong simplifications (i.e. the neglect of
the mean flow in the system).

In this paper a quantitative comparison between a low or-
der model, called LOMTI, and a FEM approach, which has been
described and tested in previous papers, is presented. LOMTI
models Ansaldo combustor as a simplified system of cylinders
and annular ducts, whereas the FEM approach model this com-
bustor with a three-dimensional geometry very close to the real
one. A difference between these approaches stands in the flame
models: LOMTI considers a traditional heat release law with a
flat flame concentrated at the beginning of the combustion cham-
ber, whereas the FEM approach can model heat release law both
with a concentrated flame and with spatially distributed heat re-
lease. Unlike LOMTI, the FEM approach neglects some impor-
tant acoustic parameters, such as mean flow, viscosity coefficient,
entropy and vorticity waves. In fact, in order to overcome some
of these strong assumptions, a burner transfer matrix, that is a
typical low order tool, has been introduced in the FEM approach.

In order to predict the worst thermoacoustic conditions in
combustion systems modelling those of Ansaldo, these two ap-
proaches are developed and a comparison is carried out. An exact
agreement is very hard to reach, because of the different approx-
imations made in each approach. The main aim of this com-
parison is to examine if there is the possibility to interface one
method with the other, exploiting their respective good proper-
ties. In a first phase, the FEM results may be used to calibrate
the geometrical dimensions of the ducts in LOMTI so that eigen-
frequencies are optimally matched; in a second phase, LOMTI
can be used to carry out a rapid parametric analysis, to identify
optimal conditions to be used by designers.

This paper presents at the beginning a general introduction
of the two different approaches. A first comparison is done on the
shape of the system’s eigenmodes. Then the comparison is ex-
tended to the frequencies and growth rates of the combustor when
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unsteady heat release is introduced. On the basis of the results
obtained the ways in which it is possible to interface LOMTI and
the FEM approach are discussed.

1 MATHEMATICAL MODEL
The configuration chosen to schematize the turbine analyzed

is that in Fig. 1 (left frame). It consists in an annular plenum con-
nected to an annular combustion chamber via Nb = 24 identical
cylindrical premixers. The geometrical parameters of the model
configuration are those in Tab. 1.

FIGURE 1. Left: general view (not to scale) of the configuration with
8 of the 24 premixers shown. Right: view of the corresponding real
geometry; pink volumes are not modelled in LOMTI’s approach. The
plenum is in blue and the combustion chamber is in green.

(a) Plenum

length L1 [m] 2.3

radius R1 [m] 1.7

width δ1 [m] 0.435

(b) Premixers

length L2 [m] 0.142

area A2 [m2] 0.034

(c) Combustion chamber

length L3 [m] 1.3

radius R3 [m] 1.55

width δ3 [m] 0.355

TABLE 1. Geometrical data for (a) the plenum, (b) the premixers and
(c) the combustion chamber of LOMTI’s model configuration.

1.1 FEM approach
The fluid is treated as an ideal gas, so that the ratio of the

specific heats is considered constant. Flow velocity is regarded
as negligible, except in some areas, such as the conduits of the

burner, which are modelled by means of specific transfer function
matrices. The effects of viscous losses and heat transfer through
the walls is neglected. Under such hypotheses, in the presence of
heat release fluctuations at the flame, the inhomogeneous wave
equation is:

1
c2

∂ 2 p′

∂ t2 −ρ∇ ·
(

1
ρ

∇p′
)
=

γ−1
c2

∂q′

∂ t
, (1)

where q′ is the fluctuation of the heat input per unit volume, the
prime denotes a perturbation and overbars denote time average
mean value. The RHS of Eq. (1) is a monopole source of acoustic
pressure disturbances. Supposing the mean flow velocity negli-
gible, no entropy nor vorticity wave is generated and the pressure
fluctuations are related to the velocity fluctuations by

∂u′

∂ t
+

1
ρ

∇p′ = 0. (2)

