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Abstract

Asymptotic homogenization is employed to formulate upscaled effective bound-

ary conditions at a smooth virtual surface for a natural convection flow over a

periodically-roughened vertical surface, to bypass the expensive numerical res-

olution of flow and temperature fields near and within the wall corrugations.

Microscale problems are found by expanding near-wall variables in terms of a

small parameter ε, ratio between the microscopic and the macroscopic length

scales. The expressions of the upscaled velocity and temperature boundary

conditions are provided up to second-order accuracy in ε. As a typical imple-

mentation of the theory, the case of transverse square ribs is considered. The

classical Navier-slip condition for the streamwise and the spanwise velocity com-

ponents is modified at second order by the gradient of the normal stress and

the time-derivative of the shear stress. The streamwise slip velocity is addition-

ally corrected by a buoyancy term at first order and a temperature gradient

term at second order. The normal velocity at the virtual surface appears only

as a second-order transpiration condition. A Robin-like condition for the tem-

perature is found, where the wall temperature is corrected with a temperature

gradient term representing thermal slip. The proposed effective conditions pro-

vide insight into the physical complexity of the interaction between microscopic
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and macroscopic domains when heat transfer is present in the motion of a fluid

along a rough surface, and quantify the role of the buoyancy force within the

microscopic layer on the macro-behavior of the flow, previously unaccounted

for.

Keywords: multiscale homogenization theory, effective boundary conditions,

buoyancy-driven flows, microstructured walls

1. Introduction and literature review

In the present work, the multiscale homogenization approach is proposed to

simplify the numerical simulations of buoyancy-driven flows over periodically-

roughened vertical surfaces, while maintaining an acceptable level of accuracy.

Asymptotic homogenization is an approach which targets the study of the5

macroscale behavior of a medium which contains microscopic details, by replac-

ing the rapidly varying properties related to the heterogeneity of the medium,

associated with surface irregularities, porous structures, different phases, etc.,

by equivalent homogeneous macroscopic properties [1]. This technique can play

a pivotal role when handling differential equations that govern physical prob-10

lems with microscale fluctuations [2] which are characterized by some sort of

periodicity or pseudo-periodicity. These problems can be computationally sim-

plified by first solving ad hoc auxiliary systems of equations in a microscopic

domain to evaluate the necessary upscaled conditions by means of averaging.

The approach relies on the asymptotic expansion of the dependent variables15

in terms of a wisely-chosen small parameter whose existence is related to the

presence of well-separated scales, for instance a microscopic length scale (`) and

a macroscopic length scale (L >> `) so that the parameter ε = `
L << 1 can be

defined, and the solution of the problem can be sought up to different orders of

accuracy in terms of ε.20

Multiscale homogenization has been known and used by applied mathemati-

cians for a long time. Nonetheless, its practical relevance had not been imme-
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diately noticed by engineers and physicists. In recent years, homogenization

has been re-discovered and applied to a variety of relevant cases. Flow over25

micro-textured surfaces represents a typical homogenization problem. Jiménez

and Vernescu [3] have derived the Navier-slip effective condition for the Stokes

flow over a rough surface via homogenization theory as a first-order corrector

term to the no-slip condition of a smooth surface. Zampogna et al. [4] have

pursued a generalization of the classical first-order Navier-slip condition [5] over30

a rough surface by means of a third-order Navier-slip tensor. The homogenized

model was pushed to second-order by Lācis et al. [6] with the introduction of a

transpiration velocity, the normal velocity component at the fictitious interface,

thus enhancing model predictions for a turbulent boundary layer over a rough

surface. A further improvement has been added by Bottaro and Naqvi [7] who35

sought a solution up to third-order accuracy. For earlier studies along the same

lines, the reader is referred to [8, 9, 10]. The range of applications subtended by

homogenization theory is being continuously widened and enhancements to the

basic formulation are ongoing. Zampogna et al. [11] have extended the theory

to the study of the turbulent flow over compliant riblets, seeking reduction of40

the skin friction drag. Effective boundary conditions at the interface between a

porous bed and an unconfined flow region have been explored by Sudhakar et al.

[12] and Naqvi and Bottaro [13]. Adjoint homogenization has been introduced

by Bottaro [14] as a method to take into account non-linear effects within the

microscopic region.45

The buoyancy-driven flow over periodically roughened vertical surfaces is an

ideal application of the asymptotic homogenization approach, through which

the macroscopic behavior of the free convective flows can be predicted at a

reduced computational cost and a significant level of accuracy, to replace time-50

consuming feature-resolving simulations. So far, the full capturing of surface

details has been the standard way to carry out numerical work [15, 16, 17, 18],

and this implies that the implementation of multiscale homogenization for nat-

ural convection studies is a fertile field which deserves to be well defined and
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efficiently employed.55

The work presented in this paper is a novel implementation of the multiscale

homogenization technique to study natural convection heat transfer over rough

surfaces. The only previous contribution in this aspect was the work by Intröıni

et al. [19] who applied the volume-averaging upscaling method to the study of60

the steady laminar buoyancy-driven flow over rough surfaces. However, their

model suffered from some deficiencies that limit its applicability range. A crit-

ical assumption adopted by Intröıni was the neglect of buoyancy effects within

the microscopic region, so that momentum and energy conservation equations

are decoupled. This assumption, despite being mathematically advantageous,65

limits the model applicability to cases in which the Rayleigh number charac-

terizing the microscopic problem (based on the microscopic length scale and

the temperature difference across the microscopic region) is sufficiently small.

To satisfy this condition, the bulk Rayleigh number must be lower than some

threshold value and the roughness elements must be confined within the thermal70

boundary layer. In practical situations, high values of the Rayleigh number are

often encountered. Moreover, being first-order accurate, the method developed

by Intröıni et al. [19] has some restrictions on the utilization of the approach.

To assess the validity of their model, Intröıni and co-workers carried out differ-

ent numerical simulations on a differentially heated stamp-shaped cavity. The75

results showed that the validity of the model is not guaranteed for values of the

bulk Rayleigh number higher than 107.

In this paper asymptotic homogenization is used to formulate expressions

for the macroscopic velocity and temperature effective conditions at a virtual80

interface separating the microscopic and the macroscopic sub-domains. The

Boussinesq hypothesis is employed so that the buoyancy term that appears in

the microscopic momentum equation is linearly coupled with the energy equa-

tion; this represents a substantial difference with the work by Intröıni et al. [19].

