

Fluid & Elasticity, Carry-le-Rouet, 23-26 june 2009

How can we reduce pressure drag behind a solid bluff body by a passive technique?

How can we reduce pressure drag behind a solid bluff body by a passive technique?

Known techniques of passive/active flow control:

- Injection of micro-bubbles and/or polymers
- Riblets

- ...

- Compliant walls
- Viscosity modifier
- Vortex generators

Known techniques of passive and/or active flow control:

- Injection of micro-bubbles and/or polymers
- Riblets

- ...

- Compliant walls
- Viscosity modifier
- Vortex generators

Why not use a

passive hairy coating?

sea otter

Prof. Ingo Rechenberg, TU Berlin http://www.bionik.tu-berlin.de/institut/xs2vogel.html

aerofoil with silk flaps

flow visualisation

Prof. Ingo Rechenberg, TU Berlin http://www.bionik.tu-berlin.de/institut/xs2vogel.html

Flexible, porous flaps delay stall ...

Prof. Ingo Rechenberg, TU Berlin http://www.bionik.tu-berlin.de/institut/xs2vogel.html GOAL: instead of a single flexible flap, let's model of a continuous *hairy/feathery* coating to affect lift and drag

Numerical challenges

- Model mechanical properties of biological surfaces
- Structures with large displacements and large rotations
- Interaction between multiple structures

Coupling between a layer of oscillating densely packed structures and a unsteady separated boundary layer

The initial configuration

Model of the layer?

Porous, anisotropic and compliant

Modeling in 3 points

Modeling all feathers: too heavy ...

Must reduce the numbers of degrees of freedom

Dynamics of the layer

Approximation : Rigid reference element

E. De Langre, ARFM, 2008

Fluid part...

$$\frac{\partial \mathbf{U}}{\partial t} + \nabla (\mathbf{U}\mathbf{U}) = -\frac{\nabla p}{\rho} + \nu \nabla^2 \mathbf{U} + \mathbf{F}; \ \nabla \cdot \mathbf{U} = 0$$

2D incompressible Volume forces formulation

Staggered grid Periodic boundary conditions, with buffer domain to treat I/O <u>Convective part</u>: Adams-Bashfort <u>Viscous part</u>: Crank-Nicolson Poisson and implicit parts solved using conjugate gradient

 \rightarrow order 2 in space and time

Fluid part ...

$$\frac{\partial \mathbf{U}}{\partial t} + \nabla (\mathbf{U}\mathbf{U}) = -\frac{\nabla p}{\rho} + \nu \nabla^2 \mathbf{U} + \mathbf{F} \, ; \, \nabla \cdot \mathbf{U} = 0$$

Regular cartesian mesh 200 x 400 (10L × 20L)

The dynamics of the layer is governed by the reference elements

The "skeleton" of the layer is governed by six terms in the angular momentum equation for each element

Explicit resolution: Runge-Kutta 4

 $m(l/2)^2\ddot{\theta}(k) = M_{spring}(k) + M_{rigidity}(k) + M_{dissip}(k) + M_{inertia}(k) + M_{ext}(k) , \ k = 1, \dots, N_c$

Equilibrium is reached after a sufficient number of sub-iterations For small masses: oscillations at long subtimes

Implicit resolution: Non-linear Conjugate gradient

 $M_{inertia}(k) + M_{spring}(k) + M_{rigidity}(k) + M_{dissip}(k) + M_{inertia}(k) + M_{ext}(k) , k = 1, \dots, N_c$

How to evaluate the force imposed by the fluid onto the structures ...

Decomposition of the local relative velocity into a tangential and a normal contribution

Homogenized part (fluid+structure) ...

- → Each cilium is a circular cylinder
- → At each point along the beam, the force is decomposed into a tangential and a normal contribution
- → Force on a random cluster of cylinders

Homogenized part (fluid+structure) ...

Estimate of *F*_t

For Re<180: same scaling in Reynolds as for F_n

$$||\mathbf{F}_t^h|| = f_1(\phi, Re_t^h)$$

Homogenized part (fluid+structure) ...

