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Abstract

The macroscopic behavior of buoyancy-driven flows over isothermal, vertical

rough surfaces is considered. The asymptotically upscaled boundary conditions

derived in Part 1 are tested on the case of minute spanwise ribs of square

cross-section. The accuracy levels and the applicability range of the proposed

effective conditions to mimic the effects of surface micro-details on the natural-

convection flow at different flow conditions and ribs’ density are investigated.

Feature-resolving numerical simulations are also conducted to build a refer-

ence database for the validation of the predictions of the homogenization-based

macroscopic simulations. It is concluded that the accuracy of the model dete-

riorates with the increase of a parameter (C) which represents the intensity of

momentum and energy transfer by convection within the microscopic domain.

This controlling parameter combines the effects of the Grashof number and the

density of the ribs in a single accuracy criterion, yielding the formal validity

limit of the present model. Besides validation purposes, the results presented

provide an enhanced vision of the structure of the fluid motion and of the heat

transfer characteristics of buoyancy-driven flows over vertical rough surfaces.

In particular, the feature-resolving simulations reveal that two distinct inter-rib

flow patterns may be present in conjunction with the increase of the flow inertia
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along the vertical direction; flow reattachment to the base surface is gradually

lost and full separation eventually takes place. The consequent effect on the

local Nusselt number is elucidated.

Keywords: natural convection, ribbed surfaces, effective boundary conditions,

upscaling

1. Introduction and literature review

Thermal convection over ribbed/finned surfaces is widely encountered in

engineering applications, such as cooling of electronics and telecommunication

devices, air solar collectors, and gas-cooled nuclear reactors. Compared with

forced convection, a system that depends on the natural-convection heat trans-5

fer regime has typically lower initial and running costs, less noise and vibrations,

higher reliability, almost maintenance-free operations, and better ability for use

in hostile environments under dust, moist air, etc. On the other hand, the main

problem facing the designers is the low heat transfer coefficient of these systems,

relative to those adopting active heat transfer mechanisms. Consequently, sys-10

tems with relatively high heat loads usually depend on forced convection as the

main cooling regime, and employ natural convection as a pack-up system [1].

On the contrary, for small and medium heat loads, the adequacy of free convec-

tion should be investigated as a first option before turning to more sophisticated

systems [2].15

Due to the ever-growing trend of miniaturization of electronic components,

which goes hand in hand with the increase in power supply, higher heat gen-

eration rates per unit volume are encountered [3]. This trend has stimulated

many investigations to enhance natural-convection cooling systems so that they20

can be effective at handling operation requirements. One intuitively appealing

solution to enhance the heat transfer performance of these systems is to apply

some sort of alteration or disturbance on the heated surface(s) in analogy to the

well-established concept of heat transfer promotion by adding ribs/fins to sur-
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faces exposed to forced convection [4, 5, 6]. However, studies on the effectiveness25

of adding surface alterations (ribs, interrupted fins, dimples, etc.) to vertical

plates exposed to natural convection have not led yet to convincing guidelines,

with some researchers reporting an improvement of up to 200% compared to the

performance of plane vertical plates, and others who have found them useless

or even of negative influence to the local and averaged heat transfer parameters30

[1]. At first glance, the findings of the previous studies may look contradictory;

however, an in-depth analysis of the physics can provide insight into the possible

reasons for the differences between the reported trends. In practice, complex

and opposing effects often emerge, as outlined by Tanda [7], due to the following

factors: (i) the presence of ribs may resist and partially block the buoyancy-35

driven stream, and consequently reduce the heat transfer rate (negative effect);

(ii) the inactive flow regions upstream and downstream of each rib, where hot

recirculating vortices are present, can deteriorate the heat transfer character-

istics (negative effect); (iii) thermally conducting ribs represent an extra area

for heat transfer (positive effect): (iv) the roughness elements may anticipate40

turbulence and trigger it at relatively low values of the Rayleigh number, so

that heat transfer characteristics may improve (positive effect). Consequently,

the overall effect of roughening a heated vertical surface has a non-systematic

trend which may differ according to the shape of the roughness elements, the

size and the distribution of the ribs on the surface, the Grashof number, the45

surface and the fluid thermal properties, etc. Since these conditions are not

standard for all studies, favorable effects of the surface ribs have been reported

by some researchers [8, 9, 10], whereas adverse impacts on the heat transfer

performance were detected in other occasions [7, 11, 12].

50

The need to better understand the interaction between the surface mi-

crostructure and the buoyancy-driven flow has initiated many experimental and

numerical investigations that adopted different methodologies through which

the usefulness and the feasibility of adding different types of protrusions to

the heated surfaces have been assessed in terms of their effects on the flow55
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regime, the heat transfer characteristics, and the mass of the cooling modules.

Examples of some surface alterations/extensions, considered in previous inves-

tigations are displayed in Figure 1, including corrugations [13, 14, 15, 16], steps

[1], two-dimensional ribs [7, 12], and different arrangements of fins [17, 18, 19].

Various experimental techniques have been adopted for mapping the thermal60

field to assess the detailed heat transfer performance, including infrared ther-

mography [20], the Mach-Zehnder holographic interferometry [1, 13, 15], and

the Schlieren imaging methodology [7, 11, 21]. Two-dimensional and three-

dimensional feature-resolving numerical simulations have also demonstrated to

be powerful tools for the acquisition of large amounts of data on thermal fields65

and flow regimes, particularly for complex configurations [12, 14, 16, 19].

Figure 1: Schematic drawings of some surface alterations examined in the literature. The

indicated geometries are (from top left to bottom right): sinusoidal waves [13], complex waves

[14], convex-concave semi-circles [15], zigzag shaping [16], steps [1]; transverse square ribs [7],

transverse trapezoidal ribs [12], rippled vertical fins [17], staggered arrangement of interrupted

fins [18], in-line arrangement of interrupted fins [19].