The dependent parameters are expanded asymptotically in powers of the small85
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parameter ε = pattern periodicity (`)
plate length (L) . The effective conditions for velocity and

temperature are all sought up to second-order accuracy. In the next section,

the governing equations and the boundary conditions of the problem are out-

lined, the representative scales are chosen, and the continuity condition at the

matching surface is discussed. In Sect. 3, the microscopic region is considered90

where the asymptotic expansion of the dependent variables is defined, and the

problem is reconstructed at different orders of ε. For each order, generic forms

of the solutions are assumed and auxiliary differential systems are formulated.

Then, the case of transverse square ribs is discussed in Sect. 4. The parameters

of interest are determined, via numerical solution of the auxiliary systems, and95

the effect of the matching surface location is considered. For convenience, the

results are extrapolated to the fictitious surface going through the outer rim of

the ribs. A parametric study seeking the effect of varying the rib size to the

pitch distance ratio on the different coefficients is presented in Sect. 5. In the

concluding section, the effects of the defined parameters are highlighted.100
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2. Governing equations and domain decomposition

2.1. The dimensional equations

As a major assumption, the changes in the density of the fluid are consid-

ered to only affect the buoyancy term in the momentum conservation equation.

Under the Boussinesq approximation, the conservation equations in terms of

the dimensional variables, space coordinates x̂i, time t̂, pressure P̂ , velocity ûi,

and temperature T̂ , are expressed as follows:

∂ûi
∂x̂i

= 0, (1-a)

ρ̂∞

(
∂ûi

∂t̂
+ ûj

∂ûi
∂x̂j

)
= −∂(P̂ − P̂∞)

∂x̂i
+ µ

∂2ûi
∂x̂2

j

− ρ̂∞β(T̂ − T̂∞)gi, (1-b)

∂T̂

∂t̂
+ ûj

∂T̂

∂x̂j
= α

∂2T̂

∂x̂2
j

, (1-c)

with ρ̂∞, P̂∞ and T̂∞ the density, pressure and temperature in the stagnant

flow region, sufficiently far away from the vertical wall. The parameters assumed

constant in the equations above are the volumetric thermal expansion coefficient,

β, the dynamic viscosity, µ = ρ̂∞ν, with ν the kinematic viscosity, and the

thermal diffusivity, α. With the axes as in Figure 1, the volume force per unit

mass has components gi = −g δi1 with g the acceleration of gravity and δij the

Kronecker index. The parameter controlling the thermal convection flow is the

Rayleigh number Ra, defined as

Ra =
gβ(T̂w − T̂∞)L3

αν
,

where the temperature of the wall, T̂w, is maintained constant, and the plate

length, L, is the macroscopic length scale of the problem. We also define the105

Grashof number, Gr = Ra/Pr, with Pr = ν/α the Prandtl number, a property
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of the fluid. Given the presence of two characteristic length scales, a macroscopic

and a microscopic one, the latter related to the periodicity l of the microstruc-

tures present on the vertical surface, two problems will be set up. These two

problems will be coupled at some distance from the wall, a distance that is110

asymptotically large when seen from the microscopic point of view and asymp-

totically small when seen from the macroscopic viewpoint.

Figure 1: Sketch of a general vertical rough surface, periodically micro-patterned, with nota-

tions and indication of microscopic and macroscopic domains.

2.2. The macroscale problem

To set the proper scales of the macroscopic problem we consider the fact

that the motion of the fluid is generated by the buoyancy force; if U is the

characteristic velocity of the fluid, we can write

ρ̂∞U2

L
∼ ρ̂∞β(T̂w − T̂∞)g.
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We thus define the velocity scale U =

√
β(T̂w − T̂∞)gL = Gr1/2 ν

L
and normal-

ize the velocity vector as:

Ui =
ûi
U
.

The other dimensionless variables are defined as follows:

Xi =
x̂i
L
, t =

t̂U
L
, P =

P̂ − P̂∞
ρ̂∞U2

, Θ =
T̂ − T̂∞
T̂w − T̂∞

,

for the balance equations to become:

∂Ui
∂Xi

= 0, (2-a)

∂Ui
∂t

+ Uj
∂Ui
∂Xj

= − ∂P

∂Xi
+

1√
Gr

∂2Ui
∂X2

j

+ Θδi1, (2-b)

Pr
√
Gr

(
∂Θ

∂t
+ Uj

∂Θ

∂Xj

)
=
∂2Θ

∂X2
j

. (2-c)

These equations depend on only the macroscopic independent variables, t and

Xi, and must be solved subject to matching conditions at X2 → 0, together115

with Θ = Ui = 0 for X2 →∞.

2.3. The microscale problem

The near-wall problem differs from the previous one in that the microscopic

velocity scale is taken to be εU , with ε = pattern periodicity (`)
plate length (L) << 1. Also,

the pressure scale for the near-wall flow is the viscous pressure, i.e. µ (εU)/l.

Dimensionless variables in the microscopic domain are introduced as follows:

ui =
ûi
εU

, xi =
x̂i
l
, t =

t̂U
L
, p =

(P̂ − P̂∞)L

µU
, θ =

T̂ − T̂∞
T̂w − T̂∞

.

The microscopic dimensionless equations are:

∂ui
∂xi

= 0, (3-a)

εRG
(
∂ui
∂t

+ uj
∂ui
∂xj

)
= − ∂p

∂xi
+
∂2ui
∂x2

j

+RG θ δi1, (3-b)
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εRG Pr
(
∂θ

∂t
+ uj

∂θ

∂xj

)
=
∂2θ

∂x2
j

, (3-c)

with the reduced Grashof number RG, defined by RG = ε
√
Gr, assumed of

order one. The microscale problem is bounded by the microstructured wall on

one side; therefore, the following condition is imposed at this location.

ui = 0, θ = 1 for y = yw, (3-d)

with yw = yw (x1, x3) the micro-patterned wall. A representative volume ele-

ment must be chosen, of unit length along x1 and x3 (cf. Figure 1), and periodic

conditions are enforced for all dependent variables along these directions. On

account of the scalings adopted for inner (i.e., near-wall) and outer problems,

the conditions for x2 →∞ are:

−p δi2 +

(
∂ui
∂x2

+
∂u2

∂xi

)
= Si2, (3-e)

∂θ

∂x2
= ε η; (3-f)

these amount to matching the components of the traction vector and of the heat

flux between the two regions. For ease of notation in the equations above we have

introduced the following definitions for the macroscopic dimensionless stresses

in the streamwise, normal, and spanwise directions (respectively S12, S22, S32)

as well as the macroscopic dimensionless normal temperature gradient (η):

Si2 = −Gr1/2 P δi2 +

(
∂Ui
∂X2

+
∂U2

∂Xi

)
,

η =
∂Θ

∂X2
.

Notice that both Si2 and η depend on only macroscopic variables; they repre-

sent the forcing of the outer flow on the near-wall state.