Pressure and velocity fluctuations are expressed by complex
functions of time and position

p′ = ℜ(p̂(x)exp(iωt)), u′ = ℜ(û,(x)exp(iωt)) (3)

where ω is the complex frequency. Its real part gives the fre-
quency of oscillations, while the imaginary part provides the
growth rate at which the amplitude of the oscillations increases
per cycle. Also, the heat release fluctuation can be represented
as a complex function:

q′ = ℜ(q̂(x)exp(iωt)). (4)

Then, using Eq. (1) and Eq. (3), the acoustic pressure waves are
governed by the following equation

λ 2

c2 p̂−ρ∇ ·
(

1
ρ

∇ p̂
)
=−γ−1

c2 λ q̂ (5)

where λ = −iω and c is the speed of sound. Eq. (5) represents
a quadratic eigenvalue problem which is solved by means of an
iterative linearization procedure.

The mathematical model of the burners, expressed as
lumped elements, is represented by a system of linear equations,
which is the transfer matrix. In this system the unknown are the
fluctuations of acoustic pressure p′ and acoustic velocity u′ at the
junctions, or ports of the element. The burner can be modelled
as a compact element using a transfer matrix obtained through
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experimental data [9–11]. Assuming a one-dimensional flow and
linearizing the mass and the conservation equations, it is obtained

[
A
(

p′

ρ̄c
M+u′

)]d

u
= 0, (6)

iω
c

u′ule f f +

[
Mu′+

p′

ρ̄c

]d

u
+ζ Mdu′d = 0. (7)

In Eq. (7) the effective length le f f is a measure of the accelerated
mass in the compact element:

le f f =
∫ xd

xu

Au

A(x)
dx, (8)

and it takes into account the variation of section between plenum
and burner. ζ is an acoustic loss, generally related to the time
mean flow loss coefficient. Using an effective length le f f and a
pressure loss coefficient ζ , neglecting higher order Mach number
terms, the transfer matrix of a compact element is obtained from
Eq. (6) and Eq. (7) as:

 p′
ρc

u′


d

=

 1 Mu−αMd(1+ζ )−ikle f f

αMu−Md α +Md ikle f f

 p′
ρc

u′


u

(9)

where k = ω/c is the wave number and α = Au/Ad is the area
ratio.

1.2 LOMTI’s approach
The basic idea of LOMTI (acronym of Low Order Model

for Thermoacoustic Instabilities) is to analyze the gas turbine
through a set of equations suited to represent the system. The
approach chosen is a time-domain state space representation de-
rived from modern control theory. The internal state variables
are the smallest possible subset of system variables that can rep-
resent the entire state of the system at any given time. The vari-
ables are expressed as vectors and the differential and algebraic
equations that represent the system are written in matrix form
(the latter only being possible when the dynamical system is lin-
ear or linearized). Since LOMTI avails of a lumped approach the
system is uniquely represented by the amplitude of the perturba-
tions of the thermodynamical variables in each duct together with
heat release perturbations at the flame. Equations are deduced
from conservation principles at the junctions of each duct (jump
conditions) and well posed boundary conditions. Furthermore a
transfer function that couples heat release with other variables is
required to close the problem when flame pertubations are taken
into account.

Mean flow computation. A preliminary computation of the
thermodynamic parameters in each duct is required. Since a
lumped approach is used the unknowns are ( p̄, T̄ , ρ̄ , ū) in each
duct along with the total heat release q̄. They will be identified in
the plenum, premixers and combustion chamber, with subscript
1, 2 and 3 respectively. Since all the premixers are identical, the
mean flow parameters should be the same for each premixer. We
can thus consider only one set of unknowns ( p̄2, T̄2, ρ̄2, ū2) for
all the premixers, so that the total number of unknowns is 13.