Numerical work on the flows over surfaces with complicated small-scale de-
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tails including irregularities, roughness, porosity, etc. has been a challenge due

to the high computational resources required to numerically discretize flow and

temperature fields in the vicinity of the surface microstructures. Replacing70

small-scale details with equivalent macroscopic effective conditions at a chosen

smooth fictitious interface can considerably simplify and accelerate the com-

putational optimization work. The asymptotic homogenization technique is a

promising mathematical framework that has been recently employed for the es-

timation of the effective boundary conditions between a microscopic zone and75

the adjacent macroscopic computational domain. Even though this approach

has already been adopted for the flow over rough surfaces [22, 23, 24], the heat

transfer from these surfaces has not been considered yet as part of the model

construction. Natural convection over rough surfaces is well suited to the homog-

enization approach. From the analytical perspective, the microscopic governing80

equations are amenable to an asymptotic expansion solution, stemming from

the existence of two separate length scales, the pattern periodicity (`) and the

plate length (L >> `). From a numerical point of view, the need to solve the

energy conservation equation, besides the momentum and the mass conservation

equations, adds to the computational cost of the originally heavy fully-featured85

simulation. Thus, employing effective boundary conditions to avoid the full res-

olution of near-wall details alleviates computational requirements. Furthermore,

natural convection heat transfer over perturbed surfaces is a very active field

for (time-consuming) optimization studies [12, 16, 25], in order, e.g., to maxi-

mize heat transfer rate with an acceptable weight of the configuration. Using90

effective conditions can clearly make such studies more feasible.

This paper complements the work presented in Part 1 [26]. The asymptotic

form of the effective boundary conditions that has been established in Part 1

for the case of natural convection over isothermal vertical ribbed surfaces is95

validated in this paper for the case of the flow over a surface roughened with

horizontally elongated square ribs. In the next section, the governing equations

of the macroscale problem, based on the Boussinesq approximation, are set. In
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Sect. 3, the basic validation case is considered with conditions that suit the

adopted homogenization approach. The numerical work includes the simulation100

of the flow over a corresponding smooth surface, the feature-resolving simu-

lation of the natural convection over the ribbed surface, and the macroscopic

simulations with the first and second order effective boundary conditions tar-

geted for validation. The accuracy deterioration of the proposed model away

from the perfect conditions is analyzed in Sect. 4, while the validity range of105

the homogenized model is sought and formally reported in Sect. 5 which closes

with a summary of the main conclusions of the study and the proposed plans

to better assess the applicability of the model for its use in a variety of cases.
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2. Problem formulation

Natural convection over an isothermal vertical surface with transverse square

ribs is considered; focus is on the macroscale problem, i.e., small-scale inter-rib

flow and thermal features are assumed to be irrelevant. As discussed in detail

by Ahmed et al. [26], the governing equations are written with the Boussinesq

approximation and normalized with suitable macroscopic scales. Eventually,

the dimensionless balance equations read:

∂Ui
∂Xi

= 0, (1-a)

∂Ui
∂t

+ Uj
∂Ui
∂Xj

= − ∂P

∂Xi
+

1√
Gr

∂2Ui
∂X2

j

+ Θδi1, (1-b)

Pr
√
Gr

(
∂Θ

∂t
+ Uj

∂Θ

∂Xj

)
=
∂2Θ

∂X2
j

, (1-c)

where the macroscopic variables are defined as:

Ui =
ûi
U
, Xi =

x̂i
L
, t =

t̂U
L
, P =

p̂− p̂∞
ρ̂∞U2

, Θ =
T̂ − T̂∞
T̂w − T̂∞

,

using the plate height (L), the velocity scale (U = ν
L

√
Gr), the wall tempera-110

ture (T̂w) and the stagnant flow conditions (temperature: T̂∞, pressure: P̂∞,

density: ρ̂∞) for normalization purposes. The fluid kinematic viscosity (ν) and

the thermal diffusivity α are constant and the Prandtl number is defined as

Pr = ν
α . The plate Grashof number is Gr=

gβ(T̂w − T̂∞)L3

ν2
, with β denoting

the constant thermal expansion coefficient.115

Attention is given to validation of the expressions of the effective conditions

obtained in Part 1 [26] with the upscaled coefficients calculated for the case of

square ribs. Since the ribs are elongated in the transverse direction, and since

only the case of laminar flow is considered here, there is no need to resolve the120

spanwise direction and the problem can be simplified to its two-dimensional form

in the (X1, X2) plane. In addition, steady-state solutions are targeted for vali-

dation purposes. Three types of simulations have been carried out: (i) natural
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convection over a vertical smooth surface; (ii) full feature-resolving natural con-

vection over a vertical ribbed surface; (iii) homogenized problem with effective125

boundary conditions at a virtual wall. For each simulation, the computational

domain, the boundary conditions, and the grid structure are explained in detail

in Sect. 3. The numerical work has been conducted using the STAR-CCM+

multi-physics software (version 15.06.007-R8). The second-order upwind for-

mulation has been adopted for the spatial discretization of all fields, with the130

calculation of the gradients based on a hybrid Gauss-least squares method. The

SIMPLE scheme has been employed for pressure-velocity coupling.