120

We still need to specify the asymptotic matching conditions which will even-

tually result in effective boundary conditions for the macroscopic problem, to
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be applied some distance from the microstructured wall. They are:

lim
X2→0

Ui = lim
x2→∞

ε ui, lim
X2→0

Θ = lim
x2→∞

θ. (4-a, b)

3. Asymptotic analysis of the microscale problem

3.1. Expansion of the inner variables

Asymptotic expansions in terms of the small parameter ε are introduced, and

like-order terms are collected, leading to a hierarchy of problems. We impose:

ui = u
(0)
i + ε u

(1)
i + ε2 u

(2)
i + ...,

and likewise for p and θ. Furthermore, using the chain rule we replace in the

microscopic equations the term
∂

∂xi
by

∂

∂xi
+ε

∂

∂Xi
. The asymptotic expressions

are plugged into Eqs. (3) governing the microscale problem.125

3.2. Reconstruction of the problem at different orders

The problems at the asymptotic orders of interest are given below.

3.2.1. O(ε0) problem

∂u
(0)
i

∂xi
= 0, (5-a)

−∂p
(0)

∂xi
+
∂2u

(0)
i

∂x2
j

+RG θ(0) δi1 = 0, (5-b)

∂2θ(0)

∂x2
j

= 0, (5-c)

with boundary conditions

u
(0)
i = 0, θ(0) = 1 at x2 = yw, (5-d)

−p(0) δi2 +

(
∂u

(0)
i

∂x2
+
∂u

(0)
2

∂xi

)
= Si2,

∂θ(0)

∂x2
= 0 for x2 →∞. (5-e)
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A solution of this problem can be sought by separation of variables, on account

of the linearity of the system, for the solution to take the form:

u
(0)
i = ŭikS

k2 + u†iRG, p(0) = p̆kS
k2 + p†RG + P0,

with ŭik, u†i , p̆k, and p† tensors which depend on microscopic variables only, and

P0 an integration constant function only of Xj . After plugging the ansatz for the130

order zero solution into the balance equations, it becomes clear that uniqueness

conditions are needed for p̆k and p†, which appear in the system only through

their gradients. We enforce the vanishing of the integrals of p̆k and p† over a

cubic cell of unit side length positioned sufficiently far from the wall (nominally

for x2 → ∞); this leads to the vanishing of P0. It is also clear that we cannot135

stop the solution at this order, since the leading order temperature solution is

simply θ(0) = 1, i.e. the effect of the microstructure appears in the temperature

at the next ε-order.

The dynamic problem at O(ε0) yields the same equations for ŭik and p̆k

already given for the isothermal case by Bottaro and Naqvi [7], so that we can

anticipate that the first correction to the no-slip condition for the velocity will

be a Navier-slip term. Such a leading-order problem reads:

∂ŭik
∂xi

= 0, (6-a)

−∂p̆k
∂xi

+
∂2ŭik
∂x2

j

= 0, (6-b)

with

ŭik = 0 at x2 = yw (6-c)

−p̆k δi2 +

(
∂ŭik
∂x2

+
∂ŭ2k

∂xi

)
= δik at x2 →∞. (6-d)

The † variables, which describe the effect of buoyancy on velocity and pressure

fields, satisfy the steady system:

∂u†i
∂xi

= 0, (7-a)
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−∂p
†

∂xi
+
∂2u†i
∂x2

j

= −δi1, (7-b)

with

u†i = 0 at x2 = yw, (7-c)

−p† δi2 +

(
∂u†i
∂x2

+
∂u†2
∂xi

)
= 0 at x2 →∞. (7-d)

As it will be shown later on, the problems can be further simplified when x3-

elongated wall ribs are examined, as in the case of riblets [20, 21].140

3.2.2. O(ε1) problem

The equations at order ε are forced by the order one state, i.e.

∂u
(1)
i

∂xi
= −∂u

(0)
i

∂Xi
, (8-a)

−∂p
(1)

∂xi
+
∂2u

(1)
i

∂x2
j

+RG θ(1) δi1 =
∂p(0)

∂Xi
−2

∂2u
(0)
i

∂xj ∂Xj
+RG

(
∂u

(0)
i

∂t
+ u

(0)
j

∂u
(0)
i

∂xj

)
,

(8-b)

∂2θ(1)

∂x2
j

= −2
∂2θ(0)

∂xj ∂Xj
+RG Pr

(
∂θ(0)

∂t
+ u

(0)
j

∂θ(0)

∂xj

)
, (8-c)

with boundary conditions

u
(1)
i = θ(1) = 0 at x2 = yw, (8-d)

−p(1) δi2 +

(
∂u

(1)
i

∂x2
+
∂u

(1)
2

∂xi

)
= −

(
∂u

(0)
i

∂X2
+
∂u

(0)
2

∂Xi

)
at x2 →∞, (8-e)

∂θ(1)

∂x2
= η − ∂θ(0)

∂X2
at x2 →∞. (8-f)
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We must now substitute the results for u
(0)
i , p(0), and θ(0) into Eqs. (8-a to 8-f).

As a first step, a solution for θ(1) is to be sought from the energy equation and

the corresponding boundary conditions. Specifically, these equations read:

∂2θ(1)

∂x2
i

= 0, (9-a)

θ(1) = 0 at x2 = yw, (9-b)

∂θ(1)

∂x2
= η at x2 →∞. (9-c)

Owing to linearity, the solution can be written as:

θ(1) = θ̃(xi) η(Xi) (10)

The new microscopic field θ̃ solves the system

∂2θ̃

∂x2
i

= 0, (11-a)

θ̃ = 0 at x2 = yw, (11-b)

∂θ̃

∂x2
= 1 at x2 →∞. (11-c)

The equations governing the behavior of u
(1)
i and p(1) can be recast as follows:

∂u
(1)
i

∂xi
= −ŭjk

∂Sk2

∂Xj
(12-a)

− ∂p(1)

∂xi
+
∂2u

(1)
i

∂x2
j

= R3
Gu
†
j

∂u†i
∂xj

+R2
G

[
ŭjk

∂u†i
∂xj

+ u†j
∂ŭik
∂xj

]
Sk2 (12-b)

+RG
[
ŭjk

∂ui`
∂xj

]
Sk2S`2 +RG ŭik

∂Sk2

∂t
−RG η θ̃ δi1 + p̆k

∂Sk2

∂Xi
− 2

∂ŭik
∂xj

∂Sk2

∂Xj
,

with boundary conditions

u
(1)
i = 0 at x2 = yw, (12-c)
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∂u
(1)
1

∂x2
+
∂u

(1)
2

∂x1
= −ŭ1k

∂Sk2

∂X2
− ŭ2k

∂Sk2

∂X1
,

− p(1) + 2
∂u

(1)
2

∂x2
= −2ŭ2k

∂Sk2

∂X2
, (12-d)

∂u
(1)
3

∂x2
+
∂u

(1)
2

∂x3
= −ŭ3k

∂Sk2

∂X2
− ŭ2k

∂Sk2

∂X3
at x2 →∞.

