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Man often tries to achieve technical surfaces
which are rigid and smooth ...
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Rivets, nuts and bolts are ‘negative’ features ...




In Nature, porous, anisotropic, compliant,
irregular, rough ... at different length scales
IS the norm!




Butterfly scale

upper lamina 2 um

trabecula

lower lamina




The Journal of Experimental Biology 215, 785-795
© 2012. Published by The Company of Biologists Ltd

doi:10.1242/jeb.063040 Sh ar k d en ti C I e
RESEARCH ARTICLE

The hydrodynamic function of shark skin and two biomimetic applications

Johannes Oeffner and George V. Lauder”
Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
“Author for correspondence (glauder@oeb.harvard.edu)

"

The skin of sharks is covered with scales called denticles. This image, 250 um across, of the skin of a bonnethead shark shows the details =

of typical denticles, with three surface ridges leading to three prongs oriented toward the tail. Related in structure to teeth, denticles

have long been suspected of reducing hydrodynamic drag on sharks as they swim. Indeed, shark skin has inspired a variety of materials .

engineered to reduce drag on submerged bodies; swimsuits are perhaps the best-known example. (For more on swimsuit technology, |
e

The hydrodynamics of shark skin

see PHysICS TODAY, August 2008, pages 32 and 84.)
Many of the experimental studies of such materials—and of shark skin itself—have examined the drag on rigid bodies, a scenario
that may be relevant for some applications but not for sharks or swimmers. New work by Johannes Oeffner and George Lauder of
Harvard University has now looked at the effects of undulation. The pair mechanically flapped sheets of shark skin in a flowing water
tank to determine the speed at which each sheet held its position. Comparing the swimming speed for natural shark skin with that for
skin with the denticles sanded off, the team found that denticles actually decreased the swimming speed for rigid sheets but produced
a 12% increase for flexible sheets that mimicked typical shark undulations. The team attributes the increase not just to decreased drag
“butaiso to increased thrust arising from the altered flow environment observed near the undulating surface. Surprisingly, the
researchers saw no clear speed increase in similar experiments with “shark-inspired” swimsuit fabric. (J. Oeffner, G. V. Lauder,
J. Exp. Biol.215, 785, 2012; image submitted by George Lauder.) I




Superhydrophobicity: the Lotus leave




Superhydrophobicity
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Can a poroelastic coating reduce drag “optimally” (thanks
to its compliance) as opposed, I.e., to the (sub-optimal)
pressure drag reduction of golf/tennis/baseball balls?
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Can a poroelastic coating reduce drag “optimally” (thanks
to its compliance) as opposed, I.e., to the (sub-optimal)
pressure drag reduction of golf/tennis/baseball balls?
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poroelastic coating

rigid

How to model a flow over a porous, flexible
coating anchored onto arigid substrate?




microscopic features

/

Interface conditions?

large scale compliance

dynamic equations for the porous,
elastic, anisotropic coating?




SMART MORPHING CENTRE, IMFT & Laplace

Smart wing design through turbulence control :

http://smartwing.org

EMMAYV + DYNAMORPH, sponsored by STAE-RTRA

(SMA, EP, Piezo ...)



http://smartwing.org/

PelSKIN, ongoing EU project, TRLO

Simulations

Experiments
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Homogenization theory for multiscale mechanics

(X! y, Z) = (Xl’ X2’ X3)
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Within dashed lines: elementary cell V=V, + V;
with T" the fluid-solid interface

I ‘microscopic’ length scale
L ‘macroscopic’ length scale




Fluid (on V;)
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Order of magnitude estimates:
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After nondimensionalization of the equations
(and dropping the hats):
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Multiple scales:

7 —  fast, microscopic variable
' = exr — slow, macroscopic variable

Expansions:

f=FO+efV+fP+

with ]0 = {'H-.E'. U, P, Zij‘ . O-"-'J}
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The strain tensor (for either solid or fluid) is:

with
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Plugging the expansion into the governing equations
and boundary conditions:
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Equation and boundary conditions on the solid
stress tensor at leading order imply that

0 . Y o
) =0Vi,j le. f-'z'.h-;'m(Em (V(U))) =0Vi,j

and thus (V) =0V k1.

This yields: vl = vO(x' 1)
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Equation and boundary conditions on the solid
stress tensor at second order can be written:

0
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plus V-periodicity. This is a linear differential form for v'!
forced by v(”) and p'”). We can thus write:
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Equation and boundary conditions for the fluid after
treating the convective term a-la-Oseen to linearize

the equations
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Volume averaging for a quantity g defined over either V, or V;
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To interchange differentiation and integration we use

Theorem (Spatial averaging theorem)

Let V,, (p = s, f) be an elementary volume and g,(x,t) a continuously
differentiable function defined on V). In addition, we require that V,
1s continuously differentiable in order to quarantee that the integral

/ gpdV
1%

r

1s continuously differentiable. Then:

(Vgp) = Vigp) +/ gp - MdS
oV,

which 1s a 3D version of Leibniz rule
(Marle, 1967; Whitaker, 1967)




System of equations after averaging:
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Resulting system of equations:
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Resulting system of equations:
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Simple example: RIGID system in steady state

The porous system considered is transversely isotropic
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Darcy equation

| 5 (0)
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u = K, ——
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with KC;; = (K;)

with anisotropic permeability (in reality we have K,; = K,,
and K,,; the off-diagonal terms vanish.
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Small Re (isotropic case)

K@j = K&w
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Small Re (isotropic case)
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Small Re (transversely isotropic case)

___0.5K,, Van der Westhuizen & Du Plessis (1996)
_ __I(11 Mityushev & Adler

. K1 1=K22 for arrays of cylinders

N K33 for arrays of cylinders

= Experimental results of Sadiq et al. (1995)
= Experimental results of Sangani & Yao (1988)
> Experimental results of Skartsis & Kardos (1990)
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Large Re (transversely isotropic case)
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1. Test the iterative procedure and find K(6, Re)
2. Validate against DNS (which captures the flow
In the space within filaments)




Effect of inertia
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Effect of inertia (after averaging)
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Case studied
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Navier-Stokes
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3D DNS (periodicity along y) Re; = 100
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The DNS permits to compute £;; which satisfies Darcy in
the “bulk™; then, having establlshed the value of Ky;we can
find the effective viscosity /i to use in the Brinkman filter
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3D DNS

X5 = 0.333
(interface)
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3D DNS Transverse velocity at the interface
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3D DNS 0.15
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3D DNS
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2D NS + Darcy in transversely isotropic medium, with inertia,
Kij = K;(0, Re), no Brinkman filter at the boundary

(K11) = 191072, (K33) = 3.9-1072




Agreement 3D DNS/model is acceptable, not yet perfect
because of the “boundary layer” developing near the interface.
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Need to implement Brinkman filter.




Conclusions

Passive control via poroelastic
feathery coating
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Photograph by Mark Bridger, 2011 National Geographic Photo Contest
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