3. The basic validation case

As a starting point, a typical validation case is considered; the asymptotic

solution in [26] is assumed to have a reasonable accuracy provided that the135

value of the parameter ε = pattern periodicity (`)
plate length (L) is sufficiently small. In addition,

limitations are imposed on the magnitude of the coefficient of the convective

term in the normalized microscopic governing equations, C = ε2
√
Gr = εRG,

for convective effects to be absent in the leading-order problem and present at

next order. For the basic validation case, we consider natural convection over an140

isothermal vertical plate with 168 transverse square ribs (ε =
1

168
) with a pitch

distance to rib height ratio
l

e
= 3.75. The problem is characterized by a plate

Grashof numberGr = 5.563×108 and a Prandtl number Pr = 0.712. With these

parameters, the value of the coefficient C is 0.836. In this section a simulation

of the flow over a smooth surface, at the indicated values of Gr and Pr, is first145

presented; then the feature-resolving simulations and the homogenization-based

calculations of the ribbed surface case are considered.

3.1. Isothermal vertical smooth surface case

The numerical simulation is first run on a smooth isothermal surface. Dif-

ferent purposes are targeted from this step: (i) estimation of the adequacy of150

the computational domain; (ii) validation of the CFD numerical scheme and of
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the inlet/outlet boundary conditions by comparing the results with available

databases through the literature; (iii) the no-slip smooth surface case is equiva-

lent to a homogenized simulation of the rough surface with zero-order effective

conditions, so the results will help to monitor the effect of modelling the ribbed155

surface case when progressively higher-order approximations are used.

3.1.1. Setup of the numerical simulation

The computational domain and the boundary conditions are illustrated in

Figure 2. No-slip and uniform temperature conditions are defined on the vertical

wall; pressure boundary conditions are uniformly imposed at the upper and the

lower boundaries such that an equilibrium with the hydrostatic pressure head

is satisfied. The width of the domain should be selected in such a way that the

streamwise velocity smoothly vanishes at the far boundary at X2 = S, and the

normal gradients of the horizontal velocity and the temperature smoothly go

to zero. This was checked by running the simulation with different values of

the domain width, S, and monitoring a result of interest (the surface-averaged

Nusselt number) until convergence was attained. The local Nusselt number

(Nu) and its surface averaged counterpart (Nu) are defined for the smooth

surface by:

Nu =
−L

T̂w − T̂∞
∂T̂

∂x̂2

∣∣∣∣
X2=0

= − ∂Θ

∂X2

∣∣∣∣
X2=0

, (2-a)

Nu =

∫ 1

0

− ∂Θ

∂X2

∣∣∣∣
X2=0

dX1, (2-b)

taking into account the uniformity along the spanwise direction. As can be

realized from Figure 2-b, a domain width S = 0.8L appears to be sufficient;

however, a value of S = 2L was used throughout the work to ensure the absence160

of spurious reflections from the outer boundary when testing microstructured

walls and/or larger values of Gr.
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Figure 2: Computational domain with boundary conditions used for the numerical simulation

of the natural convection over the isothermal vertical smooth plate (X2 = 0). The lower frame

shows a graphical representation of the sensitivity of the solution to variations in the domain

width. Gr = 5.563 × 108, Pr = 0.712.

The two-dimensional grid structure is shown in Figure 3. Special care is

devoted to the domain discretization near the wall. A near-wall layer is thus

defined to include the viscous and the thermal boundary layers where the X2-

gradients of velocity and temperature are significant. A rough estimate of the

thickness of the boundary layer may be obtained based on the classical Squire-

Eckert theoretical prediction [27]. Accordingly, the thickness of the boundary

layers δ (assuming δthermal ≈ δviscous) can be calculated based on the vertical
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location along the plate (x1) and the local Grashof number (Grx) as follows:

δ = 3.936 x̂1

[
0.952 + Pr

Grx Pr2

]0.25

. (3)

The maximum boundary layer thickness is reached at the end of the plate, with

x̂1 = L and Grx = Gr = 5.563 × 108. From Eq. (3), the maximum boundary

layer thickness is about 0.034L. As shown in Figure 3-a, the thickness of the165

near-wall layer for the most refined mesh is taken equal to 0.06L.

Figure 3: Description of the two-dimensional grid of the smooth plate case. A graphical

representation of the solution dependence on the number of cells in the vicinity of the wall,

Nint., is provided in frame b). Grid convergence is achieved for a number of cells in the

near-wall layer above 105. Gr = 5.563 × 108, Pr = 0.712.

A grid-dependency study is carried out by successively refining the mesh near

the surface, until the results of the surface-averaged Nusselt number converge,
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as shown in Figure 3-b. For all grids tested, the mesh growth rate in the

wall-normal direction is 1.02, and the maximum cell aspect ratio is kept below170

10 by refining the streamwise and the normal directions simultaneously. The

reported value of the average Nusselt number is estimated to be 75.056 based

on Richardson’s extrapolation of the results on the two finest meshes.

3.1.2. Discussion of the numerical results

The most significant results are summarized below. The dimensionless tem-

perature and streamwise velocity profiles are plotted across chosen normal sec-

tions distributed along the plate, as displayed in Figure 4. The velocity and

the temperature contours in the vicinity of the smooth wall are also shown, to

highlight the development of the boundary layers. The peak of the velocity

profile shifts away from the wall as X1 increase, in qualitative agreement with

the estimate of the classical Squire-Eckert theory [27] according to which the

velocity peaks at almost 1
3 of the boundary layer thickness. At the same time,

the temperature gradient at the wall is reduced with X1. The latter effect is

responsible for the decrease of the local Nusselt number (Nu) along the plate,

plotted in Figure 5. The distribution of the local Nusselt number is in perfect

agreement with the corresponding reference results by Ostrach [28]. An analy-

sis of Ostrach’s results reveals that the Nusselt number (Nu) is related to the

vertical position (X1) via the expression

X1Nu(
Gr
4 X

3
1

)0.25 = fn(Pr). (4)

At a Prandtl number of 0.712, the function fn(Pr) is estimated to be almost175

0.504. Therefore, Eq. (4) can be recast as an explicit relation between Nu and

X1 at any fixed value of the Grashof number.
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Figure 4: Smooth surface case: dimensionless velocity and temperature profiles across different

normal sections along the vertical plate. Contours representing the velocity and the thermal

field are also provided. Gr = 5.563 × 108, Pr = 0.712.