The available equation are: a perfect gas equation in each
duct ( p̄ = ρ̄RT̄ ); the mass flux conservation, written locally at
each premixer inlet or outlet ( ˙̄m1 = Nb · ˙̄m2 = ˙̄m3); the energy
conservation between the plenum and the premixers ( ˙̄m1H̄1 =
Nb · ˙̄m2H̄2) and at the combustion chamber inlet ( ˙̄m3H̄3 = ˙̄m1H̄1+
A3Q̄); the isentropic condition – usually for an area decrease – at
plenum-premixers junctions ( p̄1/ p̄2 = (ρ̄1/ρ̄2)

γ ); a Borda-like
equation at the premixers exit ( ˙̄m2 ū2− ˙̄m3 ū3 = A3(p̄3− p̄2)). It
is thus sufficient to have 4 input data, for instance the pressure,
temperature and mass flux at the plenum inlet, along with the
flame temperature, to compute all the mean flow parameters.

The input parameters chosen for the mean flow calculation
are taken to be:


p̄1 = 17.5 bar,
T̄1 = 700 K,
p̄3 = 16.7 bar,
Tf lame = T̄3 = 1730 K.

Eigenmodes computations. In the present configuration, the
burners are assumed to be azimuthally and radially compact [8],
which means that both their diameter and the burner-to-burner
distance should be smaller than the azimuthal and radial wave-
lengths of all modes considered. Under this assumption, only
longitudinal perturbations propagate in the burners with the form

p′ =
(

A+ eik+x +A− eik−x
)

eiωt ,

ρ ′ =
1
c2

(
A+ eik+x +A− eik−x−Ae eik0x

)
eiωt ,

u′ = − 1
ρ

(
k+

α+
A+ eik+x +

k−

α−
A− eik−x

)
eiωt ,

T ′ =
1

cpρ

[(
A+ eik+x +A− eik−x

)
+

1
γ−1

Ae eik0x
]

eiωt ,

(10)

with 
k± =

Mω∓|ω2|
c(1−M2)

,

k0 =−ω

u
,

α± = ω +uk±.

(11)
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In the plenum and combustion chamber, the perturbation is a
combination of Nn = Nb (even) azimuthal modes:

p′ =
Nn/2

∑
n=−Nn/2+1

(
A±n eik±x

)
Bn,m(r)Ω,

ρ ′ =
Nn/2

∑
n=−Nn/2+1

1
c2

[(
A±n eik±x

)
Bn,m(r) −Ae

n eik0x E(r)
]

Ω,

u′ =
Nn/2

∑
n=−Nn/2+1

− 1
ρ

(
k±

α±
A±n eik±x

)
Bn,m(r)Ω,

v′ =
Nn/2

∑
n=−Nn/2+1

i
ρ

(
1

α±
A±n eik±x

)
dBn,m(r)

dr
Ω,

w′ =
Nn/2

∑
n=−Nn/2+1

− n
rρ

(
1

α±
A±n eik±x

)
Bn,m(r)Ω,

T ′ =
Nn/2

∑
n=−Nn/2+1

1
cpρ

[(
A±n eik±x

)
Bn,m(r)+

E(r)
γ−1

Ae
n eik0x

]
Ω,

(12)
where



k± = k±n,m =
Mω∓

√
ω2−χ2

n,mc2(1−M2)

c(1−M2)
,

k0 =−ω

u
,

α± = α±n,m = ω +uk±n,m,
A±n eik±x = A+

n eik+x +A−n eik−x,
Ω = eiωt+inθ ,

(13)

with n and m the azimuthal and radial wavenumbers re-
spectively. χn,m ≥ 0 is defined to be the (m + 1)th
solution of dJn

dr (χn,mR3) = 0, in the chamber, and
dYn

dr
(χn,mR1o)

dJn

dr
(χn,mR1i) −

dJn

dr
(χn,mR1o)

dYn

dr
(χn,mR1i) = 0,

in the plenum, with Jn and Yn the Bessel functions of the first
and second kind, respectively. The function E(r) is arbitrary and

Bn,m(r) =
dYn

dr
(χn,mR1o)Jn(χn,mr)− dJn

dr
(χn,mR1o)Yn(χn,mr),

(14)
in the chamber, and Bn,m(r) = Jn(χn,mr), in the plenum.