Again, a generic form of the solution can sought, i.e.

u
(1)
i = u̇ijk

[
∂Sk2

∂Xj

]
+ üik

[
RG(Sk2)2

]
+ üi12

[
RGS12S22

]
+ üi13

[
RGS12S32

]
+ üi23

[
RGS22S32

]
+ ui

′ [RG η] + uik
[
R2
GS

k2
]

+ u‡i
[
R3
G

]
+ utik

[
RG

∂Sk2

∂t

]
,

(13-a)

p(1) = ṗjk

[
∂Sk2

∂Xj

]
+ p̈k

[
RG(Sk2)2

]
+ p̈12

[
RGS12S22

]
+ p̈13

[
RGS12S32

]
+ p̈23

[
RGS22S32

]
+ p′ [RG η] + pk

[
R2
GS

k2
]

+ p‡
[
R3
G

]
+ ptk

[
RG

∂Sk2

∂t

]
.

(13-b)

Twenty-three decoupled systems of equations arise from substituting the pre-

ceding forms into Eqs. (12). They are given in Appendix 1.

3.2.3. Taking the temperature condition to higher order

Given that the macroscopic velocity at the matching surface is now available

up to order ε2 (cf. Eq. (4-a)), it is advisable to do the same with the tempera-

ture. Employing the values of the dependent variables at the earlier orders, the

microscopic energy equation at O(ε2) now reads

∂2θ(2)

∂x2
i

= PrRG

[
θ̃
∂η

∂t
+ ŭjk

∂θ̃

∂xj
η Sk2 + u†j

∂θ̃

∂xj
ηRG

]
− 2

∂θ̃

∂xj

∂η

∂Xj
. (14-a)

The boundary conditions are θ(2) = 0 at x2 = yw and

∂θ(2)

∂x2
= −θ̃ ∂η

∂X2
at x2 →∞. (14-b)
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The following general form for the solution of θ(2) may be assumed:

θ(2) = θ!
k

[
∂η

∂Xk

]
+ θ∗k

[
PrRG ηSk2

]
+ θ∗∗

[
PrR2

G η
]

+ θt
[
PrRG

∂η

∂t

]
. (15)

Eight decoupled systems of equations stem from substituting the latter form145

into Eqs. (14); they are provided in Appendix 2.

4. The case of transverse square ribs

As an example of the implementation of the theory, the case of transverse

square ribs is considered so that the auxiliary systems can be significantly sim-

plified. In particular, because of invariance along x3, all auxiliary problems sim-150

plify considerably (with derivatives ∂/∂x3 set to zero), and only two-dimensional

Stokes-like (or Laplace-like, or Poisson-like) problems remain to be solved in the

(x1, x2) plane, subject to periodic conditions along x1. A sketch of the micro-

scopic representative volume element is provided in Figure 2.

Figure 2: Sketch of a unit cell in the microscopic domain, indicating coordinates and geometric

parameters.

Some of the microscopic problems admit trivial solutions. For instance, it is155

easy to find that in the elementary cell we have ŭ12 = ŭ22 = ŭ13 = ŭ23 = ŭ31 =

ŭ32 = u†3 = 0, plus p̆2 = −1 and p̆3 = 0. The systems which do not have a

simple solution have been solved numerically by using the STAR-CCM+ multi-

physics software (version 15.06.007-R8), by successfully refining the grid until
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fully grid-converged states are found, for varying dimensions of the cell along160

x2. Detailed numerical results of the reduced auxiliary systems relative to the

O(ε0), O(ε1) and O(ε2) problems are presented in Appendices 3, 4 and 5, for a

rib size to periodicity ratio, e/l, equal to 0.25, and matching interface location

positioned at x2 = y∞ = 5.

4.1. A synthesis of the microscopic results165

Figure 3: Behavior of the parameters of interest along a line in the x2-direction which goes

through the middle of the rib (x1 = 0 with reference to Figure 2). The displayed numerical

results are for the case e/` = 0.25 and y∞ = 5.

The behaviors of the parameters of interest, those which contribute to the

effective boundary conditions, are presented in Figure 3, separating them into
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two groups according to their gradients in the x2-direction (either positive or

negative). At the matching interface (x2 = y∞ = 5), the variables contributing

to the effective boundary conditions are independent of x1 and take the following

uniform values:

ŭ11 = 5.0396, ŭ33 = θ̃ = 5.0861,

u†11 = u̇112 = −u̇211 = 12.6843, u̇332 = −u̇233 = 12.9402,

u′1 = 43.0376, ut11 = −42.4485, ut33 = θt = −43.8582.

4.2. Effects of varying the matching interface location

The effect of changing the matching surface distance, y∞, on the values of

the seven independent groups of effective parameters has been analyzed with

the aid of successive numerical simulations, varying y∞ from 2 to 6, as listed in

Table 1.170

Table 1: Microscopic results found at different values of y∞ for square ribs with e/` = 0.25.

y∞ ŭ11 ŭ33 = θ̃ u†
1 = u̇112 = −u̇211 u̇332 = −u̇233 u′

1 ut
11 ut

33 = θt

2 2.0398 2.0861 2.0819 2.1818 2.8935 -2.8114 -3.0271

3 3.0399 3.0861 4.5575 4.7680 9.5340 -9.2334 -9.7986

4 4.0396 4.0861 8.0795 8.3541 21.8505 -21.5067 -22.7422

5 5.0396 5.0861 12.6843 12.9402 43.0376 -42.4485 -43.8582

6 6.0398 6.0861 18.3994 18.5264 74.2034 -72.2463 -75.1465

Category (L) Category (Q) Category (C)

Linear relations Quadratic relations Cubic relations

An in-depth look into the table reveals that we have three categories of

relations between the values of the microscopic parameters at the matching

interface versus the location of the interface itself; specifically, linear, quadratic,

and cubic relations. Fitting the results, we get the following expressions for the

closure variables evaluated at y∞:

ŭ11 = y∞ + λx, ŭ33 = θ̃ = y∞ + λz,
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u†1 = u̇112 = −u̇211 =
y2
∞
2

+λxy∞+m12, u̇332 = −u̇233 =
y2
∞
2

+λzy∞+m32,

u′1 = 2

[
y3
∞
6

+m32 y
2
∞ + λx y∞

]
+ B,

ut11 = −2

[
y3
∞
6

+m12 y
2
∞ + λx y∞

]
+ B1t,

ut33 = θt = −2

[
y3
∞
6

+ λz
y2
∞
2

+m32 y∞

]
+ B3t.