Figure 5: Smooth surface case: numerical prediction of the local Nusselt number distribution

along the vertical plate, compared with the expected behavior based on the similarity solution

by Ostrach [28].
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The similarity solution by Ostrach [28] provides a valuable database for the

validation of the velocity and the temperature fields. According to Ostrach’s

model, the dimensionless streamwise velocity, UOst1 =
û1

ν
x̂1

√
Grx

, and the di-180

mensionless temperature, Θ =
T̂ − T̂∞
T̂w − T̂∞

, are functions of a similarity parame-

ter, η = (
Grx

4
)

1
4
X2

X1
, for a given Prandtl number. A comparison between the

present numerical results at different sections along the plate and the similarity

solution is presented in Figure 6.

Figure 6: Smooth surface case: validation of the results of velocity and thermal fields with

the reference similarity solution by Ostrach [28] at Pr = 0.712.

It is noticeable that the present results for both the velocity and the thermal185

fields are in good agreement with Ostrach’s, especially at relatively low values of
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η, i.e., close to the wall. A similar conclusion was drawn when Ostrach compared

the results of his model to experimental data from the literature, finding that

the agreement was not perfect near the outer edge of the boundary layer. The

slight deviation between the present results and Ostrach’s solution away from190

the wall may be attributed to the fact that, unlike the present numerical setup,

Ostrach’s model considered a domain of infinite width, for the fields far from

the plate to be unperturbed.

3.2. Feature-resolving simulation of the ribbed surface case

The two-dimensional feature-resolving numerical simulation, where the de-195

tails of the ribbed surface are captured by the grid, represents a necessary step

for the validation of the homogenized model. The grid requirements and the

basic results of the fully-featured simulation are discussed below.

3.2.1. Setup of the simulation

The computational domain is illustrated in Figure 7, including the geometric200

details of the ribbed surface. The applied boundary conditions are the same as

in the smooth surface case, taking into account that the no-slip velocity and

temperature conditions are now imposed on a patterned surface, not on a plain

one. The two-dimensional grid near the ribs is also shown, and the different grid

refinement levels are stated. A near-wall region of thickness 5e is defined where205

a high mesh density is employed to capture the flow dynamics in the vicinity of

the perturbed surface; however, the gradual growth of the mesh guarantees that

the whole field is fairly well resolved. The number of two-dimensional cells given

in the figure illustrate clearly the high computational cost of the fully-featured

simulation of the ribbed surface compared to the smooth surface case.210
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Figure 7: Description of the computational domain and two-dimensional grid structure used

for the feature-resolving numerical simulation. The grid is shown for one unit in the near-wall

region (of thickness 5e), defined for the highest mesh density. Indicated mesh parameters for

different refinement levels are: Nunit: number of cells for a single unit in the near-wall region;

Nint.: number of cells in the whole near-wall region of thickness 5e; Ntotal: total number of

cells in the computational domain.

The Nusselt number at any point on the ribbed surface is given by:

Nu =
−L

T̂w − T̂∞
× ∂T̂

∂n̂

∣∣∣∣
wall

= −∂Θ

∂n

∣∣∣∣
wall

, (5-a)

where n̂ denotes the dimensional distance in the surface-normal direction and

n =
n̂

L
. A dimensional surface distance ŝ is defined in such a way that it goes

along the ribbed surface capturing its details, i.e., ŝ goes from 0 to L+(2e×Nribs)

with Nribs =
1

ε
=
L

`
the number of ribs. Accordingly, the surface-averaged Nus-

selt number based on the projected area of the two-dimensional ribbed plate is
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defined as:

Nu =
1

L

∫ L+ 2e
ε

0

−∂Θ

∂n

∣∣∣∣
wall

dŝ =

∫ 1+ 2e
`

0

−∂Θ

∂n

∣∣∣∣
wall

ds, (5-b)

where s =
ŝ

L
, and the value of

e

`
represents the rib height to the pitch dis-

tance ratio. The given expression for Nu takes into account the surface area

increase, with respect to the base plate area, due to the presence of ribs. The

reported value of Nu was estimated based on the Richardson’s extrapolation of

the available results at the successively refined meshes, and finally found to be215

73.2041.

3.2.2. Discussion of the numerical results

The numerical results of the fully-featured simulation are described here in

such a way that a vision of the associated phenomena is provided before turning

to the homogenized model. The patterns of the streamwise velocity, the normal220

velocity, and the temperature are plotted over two distant regions along the

plane surface tangent to the outer rims of the square ribs in order to show the

behavior of the velocity and the thermal fields near the leading edge and near

the top of the plate, as displayed in Figure 8. The fictitious surface at X2 = 0

was specifically chosen for the plots as it represents the plane on which the effec-225

tive conditions will be imposed in the model simulations; therefore, monitoring

the flow parameters along this surface is of interest. The contours of the velocity

and the temperature near the wall are also shown so that details of the boundary

layer can be captured. Velocity and temperature patterns are perturbed by the

presence of the ribs and experience quasi-periodic behaviors along the vertical230

distance. By analyzing one unit of the distributions shown in the plots, it is evi-

dent that the no-slip velocity and temperature conditions are typically satisfied

at the physical surface of the rib whereas deviations occur in the inter-rib fluid

region. Proceeding along the vertical direction, the average levels of both the

streamwise velocity and the temperature increase, which is qualitatively similar235

to the smooth surface case. The deflections of the streamlines, due to the flow

interaction with the surface protrusions, are directly reflected in perturbation of
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the normal velocity where the successive negative and positive fluctuations rep-

resent, respectively, the inward and outward normal flow through the inter-rib

region.240

Figure 8: Feature-resolving simulation of the ribbed surface: detailed behaviors of (top left)

streamwise velocity; (top right) normal velocity; (bottom) temperature. Results are plotted

along the vertical plane passing through the outer rims of the ribs, through two specific ranges

of X1. The contours of the fields are also provided. GrL = 5.563 × 108, Pr = 0.712.