Note that, even if the perturbation velocity in the plenum and
combustion chamber have azimuthal and radial components, they
do not appear in the set of equations arising from the lineariza-
tion of the mean flow system. Indeed, since only longitudinal
waves propagate in the burners, there is no direct coupling of the
azimuthal and radial velocity across them [8]. The components
v′ and w′ of the velocity appear only in the energy conservation
equation through the enthalpy H ′ = (cpT +(u2 + v2 +w2)/2))′

as terms which vanish. Nonetheless, the expression of v′ and w′

could be recovered from the equations above, once the computa-
tion is completed.

Under the hypothesis that flames issuing from neighbor-
ing injectors do not interact, we use the so-called ISAAC (In-
dependence Sector Assumption in Annular Combustor) assump-
tion [12] to define the flame transfer function. It states that

“the heat release fluctuations in a given sector [of the
combustion chamber] are only driven by the fluctuat-
ing mass flow rates due to the velocity perturbations
through its own swirler.”

This means that a local transfer function is written for each of
the Nb flames with a specific perturbation in heat release (Q j)

′,
1≤ j≤Nb, and with a different reference point each time, chosen
at the inlet of every premixer:

(Q j)
′

Q̄
= κ j

u′j
ū j

e−iωτ j

In this specific case we deal with identical premixers, thus κ j = κ

and τ j = τ for all flame transfer functions. Different kinds of inlet
and outlet conditions are implemented in LOMTI. In this paper,
only closed-end inlet and outlet conditions are used, for codes
comparison purpose.

2 RESULTS
2.1 Annular Combustion Chamber Modes

The geometry chosen to represent the combustors used by
Ansaldo Energia has been modelled in three dimensions. Fol-
lowing an approach tested in other works [13–15], only a quarter
of the whole combustor has been analyzed, applying symmetry
conditions on periodic faces. The scheme is plotted in Fig. 1.

Transfer matrix has been applied removing every burner, so
that the upstream port of each matrix is the exit from the plenum
and the downstream is the inlet of the combustion chamber, fol-
lowing the criteria discussed in [15]. Operating conditions can
be taken from experimental data or from RANS simulations of
combustion [16]. In Fig. 2 an example of the temperature field
inside the combustor is shown.

Importing in the FEM code the temperature field from a
RANS simulation, it is possible to solve the eigenvalue prob-
lem with the actual temperatures inside the combustion chamber,
defining as well as possible the flame shape. Doing so, the flame
is not considered any more as a flame sheet or as a thin domain
with a uniform temperature, but it has a realistic shape.

From Fig. 3 to Fig. 12 the comparison between the neutral
modes obtained in LOMTI and the corresponding ones obtained
with the FEM analysis is shown, for the case in which the mean
flow is neglected and there are no heat release fluctuations at the
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FIGURE 2. Temperature field from RANS simulation.

FIGURE 3. Mode 3, purely axial waveform. Normalized frequency
from FEM analysis: fFEM = 1.35. Frequency from LOMTI with same
normalization: fLOMT I = 1.31.

FIGURE 4. Mode 4, azimuthal wavenumber n = 1. Normalized fre-
quency from FEM analysis: fFEM = 1.65. Frequency from LOMTI
with same normalization: fLOMT I = 1.05.

flame. The frequencies are normalized by the lowest eigenfre-
quency found in the FEM approach.

As it can be seen from these figures, there is a very good
agreement between the low-order model and the finite element
simulation. All in all, 11 of the 16 neutral modes obtained with
the FEM software have been reproduced with LOMTI, at fre-
quencies close to those obtained with the more complex tool.
This means that 5 of the FEM modes have not been detected.

FIGURE 5. Mode 5, azimuthal wavenumber n = 2. Normalized fre-
quency from FEM analysis: fFEM = 1.97. Frequency from LOMTI
with same normalization: fLOMT I = 1.97.

FIGURE 6. Mode 6, azimuthal wavenumber n = 1. Normalized fre-
quency from FEM analysis: fFEM = 2.17. Frequency from LOMTI
with same normalization: fLOMT I = 1.91.

FIGURE 7. Mode 7, purely axial waveform. Normalized frequency
from FEM analysis: fFEM = 2.34. Frequency from LOMTI with same
normalization: fLOMT I = 2.60.