The dimensionless Navier-slip coefficients (λx, λz), surface permeability coeffi-

cients (m12, m32), velocity-flux sensitivity (B), and time-fluctuations coefficients

(B1t, B3t) are only dependent of the geometric parameters of the ribbed surface,

e/` in the case of square ribs. These coefficients can be calculated for any geome-

try of transverse ribs, once the microscopic numerical simulations are conducted175

with any suitable value of y∞, and the results of the microscopic parameters at

the matching interface are substituted in the fitting equations.

Simpler, accurate methods for the estimation of the coefficients of interest

are proposed within the present framework. The Navier-slip coefficients can

be calculated by running the simulations of the leading-order systems, forced

by S12 and S32, with a suitable value of y∞ to get, respectively, the fields of

ŭ11 and ŭ33; thereafter, the values of λx and λz can be found by averaging the

corresponding field at the plane x2 = 0. It is interesting that the same fields

can then be employed to estimate the values of m12 and m32, making use of the

numerical result pointed out by Bottaro and Naqvi [7], i.e.:

u†1 = u̇112 = −u̇211 =

∫
Scell

ŭ11 dx1 dx2,

u̇332 = −u̇233 =

∫
Scell

ŭ33 dx1 dx2,

with Scell the surface of the representative near-wall cell.
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The following values of the coefficients eventually arise when e/` = 0.25:

λx = 0.03975, λz = 0.08609, m12 = 0.002332, m32 = 0.009551,

B = 0.0002399, B1t = −0.0000839, B3t = −0.0007794.

4.3. The formal expressions of the effective boundary conditions180

The expressions of the microscopic dimensionless velocity components are

now available up to O(ε1), while the microscopic dimensionless temperature (θ)

is known up to O(ε2). The values of the preceding quantities can be linked to the

corresponding dimensionless macroscopic parameters at the matching interface,

based on the concept of continuity of velocity (Eq. (4-a)) and temperature185

(Eq. (4-b)). In particular, it is convenient to obtain the conditions on the

outer rim of the ribs, which amounts to specifying x2 = 0 in the matching

relations (Eqs. (4-a, b)), along with setting y∞ = 0 in the fitting expressions,

given in Section 4.2, for the microscopic parameters contributing to the effective

boundary conditions. Finally, we obtain:190

U1

∣∣
X2=0

= ε
[
λx S

12 + m12RG
]
X2=0

+ ε2
[
m12

∂S22

∂X1
+ BRG

∂Θ

∂X2
+ B1tRG

∂S12

∂t

]
X2=0

+ O(ε3), (16-a)

U2

∣∣
X2=0

= −ε2
[
m12

∂S12

∂X1
+m32

∂S32

∂X3

]
X2=0

+ O(ε3), (16-b)

U3

∣∣
X2=0

= ε λz S
32
∣∣
X2=0

+ ε2
[
m32

∂S22

∂X3
+ B3tRG

∂S32

∂t

]
X2=0

+ O(ε3),

(16-c)

Θ
∣∣
X2=0

= 1 + ε λz
∂Θ

∂X2

∣∣∣∣
X2=0

+ ε2 B3tRG Pr
∂2Θ

∂X2 ∂t

∣∣∣∣
X2=0

+ O(ε3). (16-d)

The no-slip conditions of the smooth surface are identically retrieved at

O(ε0). The effective conditions for velocity are similar to those given by Lācis

et al. [6] and Bottaro and Naqvi [7] for flow over rough surfaces without heat

transfer. Nevertheless, the presence of the buoyancy terms, proportional to RG
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and RG ∂Θ
∂X2

in the equation of the velocity component U1, and of the time195

fluctuation terms in the equations of (U1, U3, Θ) should be highlighted. We

emphasize that the presence of the buoyancy-related term is a first-order contri-

bution to the effective condition for the streamwise velocity, Û1, and is directly

attributed to the assumption that the Grashof number is sufficiently large, i.e.

εRG = ε2
√
Gr is of O(ε1), and not O(ε2).200

In dimensional terms, the conditions on the plane x̂2 = 0 read
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û1

∣∣
x̂2=0

≈ λ̂x

[
∂û1

∂x̂2
+
∂û2

∂x̂1

]
x̂2=0

+ m̂12
β g (T̂w − T̂∞)

ν︸ ︷︷ ︸
First−order

+ m̂12

[
∂

∂x̂1

(
− (p̂− p̂∞)

µ
+ 2

∂û2

∂x̂2

)]
x̂2=0

+ B̂ gβ
ν

∂T̂

∂x̂2

∣∣∣∣
x̂2=0︸ ︷︷ ︸

Second−order

+ B̂1t
1

ν

∂

∂t̂

[
∂û1

∂x̂2
+
∂û2

∂x̂1

]
x̂2=0︸ ︷︷ ︸

Second−order

, (17-a)

û2

∣∣
x̂2=0

≈ −m̂12
∂

∂x̂1

[
∂û1

∂x̂2
+
∂û2

∂x̂1

]
x̂2=0

− m̂32
∂

∂x̂3

[
∂û3

∂x̂2
+
∂û2

∂x̂3

]
x̂2=0︸ ︷︷ ︸

Second−order

, (17-b)

û3

∣∣
x̂2=0

≈ λ̂z

[
∂û3

∂x̂2
+
∂û2

∂x̂3

]
x̂2=0︸ ︷︷ ︸

First−order

+ m̂32
∂

∂x̂3

[
− (p̂− p̂∞)

µ
+ 2

∂û2

∂x̂2

]
x̂2=0︸ ︷︷ ︸

Second−order

+ B̂3t
1

ν

∂

∂t̂

[
∂û3

∂x̂2
+
∂û2

∂x̂3

]
x̂2=0︸ ︷︷ ︸

Second−order

, (17-c)

T̂
∣∣
x̂2=0

≈ T̂w︸︷︷︸
Zero−order

+ λ̂z
∂T̂

∂x̂2

∣∣∣∣
x̂2=0︸ ︷︷ ︸

First−order

+ B̂3t
1

α

∂2T̂

∂x̂2 ∂t̂

∣∣∣∣
x̂2=0︸ ︷︷ ︸

Second−order

. (17-d)

The dimensional groups of coefficients (λ̂x, λ̂z), (m̂12, m̂32) and (B̂, B̂1t, B̂3t) are

homogeneous to, respectively, a length, a surface area and a volume, and corre-

spond to the product of their dimensionless counterparts times, respectively, l,

l2 and l3.205
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5. The role of rib height to pitch distance ratio: parametric study

From a practical point of view, it is advantageous to generate a database of

the values of the seven dimensionless, geometry-dependent coefficients of inter-

est, to cover a wide range of rib height to pitch distance ratios, e/l, in order to

enable the direct use of the effective boundary conditions for the macroscopic210

problems. In this study, the ratio was varied within the range 0.025 ≤ e/l ≤ 0.8.