The characteristics of the flow structure and the way in which the heat trans-

fer from the surface is accordingly affected are also analyzed, cf. Figure 9. The

flow behavior close to the ribbed surface is visualized with the aid of streamlines

in two distant regions along the vertical direction, so that the development of

the flow can be monitored. Two distinct flow regimes are observed; namely,245

the Separation-Reattachment-Separation (SRS) regime and the Full Separation

(FS) regime. For both patterns, the inter-rib region is characterized by the ex-
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istence of two co-rotating vortices. At relatively low values of the local Grashof

number Grx, i.e., near the leading edge, the SRS flow regime is present where

the low inertia of the main stream allows the fluid to easily deflect in the nor-250

mal direction and reattach to the surface of the base plate, keeping the two

eddies well-isolated. In contrast, sufficiently away from the leading edge, the

Full Separation regime takes place as the increasing inertia of the accelerated

stream hinders the normal deflection towards the base plate and prevents the

reattachment of the main stream. As illustrated in the figure, the two vortices255

remain connected to each other via an outer belt-like stream that rotates in the

same direction of both eddies, representing a separated entity that isolates the

main flow from the base plate in the inter-rib region.

The associated heat transfer behavior is plotted in Figure 9 in terms of de-260

tailed pattern of the local Nusselt number Nu. A quasi-periodic behavior of

the Nusselt number is observed while proceeding along the vertical plate in a

similar way to the patterns reported in the literature [1, 7, 10, 11, 21]. On a

single-unit scale of analysis, it is evident that the heat transfer rate drastically

drops just upstream and downstream of the square protrusion, a fact ascribed to265

the presence of the separation eddies that form a hot inactive zone in the vicin-

ity of the rib where the thermal boundary layer thickening mitigates the heat

transfer process. Conversely, the local Nusselt number peaks at some location

within the inter-rib region as the main stream reattaches to the surface of the

base plate. Even in the Full Separation regime, the inter-rib peak is experienced270

since the main stream still approaches the surface (without reattaching). The

major peak of the local Nusselt number is present on the outer rim of the rib

due to the considerable local thinning of the thermal boundary layer. From a

macroscopic point of view, the average value of Nu decreases away from the

leading edge along with the development of the thermal boundary layer.275
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Figure 9: Feature-resolving simulation of the ribbed surface: Comparative description of the

flow pattern and the behavior of the Nusselt number through two distant regions: (top)

near the leading edge; (bottom) near the end of the plate. The contours of U1 are also

shown; the color map given in Figure 8 is modified here so that the white portions within the

grooves represent the regions with negative streamwise velocity, i.e., the back-flow regions.

ε = 1
168

, l
e

= 3.75, Gr = 5.563 × 108, Pr = 0.712.

3.3. The macroscopic homogenization-based simulations

The effect of the surface microstructure on the behavior of the buoyancy-

driven stream is replaced here by the implementation of the homogenized effec-

tive boundary conditions on the plane at X2 = 0 (refer to Figure 7), based on the

asymptotic model that was developed in Part 1 [26]. As the present work targets

the validation of the model on the steady-state solution of a two-dimensional

laminar flow, the effective conditions can be simplified by neglecting the time-

derivative terms and the gradients in the spanwise direction. The dimensionless
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conditions up to the second order in all variables thus read:

U1

∣∣
X2=0

= ε
[
λx S

12 + m12RG
]
X2=0

+ ε2
[
m12

∂S22

∂X1
+ BRG

∂Θ

∂X2

]
X2=0

+O(ε3),

(6-a)

U2

∣∣
X2=0

= −ε2
[
m12

∂S12

∂X1

]
X2=0

+O(ε3), (6-b)

Θ
∣∣
X2=0

= 1 + ε λz
∂Θ

∂X2

∣∣∣∣
X2=0

+O(ε3), (6-c)

where the reduced Grashof number, RG, and the macroscopic dimensionless

stress components, S12 and S22, are defined as:

RG = ε
√
Gr, S12 =

(
∂U1

∂X2
+
∂U2

∂X1

)
, S22 = −P

√
Gr + 2

∂U2

∂X2
,

with the macroscopic dimensionless pressure P defined in Sect. 2. The model

upscaled coefficients (λx, λz,m12,B) are dependent on the rib geometry, that is,

the coefficients are all functions of
l

e
for the case of the square ribs. Based on

the parametric study presented in Part 1, at
l

e
= 3.75, the following values of

the model coefficients are found:

λx = 0.03791, λz = 0.08404, m12 = 0.002125, B = 0.0002247. (7)

Both the streamwise velocity and the temperature have a first-order term in

ε, whereas a transpiration velocity component appears only at second order.

While the streamwise velocity is further corrected at second order, the term

in the temperature condition vanishes at this order for a steady-state solution.280

Since the ribbed surface is impermeable, the transpiration velocity is zero on

average and its inclusion is not significant under laminar flow conditions; this

was tested and confirmed in the present work.