Examining three of these modes, it is clear why LOMTI has not
detected them: these modes are confined in a very small corner
of the plenum (pink volumes in Fig. 1), at a very small length-
scale, so they could not - and should not - have a corresponding
mode in the lumped parameter approximation. Considering their
location in the plenum, they are anyway very unlikely to yield
humming. It is less clear why the other 2 modes (not shown)
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FIGURE 8. Mode 8, azimuthal wavenumber n = 3. Normalized fre-
quency from FEM analysis: fFEM = 2.82. Frequency from LOMTI
with same normalization: fLOMT I = 2.85.

FIGURE 9. Mode 9, azimuthal wavenumber n = 1. Normalized fre-
quency from FEM analysis: fFEM = 2.81. Frequency from LOMTI
with same normalization: fLOMT I = 2.81.

FIGURE 10. Mode 10, azimuthal wavenumber n = 2. Normalized
frequency from FEM analysis: fFEM = 2.81. Frequency from LOMTI
with same normalization: fLOMT I = 2.92.

have not been identified. These two modes are plenum modes
and there is no obvious reason why they should not be found by
LOMTI when the other plenum modes are. A possible solution
could be to model the plenum in LOMTI into several ducts of dif-
ferent diameter, in the hope that these modes would thus emerge.
It is very significant, nonetheless, that all the combustion cham-
ber modes have been identified by the low order model, as shown
in the figures.

FIGURE 11. Mode 13, azimuthal wavenumber n = 2. Normalized
frequency from FEM analysis: fFEM = 3.61. Frequency from LOMTI
with same normalization: fLOMT I = 3.57.

FIGURE 12. Mode 14, azimuthal wavenumber n = 4. Normalized
frequency from FEM analysis: fFEM = 3.67. Frequency from LOMTI
with same normalization: fLOMT I = 3.74.

2.2 Annular Combustion Chamber with Heat Release
Fluctuations

After the preliminary comparison of the previous section
we are able to perform a further comparison with a switched on
flame with reasonable confidence. Again we have to set the same
boundary conditions and operating parameters between the two
approaches. Moreover the same flame transfer function should
be used in order to compare results. Differing from the usual ap-
proach the reference point to compute τ for the equation below
is now chosen at the beginning of the combustion chamber. This
does not imply that the reference is placed right on the flame,
because in FEM the flame is not modelled as a flat sheet but it is
a three-dimensional surface evolving into the combustion cham-
ber.

Since the temperature field is not uniform in each compo-
nent, it is possible to model a three dimensional flame front with
FEM as shown in Fig. 2 and in Fig. 13, where the reaction rate
from a RANS simulation is shown. Heat release is defined from
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the model:

q̂
q
(x) =−κ

ûi

ui
exp(− jωτ(x)), (15)

where q is the volumetric heat release rate, q is its mean value,
q̂ is its complex value. Subscript i corresponds to the acoustic
velocity fluctuation reference position, at the beginning of the
combustion chamber. In this case it is assumed that:

q = RR(x)·LHV ·MM (16)

where RR(x) is the Rate of Reaction, LHV is the Lower Heating
Value, MM is the Molecular Mass. Using Eq. (16) and Eq. (5)
heat release law to be located within the computational domain
of the combustion chamber computational domain is obtained.
The time delay τ is taken constant in the two approaches (rather
than a function of the oscillation frequency), and we have chosen
τ = 7ms.

FIGURE 13. Reaction Rate from RANS simulation.

We have just argued that the FEM approach is very different
from LOMTI’s. Even though the flame obtained from a RANS
simulation is not completely reliable, since the details of the tur-
bulent field affect significantly the reaction rate, the difference
from the thin flat flame used in LOMTI and the spatially dis-
tribuited temperature field used in the FEM model is evident.

In Tab. 2 the results found by LOMTI and the FEM software
are summarized, together with a one-word assessment that refers
to how well frequency and growth rate match for each mode.
The frequency is normalized by the lowest value found in the
FEM approach.