For each value of e/l, the procedure described in Sect. 4.2 for the accurate esti-

mation of the coefficients was followed. The resulting database is presented in

tabular form (Table 2) and graphically in Figure 4. It is clear that all model

coefficients peak, in magnitude, within the range e/` = 0.1 to 0.3, which implies215

significant velocity and thermal slip. All coefficients tend to zero as e tends to

zero or approaches `, for the effective boundary conditions at x2 = 0 to become

no-slip and isothermal wall.

Table 2: The upscaled coefficients of interest for different rib height to pitch distance ratios.

e/l λx λz m12 m32 B B1t B3t

0.025 0.02158 0.02296 0.000265 0.000286 0.0000041 -0.0000041 -0.0000046

0.050 0.03667 0.04215 0.000874 0.001037 0.0000270 -0.0000250 -0.0000320

0.075 0.04593 0.05757 0.001601 0.002120 0.0000710 -0.0000580 -0.0000920

0.100 0.05061 0.06949 0.002250 0.003384 0.0001280 -0.0000940 -0.0001850

0.125 0.05188 0.07822 0.002725 0.004716 0.0001855 -0.0001195 -0.0003000

0.150 0.05094 0.08400 0.002979 0.005999 0.0002290 -0.0001297 -0.0004237

0.175 0.04853 0.08738 0.003029 0.007184 0.0002550 -0.0001264 -0.0005449

0.200 0.04567 0.08859 0.002898 0.008188 0.0002651 -0.0001144 -0.0006477

0.225 0.04265 0.08803 0.002663 0.008976 0.0002578 -0.0000992 -0.0007269

0.250 0.03975 0.08609 0.002332 0.009551 0.0002399 -0.0000839 -0.0007794

0.275 0.03699 0.08302 0.002022 0.009892 0.0002171 -0.0000697 -0.0007982

0.300 0.03459 0.07921 0.001718 0.009987 0.0001912 -0.0000593 -0.0007870

0.350 0.03011 0.07011 0.001188 0.009600 0.0001430 -0.0000442 -0.0007011

0.400 0.02589 0.06023 0.000836 0.008612 0.0001024 -0.0000323 -0.0005671

0.500 0.01776 0.04155 0.000434 0.005803 0.0000417 -0.0000136 -0.0002944

0.600 0.01146 0.02624 0.000230 0.003128 0.0000132 -0.0000055 -0.0001188

0.700 0.00662 0.01453 0.000101 0.001326 0.0000041 -0.0000017 -0.0000364

0.800 0.00315 0.00642 0.000031 0.000391 0.0000009 -0.0000004 -0.0000072
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Figure 4: The behavior of the upscaled coefficients of interest with the change of rib height

to pitch distance ratio. The curves are fitted on the basis of kriging interpolation.

6. Conclusions

A homogenization-based model for the study of the heat transfer by free220

convection over regularly microstructured vertical surfaces is proposed. The

approach provides a computationally cheap alternative to the standard feature-

resolving simulations in the cases where the macroscopic behavior of the flow

is of interest, and it has been adopted in the past for the case of rough, mi-

crostructured surfaces, in the absence of thermal effects. The procedure, even-225
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tually, yields parameters needed to enforce equivalent velocity and temperature

boundary conditions at a plane virtual surface, up to second order in terms of

a small parameter ε = pattern periodicity (`)
plate length (L) . Thus, the effective boundary condi-

tions derived here do not contain any empirical parameter.

230

The model is then applied to the case of two-dimensional square ribs charac-

terized by a rib size to pitch distance ratio of 0.25 as a representative example.

The auxiliary systems are then reduced to either two-dimensional Stokes-like

problems or Laplace-like or Poisson-like problems, which either admit trivial

solutions or require a numerical solution in a periodic representative cell of the235

microscopic domain. The parameters contributing to the effective conditions

belong to seven independent groups, i.e. the numerical solution of only seven

auxiliary problems is sufficient to completely retrieve the effective conditions.

The results are then extrapolated from distant matching surfaces to the plane

passing through the outer edges of the ribs, beyond which the macroscopic simu-240

lation is intended to be performed. The most significant finding of the procedure

is the proposed form of the effective boundary conditions. For the streamwise

slip velocity, a buoyancy-representative term acts as a corrector to the classi-

cal Navier-slip condition at first order, while pressure-gradient, temperature-

gradient, and time-derivative terms appear at second order. A Robin boundary245

condition appears for the temperature effective condition, where a normal tem-

perature gradient term, with a coefficient identical to Navier’s spanwise slip

coefficient, corrects the uniform wall temperature. The spanwise slip velocity

and the transpiration velocity are also considered, to allow for example using the

model in turbulent flow cases where the spanwise and the normal velocity fluc-250

tuations are to be resolved in direct or large-eddy numerical simulations [6, 14].

Finally, a parametric study is conducted to investigate the effect of varying the

rib size to pitch distance ratio on the values of the coefficients.

The proposed approach represents an improvement to the upscaling model255

of Intröıni et al. [19], because: (i) the buoyancy effect is considered in the
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microscale problem, relaxing the validity restrictions of Intröıni’s model; con-

sequently, the proposed model yields accurate macroscopic results at relatively

high Rayleigh numbers [22]; (ii) the asymptotic homogenization method adopted

here represents a rigorous tool to formally advance in the order of accuracy; (iii)260

second-order accurate boundary conditions are attained, an enhancement to the

validity range of Intröıni’s first-order approach; (iv) the inclusion of the tran-

spiration velocity fluctuations allows for turbulent flow simulations at a fraction

of the cost of feature-resolving simulations [6, 14].
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Appendix 1: Auxiliary systems for the problem at order ε270

The microscopic auxiliary systems at this order are arranged, according to

the macroscopic forcing term, in the following groups:

Group (I): Forcing by the gradient of the outer stress (9 systems)
∂Sk2

∂Xj

∂u̇ijk
∂xi

= −ŭjk,
∂2u̇ijk
∂x2

`

− ∂ṗjk
∂xi

= p̆kδij − 2
∂ŭik
∂xj

, (18-a, b)

subject to

u̇ijk = 0 at x2 = yw, (18-c)

−ṗjk δi2 +

(
∂u̇ijk
∂x2

+
∂u̇2jk

∂xi

)
= − (ŭik δj2 + ŭ2k δij) at x2 →∞. (18-d)