3.3.1. Setup of the homogenized simulations

The setup of the homogenization-based macroscopic simulations is similar to285

the setup of the smooth surface case with regard to the computational domain,

the grid structure, the refinement levels and the boundary conditions except

for replacing the no-slip velocity and temperature conditions by the effective
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conditions (Eqs. (6)) on a virtual wall in X2 = 0, up to second order. It is

comforting that the macroscopic simulations reach mesh-independence for grids290

which are more than 30 times coarser as compared to the fully-featured case,

while providing accurate predictions of the surface-averaged Nusselt number

(the metric being evaluated in the grid-dependence study). The converged val-

ues of Nu with first-order and second-order conditions are, respectively, 73.3380

and 73.3366. In comparison to the fully-featured result the errors of the homog-295

enized models are, respectively, 0.183% and 0.181%. It is worth mentioning that

Nu of the smooth surface case is 2.5290% higher than the fully-featured ribbed

case; adding ribs to the vertical surface deteriorates the total heat transfer rate,

for the geometric parameters and flow conditions under study.

3.3.2. Validation of the homogenized fields300

The results which can be achieved from the homogenized simulations rep-

resent the macroscopic behavior of velocity and temperature fields, while the

detailed perturbed patterns near the wall cannot be captured. For this purpose,

the validation of the present approach is done by comparing the results of the

macroscopic simulations with the running-average values of the fully-featured

fields over streamwise distances equal to the periodicity of the pattern of the

surface structure. For instance, the running-average value of the dimensionless

velocity U1 at an arbitrary point (X1 = a, X2 = b) is computed as:

< U1 >

∣∣∣∣
X1=a,X2=b

=
1

ε

∫ a+ ε
2

a− ε2
U1(X1, b) dX1. (8)

The numerical predictions of U1 and Θ resulting from the macroscopic simu-

lations with the first-order accurate and the second-order accurate boundary

conditions are extracted at the fictitious boundary in X2 = 0 to explicitly as-

sess the accuracy of the expressions given in Eqs. (6). The homogenized results

are plotted in Figure 10 in comparison with the corresponding running-average305

values of the feature-resolving simulation.
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Figure 10: Effective boundary conditions for streamwise velocity and temperature in com-

parison to the running-average results of the feature-resolving simulation. ε = 1
168

, l
e

= 3.75,

Gr = 5.563 × 108, Pr = 0.712.

It is clear that the present model can qualitatively predict the difference of

the results from the no-slip values. The results show perfect agreement of the

effective temperature estimates, apparently insensitive to the mild deviations

observed for the predictions of the slip velocity. This fact may be attributed to310

the absence of strong non-linearities, i.e. the coupling between the velocity and

the thermal fields is weak.

In order to show how the effect of the homogenized conditions propagates

from the virtual wall to the flow domain, the profiles of streamwise velocity315

and temperature are plotted across two normal sections and compared with the

23



corresponding running-average profiles (Figures 11 and 12).

Figure 11: Homogenized-model predictions streamwise velocity profiles across two normal

sections in comparison to the running-average results of the fully-featured simulation. ε =

1
168

, l
e

= 3.75, Gr = 5.563 × 108, Pr = 0.712.
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Figure 12: Validation of the homogenized-model results of the temperature profiles across two

normal sections in comparison to the running-average results extracted from the fully-featured

simulation. ε = 1
168

, l
e

= 3.75, Gr = 5.563 × 108, Pr = 0.712.

It is noticeable that, in the present case, the effect of the surface inhomogeneities

on the flow field is moderate. Another point is that the predictions based on

first and second-order conditions are almost indistinguishable from one another320

to graphical accuracy, due to the very small value of ε. The normal gradients

of Θ along the fictitious boundary, represented by the slopes at X2 = 0 of the

Θ profiles, were used to obtain the macroscopic behavior of the Nusselt number

along the plate (cf. Eq. (2-a)). The results are presented in comparison with

the corresponding running-average values from the fully-featured simulation in325

Figure 13. It can be realized that, under the present conditions, the ribs on

25



the surface have a very mildly unfavorable effect on the heat transfer rate, as

reported also in Section 3.3.1.

Figure 13: Homogenized model predictions of the Nusselt number in comparison to the

running-average results of the feature-resolving simulation, based on the normal temperature

gradient along the plane X2 = 0. ε = 1
168

, l
e

= 3.75, Gr = 5.563 × 108, Pr = 0.712.

It is very important to highlight that the present approach is only able to model

the temperature-gradient-based heat transfer from the matching interface, while330

the non-linearity of the convective part, resulting from the product of normal

velocity and temperature, is not accounted for, since the fluctuations of the

normal velocity cannot be resolved by the homogenized model under laminar

flow conditions. The applicability of the model is, therefore, limited here to cases

in which convective effects through the fictitious plane are negligible. This is335

assumed to be valid in the absence of strong non-linearities that may occur for

large values of ε or in the presence of turbulence.

4. Accuracy of the homogenized model

In this section, the results of several numerical simulations are presented

to assess the deterioration of the results of the proposed technique with the340
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increase of the small parameter ε =
`

L
=

1

Nribs
and the coefficient of the mi-

croscopic momentum-convective term C = ε2
√
Gr = εRG, whose effects were

preliminarily discussed at the beginning of Section 3.

4.1. Effects of the increase in ε at a given Grashof number

The simulations of the macroscopic problem are now conducted for increas-345

ing values of the parameter ε in the effective boundary conditions (Eqs. (6)),

starting from ε =
1

84
up to ε =

1

10
, at a constant value of the Grashof number

(Gr = 5.563× 108) and for the values of the model coefficients at
`

e
= 3.75 (cf.