In Fig. 14 the comparison between the eigenmodes identified
with LOMTI and with the FEM approach is shown. The agree-
ment can be deemed satisfactory, considering the differences in

TABLE 2. Comparison between LOMTI and FEM. The last column
assesses, in one word, the quality of agreement achieved. Frequency is
normalized against the first eigenfrequency. Growth rate is [Hz].

Number FEM LOMTI Agreement

1 1.00 - 4.65i - undetected

2 1.10 - 5.21i - undetected

3 1.47 - 45.85i 1.01 + 129.1i bad

4 1.69 + 3.48i 0.92 - 25.9i bad

5 1.93 - 3.70i 1.94 + 24.4i good

6 2.09 + 1.34i 2.68 - 4.0i bad

7 2.30 - 14.85i 2.25 - 4.3i good

8 2.78 - 1.70i 2.83 - 2.2i good

9 2.77 - 16.64i 2.86 - 4.3i good

10 2.85 - 4.75i 3.10 - 0.01i good

11 3.11 - 3.13i - undetected

12 3.54 - 2.19i - undetected

13 3.60 - 38.04i 3.54 - 39.6i good

14 3.62 - 1.03i 3.80 - 19.0i good

15 3.82 - 6.96i 3.54 + 89.9i bad

16 3.89 - 1.00i - undetected

the two techniques and, in particular, the different flames in the
two cases. Mode 3 and Mode 15 are located in the plenum and
for these two modes there is the greater difference between the
adopted approaches. Mode 4 and Mode 6, for which there is a
significant difference in the frequency value, are located both in
the plenum and in the combustion chamber. Other modes exhibit
little differences in the frequency or growth rate values and some
modes exhibit a very good agreement.

Considering the strong geometric approximations used in
LOMTI, the matching of LOMTI results with FEM’s is very
good, both with and without flame fluctuations and the capac-
ity of LOMTI’s simple model to obtain analogous results with
a much smaller computational time is doubtless satisfying. In
particular, there is a very good agreement between the two ap-
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FIGURE 14. Comparison between FEM (blue circles) and LOMTI
(red crosses) when heat release fluctuations are considered.

proaches in relation to the modes which are suspected from ex-
periments to yield humming.

3 CONCLUSIONS
A comparison between a low order model, called LOMTI,

and three-dimensional finite element computations has been
done, for an academic model of a gas turbine. LOMTI supports
only simplified geometries composed of a network of cylindrical
and annular ducts, so that a matching analysis needs to be done
to select the appropriate ducts’ dimensions in LOMTI to repro-
duce as accurately as possible the real combustor. The three-
dimensional FEM approach models Ansaldo combustor with its
realistic geometry with the actual temperature field inside the
combustion chamber, such as the actual flame shape, exploiting
data coming from RANS simulations.

After having described the two different approaches, the
acoustic modes have been detected both with LOMTI and the
FEM analysis. All in all, comparing the obtained values, an
appreciably good agreement results both with and without un-
steady heat release, considering the approximations of the two
approaches. Without heat release fluctuations, all the interesting
modes are detected by LOMTI, which does not capture only 5
plenum modes, mainly confined in a corner of the domain. It
is very important that all the combustion chamber modes are
present in LOMTI’s computations, above all those modes sus-
pected to yield humming.

More differences arise when unsteady heat release is intro-
duced into the system. These are due to the different flame mod-

els considered in the two approaches. LOMTI adopts a tradi-
tional heat release law, with a flat flame front, whereas in the
FEM approach RANS simulations provide the useful informa-
tion for flame shape and heat release law.

A possible advantage of LOMTI, at present, lies in its abil-
ity to easily include a mean flow, to assess the influence of en-
tropy and vorticity waves. As a general rule, low order mod-
els can be used to carry out parametric analyses, which may be
exploited later by FEM codes to investigate in more details op-
timized shapes. FEM code can be used to carry out the modal
analyses on a three dimensional domain very close to the real
one, so that the obtained results may be useful for the calibra-
tion of the simplified low order models geometries. The two ap-
proaches together provide information of value to the designers,
and of possible use during online operations.
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