Group (II): Forcing by the square of outer stresses (3 systems) RG(Sk2)2

∂üik
∂xi

= 0,
∂2üik
∂x2

`

− ∂p̈k
∂xi

= ŭ`k
∂ŭik
∂x`

, (19-a, b)

subject to

üik = 0 at x2 = yw, (19-c)

− p̈k δi2 +

(
∂üik
∂x2

+
∂ü2k

∂xi

)
= 0 at x2 →∞. (19-d)

Group (III): 3 systems: RGS12S22, RGS12S32, RGS22S32

(a) RGS12S22

∂üi12

∂xi
= 0,

∂2üi12

∂x2
`

− ∂p̈12

∂xi
= ŭ`1

∂ŭi2
∂x`

+ ŭ`2
∂ŭi1
∂x`

, (20-a, b)

subject to

üi12 = 0 at x2 = yw, (20-c)

− p̈12 δi2 +

(
∂üi12

∂x2
+
∂ü212

∂xi

)
= 0 at x2 →∞. (20-d)
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(b) RGS12S32

∂üi13

∂xi
= 0,

∂2üi13

∂x2
`

− ∂p̈13

∂xi
= ŭ`1

∂ŭi3
∂x`

+ ŭ`3
∂ŭi1
∂x`

, (21-a, b)

subject to

üi13 = 0 at x2 = yw, (21-c)

− p̈13 δi2 +

(
∂üi13

∂x2
+
∂ü213

∂xi

)
= 0 at x2 →∞. (21-d)

(c) RGS22S32

∂üi23

∂xi
= 0,

∂2üi23

∂x2
`

− ∂p̈23

∂xi
= ŭ`2

∂ŭi3
∂x`

+ ŭ`3
∂ŭi2
∂x`

, (22-a, b)

subject to

üi23 = 0 at x2 = yw, (22-c)

− p̈23 δi2 +

(
∂üi23

∂x2
+
∂ü223

∂xi

)
= 0 at x2 →∞. (22-d)

Group (IV): Coupling through the heat flux (1 system): RG η

∂ui
′

∂xi
= 0,

∂2ui
′

∂x2
`

− ∂p′

∂xi
= −θ̃δi1, (23-a, b)

subject to

ui
′ = 0 at x2 = yw, (23-c)

− p′ δi2 +

(
∂ui
′

∂x2
+
∂u2

′

∂xi

)
= 0 at x2 →∞. (23-d)

Group (V): Forcing by the outer stress (3 systems): R2
GS

k2

∂uik
∂xi

= 0,
∂2uik
∂x2

`

− ∂pk
∂xi

= ŭ`k
∂u†i
∂x`

+ u†`
∂ŭik
∂x`

, (24-a, b)

subject to

uik = 0 at x2 = yw, (24-c)

− pk δi2 +

(
∂uik
∂x2

+
∂u2k

∂xi

)
= 0 at x2 →∞. (24-d)
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Group (VI): Forcing by a constant, buoyancy-related term (1 system): R3
G

∂u‡i
∂xi

= 0,
∂2u‡i
∂x2

`

− ∂p‡

∂xi
= u†`

∂u†i
∂x`

, (25-a, b)

subject to

u‡i = 0 at x2 = yw, (25-c)

− p‡ δi2 +

(
∂u‡i
∂x2

+
∂u‡2
∂xi

)
= 0 at x2 →∞. (25-d)

Group (VII): Forcing by outer stress time fluctuation (3 systems): RG
∂Sk2

∂t

∂utik
∂xi

= 0,
∂2utik
∂x2

`

− ∂ptk
∂xi

= ŭik, (26-a, b)

subject to

utik = 0 at x2 = yw, (26-c)

− ptk δi2 +

(
∂utik
∂x2

+
∂ut2k
∂xi

)
= 0 at x2 →∞. (26-d)

Appendix 2: Auxiliary systems for the temperature at order ε2

The eight microscopic auxiliary systems, defining the problem of the order275

ε2 temperature, are arranged as follows:

Forcing by 2nd derivative of the outer temperature (3 systems):
∂η

∂Xk

∂2θ!
k

∂x2
i

= −2
∂θ̃

∂xk
, (27-a)

subject to

θ!
k = 0 at x2 = yw,

∂θ!
k

∂x2
= −θ̃δk2 at x2 →∞. (27-b, c)

Coupling through the outer stress (3 systems): PrRG ηSk2

∂2θ∗k
∂x2

i

= ŭik
∂θ̃

∂xi
, (28-a)
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subject to

θ∗k = 0 at x2 = yw,
∂θ∗k
∂x2

= 0 at x2 →∞. (28-b, c)

Forcing by the outer temperature gradient (1 system): PrR2
G η

∂2θ∗∗

∂x2
i

= u†i
∂θ̃

∂xi
, (29-a)

subject to

θ∗∗ = 0 at x2 = yw,
∂θ∗∗

∂x2
= 0 at x2 →∞. (29-b, c)

Forcing by time fluctuations of the outer heat flux (1 system): PrRG
∂η

∂t

∂2θt

∂x2
i

= θ̃, (30-a)

subject to

θt = 0 at x2 = yw,
∂θt

∂x2
= 0 at x2 →∞. (30-b, c)

Appendix 3: Numerical results of O(ε0) systems: e/` = 0.25, y∞ = 5

The systems Sk2 (Eqs. (6)) represent the forcing of the leading-order prob-280

lem by the three outer stresses (streamwise, normal, and spanwise). For the

sub-system (S12), the results of the Stokes problem (ŭ11, ŭ21, p̆1) near the rib

are shown in Figure 5. The only result of interest is ŭ11 which increases mono-

tonically with the coordinate x2 until reaching a value of 5.0396 at x2 = y∞ = 5.

The result of the decoupled Laplace problem for the sub-system (S32) is shown285

in Figure 6. The value of ŭ33 monotonically increases with x2, reaching the

value 5.0861 at the matching surface x2 = y∞ = 5.
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Figure 5: Numerical results in the proximity of the solid surface for: (left) ŭ11; (center) ŭ21;

(right) p̆1.

Figure 6: Numerical results for ŭ33 in the proximity of the solid surface.

The systemRG (Eqs. (7)) represents the leading-order effect of the buoyancy

force on the microscale problem. The results of the Stokes problem (u†1, u†2, p†)

in the vicinity of the rib are shown in Figure 7. The only result of interest290

is u†1 which monotonically increases at a slowing rate with the coordinate x2,

reaching a value of 12.6843 at x2 = y∞ = 5.
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Figure 7: Numerical results in the proximity of the solid surface for: (left) u†1; (center) u†2;

(right) p†.