Eq. (7)), in order to monitor the deterioration of the model with the increase

of the controlling parameters ε and C. First, a validation database has been350

built by running the fully-featured simulations with the corresponding numbers

of ribs (from 84 to 10). The running-average fields of the different fully-featured

simulations along the plane X2 = 0 and across a normal section at the middle

of the plate are presented in Figure 14 in a comparative manner to get an idea

about the effects of increasing ε on the flow characteristics. Note that the re-355

sults of the corresponding smooth surface simulation and the previously shown

results of the case ε =
1

168
are included in the figure.
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Figure 14: Fully-featured simulations with different values of ε: (top) running-averaged behav-

iors of the dimensionless streamwise velocity (left) and temperature (right) along the plane

X2 = 0; (bottom) running-averaged profiles of the dimensionless streamwise velocity (left)

and temperature (right) across a normal section at X1 = 0.5. Curves are: smooth surface

(dashed black line), ε = 1
168

(blue line), ε = 1
84

(green line), ε = 1
42

(yellow line), ε = 1
21

(red

dotted line), ε = 1
10

(solid black line). For all cases, l
e

= 3.75, Gr = 5.563 × 108, Pr = 0.712.

The analysis of the velocity and the temperature distributions along the fic-

titious boundary (Figure 14-(top)) reveals that the slip velocity (deviation from

U1 = 0) and the thermal slip (absolute deviation from Θ = 1) increase with ε,360

which qualitatively agrees with the dependence given in Eq. (6). The magnitude

of the normal temperature gradient at the wall decreases with ε, i.e. the heat

transfer from the wall is reduced. It is also observed that the temperature level

away from the surface is lower as ε increases, which in turn yields a reduction of

the buoyancy term in the momentum equation, thus reducing the velocity peak.365

The results of the macroscopic simulations with first-order and second-

order accurate homogenized effective conditions are validated by comparing the
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streamwise velocity profiles and the temperature profiles across a normal section

taken at X1 = 0.5 with the corresponding running-average patterns from the370

fully-resolved numerical simulations, cf. Figures 15 and 16. The purpose is to

get an idea about the validity range of the asymptotic model away from the

conditions (ε =
1

168
, C = 0.836) discussed in Sect. 3.

Figure 15: Predictions of the homogenized-models in comparison to the fully-featured running-

average results of the dimensionless streamwise velocity profiles at X1 = 0.5 for different values

of ε. l
e

= 3.75, Gr = 5.563 × 108, Pr = 0.712.

In general, the predictions of the present approach concerning velocity and tem-

perature fields are reliable below ε =
1

21
at the given Grashof number. It will375

be argued later that the reliability range becomes wider at lower values of the

Grashof number. The accuracy of the temperature predictions is better than

the velocity predictions, especially above the mentioned limit where the bound-

ary conditions at second order are able to produce better results in comparison

to the first-order conditions.380
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Figure 16: Predictions of the homogenized-models in comparison to the fully-featured running-

average results of the dimensionless temperature profiles at X1 = 0.5 for different values of ε.

l
e

= 3.75, Gr = 5.563 × 108, Pr = 0.712.

The most important factor from the practical point of view is the surface-

averaged Nusselt number. The behavior of Nu with the increase of ε is shown

in Figure 17. It is obvious that the level of accuracy of the model predictions

is even better than that relative to velocity and temperature profiles. It is also

noteworthy that improved predictions of Nu by shifting up to the second-order385

conditions are not systematically guaranteed.
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Figure 17: Effect of the number of the ribs (Nribs = 1
ε
) on the surface-averaged Nusselt

number (corrected to account for the increase in surface area in the case of feature-resolving

simulations for the case of a ribbed surface, cf. Eq. (5-b)). The parameters are l
e

= 3.75,

Gr = 5.563 × 108, Pr = 0.712.

The accuracy of the homogenization-based models is reported in a more

quantitative manner in Table 1. For the velocity and temperature profiles shown

in Figures 15 and 16, root-mean-square (rms) deviations between the results

of the macroscopic simulations and the results of the reference fully-featured

simulations are defined. The rms deviations of the profiles are calculated over a

normal distance between X2 = 0 and X2 = 0.02. For instance, the rms deviation

of a modeled velocity profile (Umod vs. X2) relative to the corresponding fully-

featured one (UFF vs. X2) is defined as

rms deviation =

√
1

0.02

∫ 0.02

0

(
Umod − UFF

UFF

)2

dX2. (9)

The errors on the predictions of the surface-averaged Nusselt number relative

to the fully-featured estimations are also shown in the table.
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Table 1: Error estimations of the homogenized models predictions for the velocity and tem-

perature profiles at X1 = 0.5 and surface-averaged Nusselt number. The fully-featured case

is used as a reference. The deviations of the results of the smooth wall case compared to the

rough case are also provided. In all cases: l
e

= 3.75, Gr = 5.563 × 108, Pr = 0.712.

rms deviations of U1 vs. X2 profiles at X1=0.5

ε C Smooth First-order model Second-order model

1
168 0.835 15.877% 1.491% 1.465%

1
84 3.340 17.312% 5.643% 5.420%

1
42 13.371 19.397% 13.473% 12.304%

1
21 53.485 22.566% 25.475% 20.076%

1
10 235.860 31.660% 56.025% 30.069%

rms deviations of Θ vs. X2 profiles at X1=0.5

ε C Smooth First-order model Second-order model

1
168 0.835 3.044% 1.602% 1.617%

1
84 3.340 6.639% 1.909% 1.893%

1
42 13.371 11.689% 5.336% 5.220%

1
21 53.485 21.486% 12.781% 11.911%

1
10 235.860 49.687% 27.629% 19.887%

relative error on Nu

ε C Smooth First-order model Second-order model

1
168 0.835 2.529% 0.183% 0.181%

1
84 3.340 4.980% 0.759% 0.745%

1
42 13.371 7.846% 0.274% 0.139%

1
21 53.485 12.299% -0.857% -1.807%

1
10 235.860 18.580% -3.605% -7.575%

4.2. Effect of the Grashof number at a given ε

The observed deterioration of the predictions at relatively high values of ε390

is not explicitly related to the increase in ε; rather, it is due to the associated

increase of the convective coefficient C = ε2
√
Gr beyond a critical limit which

can be reached even at moderate/low values ε when the Grashof number is large.