Inner constants of the layer: Density (nb/cm2), Diameter of cilia \mathcal{F}_n^h $\mu ||\mathbf{U}_n^h||$ Re^h Force on a cilium, per unit length Symbols : min 10 theoretical model by mean Howells, JFM 1997 max 10² \mathcal{F}_t^h $\overline{\mu || \mathbf{U}_t^h ||}$ 10 10 10⁻² 10-3 10⁻¹ 10-4 10⁰ $F_{ext}(k) = \int_{V_{control}(k)} \left\| \boldsymbol{F}^{h} \right\| \mathrm{d}V$

Global overview

Algorithm Partitioned staggered in time

All routines in f90 Parallelized (auto and openmp), portable and runs on clusters In the structural model, the rigidity/elastic term, which models the structural flexibility of the hairy layer, is the most significant. It defines a natural time scale of the layer, through which a coupling with the fluid is allowed

$$\mathsf{T}_{\mathsf{structure}} \approx \pi \ l \ \sqrt{(m/K_r)}$$

 $\mathsf{T}_{\mathsf{fluid}} \approx St^{-1} \ D/U_{\infty}$

Case 1: bare cylinder

Case 2: rigid wall-normal hair

Case 3: rigid longitudinal hair

Case 4: moving hair

Aerodynamic performances

	Cd	Cd'	Cl'	St
Case 1	1.3689 (1.39;1.356)	0.0274	0.4381	0.199 (0.199;0.198)
Case 2	3.1464	0.1943	1.1376	0.1946
Case 3	1.3035	0.0207	0.3839	0.1916
Case 4	1.2109	0.012	0.3008	0.1661

(Bergmann et al. Phys. Fluids 2005; He et al J. Fluid Mech. 2000)

Aerodynamic perf.(ctd.)

	Cd	Cd'	Cl'	St
Case 1	ref	ref	ref	ref
Case 2	+130%	+608%	+160%	-2.21%
Case 3	-4.78%	-24.54%	-12.37%	-3.71%
Case 4	-11.54%	-56.09%	-31.34%	-16.53%

Physical mechanism

Physical mechanism

Contours of vertical velocity

Movements of reference cilia

Contours of vertical velocity

Force field

The hairy layer counteracts flow separation

Optimal self-adaptive hairy layer

15% drag reduction

40% reduction in lift fluctuations

Reducing pressure drag:

- ✓ Simulations show a reduction of pressure drag on a cylinder for a unsteady laminar flow (Re = 200).
- The motion of the hairy structures can improve aerodynamic performances
- The structural parameters of the actuators have been optimised
- Immediate perspectives concern flexible rods and turbulent configurations; possible applications to small underwater vehicles and to UAV/MAV (in the aeronautical field)

and now, what about lift?

Consider a hairfoil: the control elements (the *feathers*) must be placed in the position of largest *sensitivity* to achieve an effect

Preliminary runs with control elements going from 0.12 chord to 0.95 chord

 $\alpha = 15^{\circ}$ $< C_D > = 0.284$ $< C_L > = 0.579$

$T_{fluid} = 0.5 T_{structure}$	+ 1.35%	- 13%
$T_{fluid} = T_{structure}$	+ 2 %	- 10%
$T_{fluid} = 2 T_{structure}$	+ 3%	- 9%
$T_{fluid} = 4 T_{structure}$	- 0.2 %	+ 2.5%
$T_{fluid} = 8T_{structure}$	-7 %	- 11%

Results are similar when $\alpha = 18^{\circ}$, except that now $<C_{L}>$ increases the most for $T_{fluid} = 2 T_{structure}$

The amplitude of the oscillations decreases (the system's stability improves) as $T_{structure}$ /

(i.e.
$$m \uparrow l \uparrow K_r \setminus$$
)

A parametric resonance must be triggered to optimise the response of the system

Control elements within 0.06 chord and 0.45 chord

 $T_{structure} \approx T_{fluid} = 1.53$

$$\rho_{\text{feathers}} = 890 \text{ Kg/m}^3 \text{ (keratin)}$$

40 chords x 20 chords

grid: 1200 x 600

Drag reduction by about 15% Lift reduction by about 40% About 60% reduction in the amplitude of the oscillations

Mean pressure field

no control

with control

Issues left:

- extend the parametric search
- link the properties of the optimised structures to those of a suitable material
- wind tunnel/water channel tests (Ch. Brücker, U. Freiberg)

Engineering perspectives

MAV/UAV Car, trucks and trains – underwater vehicles Wind turbines Hydraulic machines (cavitation) Sound mitigation

Paleontological perspective

Dinosaur ancestry of birds: could the "feathery" dinousars discovered in the Liaoning province fly?

Fluid mechanics could say something on the role of those protofeathers ...

Ajit Ninan, 2009