Appendix 4: Numerical results of O(ε1) systems: e/` = 0.25, y∞ = 5

For the temperature problem, the similarity between the Laplace system

describing the microscopic parameter θ̃ (Eqs. (11)) and that describing ŭ33295

allows for a solution of θ̃ identical to that shown in Figure 6. The velocity-

related problems may be categorized as follows:

I- Systems with trivial solutions

The similarity between θ̃ and ŭ33, in addition to the already mentioned trivial

solutions of many parameters in O(ε0) problem, simplifies and reduces different

systems of equations in O(ε1) problem. The systems ∂S22

∂X2
, R2

GS
22, RG(S22)2,

RG(S32)2, RG(S12S22), RG(S22S32), and RG ∂S
22

∂t admit, respectively, the triv-

ial solutions:

∂S22

∂X2
: u̇122 = u̇222 = u̇322 = 0, ṗ22 = x2 − y∞,

R2
GS

22 : u12 = u22 = u32 = p2 = 0,

RG(S22)2 : ü122 = ü222 = ü322 = p̈22 = 0,

RG(S32)2 : ü133 = ü233 = ü333 = p̈33 = 0,
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RG(S12S22) : ü112 = ü212 = ü312 = p̈12 = 0,

RG(S22S32) : ü123 = ü223 = ü323 = p̈23 = 0,

RG
∂S22

∂t
: ut12 = ut22 = ut32 = pt2 = 0.

II- Systems with all parameters vanishing away from the wall

Poisson-like systems

The systems forced by ∂S12

∂X3
, ∂S32

∂X1
, R2

GS
32, and RGS12S32 can be reduced to300

two-dimensional Poisson-like problems.

Figure 8: Numerical results of Poisson-like systems, in the O(ε1) problem, with no contribution

to the effective boundary conditions.

The numerical solutions reveal that the values of the parameters u̇331, u̇313 , u33 ,

32



and ü313, respectively, vanish away from the ribbed wall, giving no contribution

to the effective boundary conditions at the matching surface, as displayed in

Figure 8. The other parameters included in the above-mentioned four systems305

have zero values throughout the unit cell.

Stokes-like systems

Figure 9: Numerical results of Stokes-like systems, in the O(ε1) problem, giving no contribu-

tion to the effective boundary conditions: (top) R2
GS

12 system; (middle) RG(S12)2 system;

(bottom) R3
G system.

The systems forced by R2
GS

12, RG(S12)2, and R3
G can be reduced to two-

dimensional Stokes-like problems with the values of u31, ü311, and u‡3 equal310
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to zero throughout the unit cell. The non-trivial solutions of the Stokes-like

problems show that all included parameters vanish away from the ribbed surface,

as can be seen in Figure 9.

III- Systems with non-monotonic behavior along the y-direction

The analysis of the systems forced by ∂S12

∂X2
and ∂S32

∂X2
shows non-monotonic315

quadratic behaviors of the parameters u̇121 and u̇323 along the x2-direction,

with vanishing values at the matching surface, as shown in Figure 10.

Figure 10: Systems with non-monotonic behavior: (top) ∂S12

∂X2
: the Stokes system; (bottom-

left) ∂S32

∂X2
: the Laplace system; (bottom-right) graphical representations of the non-monotonic

behaviors, with the quadratic fitting form by Bottaro and Naqvi [7], admissible above x2 = 1.

The other parameters included in the two systems have no contribution to

the effective boundary conditions at the matching surface as they either mono-

tonically vanish away from the rib (u̇221, ṗ21) or have zero values throughout320
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the whole unit cell (u̇321, u̇123, u̇223, ṗ23).

IV- Systems with a monotonically-decreasing parameter of interest

Poisson-like system

The system forced by RG ∂S
32

∂t can be reduced to a two-dimensional Poisson-

like problem in which the only value of interest is ut33. The contours of ut33325

in the vicinity of the rib are shown in Figure 11. The value of this parameter

experiences a monotonic decrease along the x2-direction, reaching a value of

about -43.8582 at x2 = y∞ = 5.

Figure 11: Contours of ut33 in the vicinity of the wall.

Stokes-like systems330

The analysis of the systems forced by ∂S12

∂X1
, ∂S

32

∂X3
, and RG ∂S

12

∂t shows that they

become two-dimensional Stokes-like problems with vanishing values of u̇311,

u̇333, and ut31 throughout the unit cell. The numerical results of u̇211, u̇233,

and ut11 show monotonic decrease along x2, reaching values of about -12.6843,

-12.9402, and -42.4485 at the matching interface, respectively. The numerical335

results of the preceding systems in the vicinity of the rib are shown in Figure

12.
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Figure 12: Numerical results of Stokes-like systems, in the O(ε1) problem, with parameters

having monotonic decrease along the x2-direction: (top) ∂S12

∂X1
system; (middle) ∂S32

∂X3
system;

(bottom) RG
∂S12

∂t
system.

V- Systems with a monotonically-increasing parameter of interest

Poisson-like system

The system forced by ∂S22

∂X3
can be reduced to two-dimensional Poisson-like prob-340

lems in which the only value of interest is u̇332. The contours of u̇332 in the vicin-

ity of the rib are shown in Figure 13. The value of this parameter experiences a

monotonic increase with x2, reaching a value of about 12.9402 at x2 = y∞ = 5.
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Figure 13: Contours of u̇332 in the vicinity of the wall.

Stokes-like systems345

The analysis of the systems forced by ∂S22

∂X1
and RGη shows that they can be

reduced to two-dimensional Stokes-like problems with the values of u̇312 and u′3

equal to zero throughout the unit cell.

Figure 14: Numerical results of Stokes-like systems, in the O(ε1) problem, with parameters

having monotonic decrease along the x2-direction: (top) ∂S22

∂X1
system; (bottom) RGη system.
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The numerical results of u̇112 and u′1 show monotonic increase with x2, reaching

values of about 12.6843 and 43.0376 at the matching interface, respectively. The350

numerical results of the preceding systems in the vicinity of the rib are shown

in Figure 14.

Appendix 5: Solution of O(ε2) temperature systems: e/` = 0.25,

y∞ = 5

The systems (RG Pr S
22η), (RG Pr S

32η), and ( ∂η
∂X3

) admit, respectively,

the trivial solutions θ∗2 = θ∗3 = θ!
3 = 0. For the other systems at this order,

similarities are recognized with specific Laplace-like problems in O(ε1) problem.

In particular, it is simple to see that:

θ!
1 = u̇313, θ!

2 = u̇323, θ∗∗ = u33, θt = ut33, θ∗1 = ü313.

Therefore, the values of these microscopic temperature parameters at x2 =

y∞ = 5 are:

θ!
1 = θ!

2 = θ∗∗ = θ∗1 = 0, θt = −43.8582.
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