In many instances [23, 24, 29], the theory has been validated for ε up to 0.2.

Here, we set ε = 0.1 and show that by reducing the Grashof number (and thus,395

C), the accuracy of the model improves. The macroscopic simulations are now

set at a Grashof number of 7.509 × 106 (instead of 5.563 × 108), which results

in a decrease of the convective coefficient C from 235.860 to 27.402. Figure 18

demonstrates that even at first order, the effective conditions provide a very

good match with fully-featured simulation results when C is reduced by one400
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order of magnitude. The same occurs for the temperature field (Figure 19) and

the local Nusselt number (Figure 20).

Figure 18: Predictions of the homogenized models in comparison to the fully-featured running-

average results of the dimensionless streamwise velocity and temperature across a normal

section at X1 = 0.5, for two values of Gr: (top) Gr = 5.563×108; (bottom) Gr = 7.509×106.

For both cases, ε = 1
10
, l
e

= 3.75, Pr = 0.712.

33



Figure 19: Predictions of the temperature behavior along the vertical fictitious surface (X2 =

0) at two values of Gr. In both cases: ε = 1
10
, l
e

= 3.75, Pr = 0.712.

Figure 20: Predictions of the Nusselt number behavior at two values of Gr. In both cases:

ε = 1
10
, l
e

= 3.75, Pr = 0.712.

5. Formal validity limit and final comments

5.1. Establishment of a formal validity limit

It has been argued in Section 4 that the accuracy of the proposed homogenization-405

based model may be linked to a single controlling parameter (C) that combines

the effects of ε and Gr in the form C = ε2
√
Gr. Therefore, it is advantageous to

define a limiting value of C below which the predictions of the presented model
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are assumed to be reliable. Based on analysis of the accuracy levels shown in

Table 1, the critical value of C is expected to be around 40; below this value,410

rms deviations of the predicted velocity and temperature profiles are, respec-

tively, below 20% and 10%, and the absolute error on the predicted Nu is less

than 1.5%, based on first-order and second-order accurate effective conditions.

Figure 21: Predictions of the homogenized-models in comparison to the fully-featured running-

average results of the dimensionless temperature profiles at X1 = 0.5. ε = 0.2, l
e

= 3.75,

Gr = 9.386 × 105, Pr = 0.712.

To validate this estimate, the simulation of the macroscopic problem has been

carried out for the case of a vertical surface roughened with only five square ribs,415

i.e. ε = 0.2, at Gr = 9.386× 105 so that the accuracy of the model at a value of

C = 38.752 can be checked. The geometry of the ribs is characterized by a value

of
`

e
= 3.75; the model coefficients given in Eq. (7) are used. The accuracy of
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the model is assessed through comparative analysis of velocity and temperature

predictions across a normal section at X1 = 0.5 (Figure 21). Although the420

velocity predictions in the near-wall region are not perfect, especially with the

first-order conditions, the temperature results are almost identical to the fully-

featured running-average behavior. From a practical point of view, the reliability

of the thermal field predictions is sufficient to consider the model acceptable

under the given condition, i.e. C . 40.425

5.2. Conclusions and final comments

In this work, the natural convection over an isothermal vertical ribbed sur-

face has been considered. The homogenization-based effective conditions that

were established in Part 1 [26], without requiring any empirical input, have

been tested for the case of square ribs. The efficiency of the proposed first-430

order and second-order accurate conditions in modeling the effect of the surface

microstructure on the macroscopic behavior of the flow has been tested by com-

paring the obtained thermal and velocity fields with the corresponding results of

the full feature-resolving simulations at different values of ε =
1

Nribs
and Grashof

number. All the simulations have been conducted for laminar flow conditions at435

a constant Prandtl number equal to 0.712. It is shown that the expensive mesh

requirements for resolving complex inter-rib flow structures, associated with the

Separation-Reattachment-Separation (SRS) regime at low values of Grx and the

Full Separation (FS) regime at high values of Grx, can be significantly alleviated

when the model is employed. The most significant finding is that the accuracy440

level of the model can be formally linked to the single parameter C = ε2
√
Gr

which measures the significance of the energy flux within the microscopic do-

main. A value of C ≈ 40 is estimated to be the critical limit below which the

model provides reasonable predictions.

The dependence of the accuracy of the proposed model on a single parameter445

combining the effects of ε and Gr renders the approach applicable to large values

of the Grashof number, provided that the value of ε is sufficiently small, i.e.

the number of ribs is adequately large. The validated asymptotically upscaled
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model in this work represents a more versatile version of the effective conditions

to study natural convection over ribbed surfaces in comparison to the earlier450

model by Intröıni et al. [30] who neglected the buoyancy effect in the microscopic

region and reported a single validity-limiting value of Gr = 107. It should be

noted that the reported limit of C ≈ 40 in this paper is related to the laminar

flow regime only and does not guarantee the efficiency of the model in handling

turbulent flows.455

In pursuit of a more comprehensive understanding of the applicability limits

of the model developed, along with its efficient use, the following activities are

ongoing:

1. investigate the accuracy of the model for different shapes and dimensions

of the ribs;460

2. employ the approach to build and validate effective boundary conditions

for the case of three-dimensional ribs;

3. study the performance and the accuracy limits of the model in the case of

turbulent natural-convection flows over ribbed surfaces;

4. reconstruct the upscaled model to handle different thermal conditions of465

the surface, i.e. constant heat flux or adiabatic ribs;

5. establish a homogenization-based optimization technique through which

the optimum surface structure can be sought for the maximization of the

heat transfer from the surface under given constraints.
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