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Abstract A numerical simulation of the early nonlinear stages of transition in a pipe flow,
for which the base profile presents a small defect, reveals the formation of co-
herent states reminiscent of the recently found non-linear travelling waves.
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1. INTRODUCTION

The causes of transition in pipe flow have been debated for a long time and
have been considered to be unrelated to the linear stability of the underlying,
parabolic base flow. It is, in fact, accepted that Hagen—Poiseuille flow is stable
to all infinitesimal disturbances. Finite amplitude disturbances are necessary
to provoke transition, which is generally believed to take place for a Reynolds
number Re around 2000. The observed transition “point” moves to higher Re
when the magnitude of the inflow disturbance field decreases, pointing to the
role of the receptivity in deciding the fate of the flow. Since transition is even-
tually observed in any experimental set-up (including those with exceptional
low level of flow disturbances), and since all eigenmodes of the linearized sta-
bility operator are damped for all values of Re, there must be a mechanism for
the amplification of ambient noise, leading to the subsequent breakdown of the
motion. Via such a mechanism the system filters the environmental disturb-
ances and transforms them into instability waves.

Current interpretation of the results of linear stability theory points in the
direction of transient growth of disturbances as the likely candidate for the ini-
tial phase of transition (Schmid and Henningson, 2001). The argument goes
that in subcritical conditions the initial/inflow disturbance field can be amp-
lified (transiently) to such a level that eventually nonlinear phenomena kick
in causing transition of the flow, thus superseding the asymptotic modal be-
haviour of exponential decay. The weak point of the argument appears to be
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the — as yet unclearly defined — generic nonlinear mixer responsible for main-
taining large amplitude disturbances during transition. It has been argued that
such a generic mixer, which is needed to turn streamwise streaks into stream-
wise vortices in the self-sustaining cycle of near-wall turbulence, begins with
the secondary, inviscid and modal instability of the streaks (Waleffe, 2003).
Recent results demonstrate that a streaky base flow can support a strong algeb-
raic amplification of perturbations (Hoepffner et al., 2004) so that a scenario
of transition is emerging based on a succession of transient phenomena (see
also Grossmann, 2000). There is as yet little experimental/numerical evidence
to show what precisely these transients states are, and how they follow one
another (i.e. what the phase-space trajectory is, in dynamical systems termin-
ology). The influence of the environment in deciding the states which prevail
and their space-time evolution is undoubtedly crucial.

More recent work has focussed on the possible presence of defects in the
base flow (eventually caused and/or maintained by the transient growth) which
can give rise to exponential amplification of perturbations (Dubrulle and Zahn,
1991; Bottaro et al., 2003; Gavarini et al., 2004). Here the argument goes
that defects of small (albeit finite) amplitude would cause a distorted base flow
that is linearly unstable. The unlimited growth provided by exponential amp-
lification represents an initial stage of transition, which does not require any
speculation on subsequent processes (the generic nonlinear mixing) for a high
level of disturbances to be maintained. Furthermore, the existence of defects
does not hamper the possibility of transient growth, which remains unaltered.
It is hence likely, as argued by Biau and Bottaro (2004), that transient growth
and flow defects cooperate in defining the initial stages of transition in shear
flows of the Poiseuille, Hagen—Poiseuille or Couette type.

As far as the nonlinear stages are concerned, there has been some excite-
ment recently over the discovery of unstable travelling wave solutions which
could constitute the “skeleton” of states around which transitional and perhaps
turbulent flows organize. Such solutions have been identified theoretically for
pipe flow by Faisst and Eckhardt (2003) and Wedin and Kerswell (2004) with
the help of continuation techniques; for example, Faisst and Eckhardt imposed
an initial body force on the momentum balance equations, capable of generat-
ing streamwise vortices in the pipe cross-section. The amplitude of the driving
force was then decreased (while simultaneously increasing Re) until eventu-
ally a finite amplitude solution (with vanishing body force) was reached. The
chosen domain was streamwise periodic, implying that the receptivity of the
flow was unaccounted (and unaccountable) for. The excitement arose when
experimenters in Delft observed coherent states in a pipe very similar to the
computed ones (Hof et al., 2004). The experiments were carried out by inject-
ing fluid through a hole in the pipe for a short time, and observing the puffs
generated by the injection as it passed through the observation window 150
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diameters downstream of the injection point. The temporal observations of
the puff were then translated into spatial observations by the use of Taylor’s
hypothesis, showing that at Re = 2000 the puff is about 12R long (with R
the cylinder radius), with three high speed streaks near the wall at the down-
stream (leading) edge of the puff, that transform into six near-wall high speed
streaks at the upstream edge of the puff. At the center of the pipe a large low
speed streak was observed, with arms stretching radially towards the walls. Not
only did the experimental flow states present a remarkable similarity to some
of the computed ones, also features of the solutions such as the amplitudes,
wavelengths and phase speeds were in good agreement, supporting a scenario
that describes transition to turbulence through the self-organization of the flow
around some dominant travelling waves.

Recent direct numerical simulations (in a streamwise periodic domain) by
Priymak and Miyazaki (2004) support the existence of equilibrium puffs at
Re as low as 2200, propagating in the direction of the mean flow at a speed
of the order of the bulk velocity, while maintaining their spatial downstream
length equal to about 40 cylinder radii. The disagreement in the puff’s length
between experiments and simulations could perhaps be explained by the dif-
ficulty in identifying properly the leading and trailing edges of the puff, by
the characteristics of the forcing employed to trigger the puff, and by the fact
that simulations in streamwise periodic domains (even very long ones, as in
the present case where a domain SOR long was employed) can only mimic the
real, spatially developing situation. When periodic conditions are employed,
perturbations exiting the domain are continuously fed into the inflow plane thus
providing energy for the sustainment of the puff.

The present paper aims at presenting further evidence for the existence of
flow states such as those computed by Faisst and Eckhardt (2003) and Wedin
and Kerswell (2004). It has been chosen here to focus on a transition scenario
with spatially developing disturbances and to capture both linear and nonlinear
stages through a numerical computation in which the fast initial development
of perturbations is caused by the linear instability of a mildly distorted Hagen—
Poiseuille flow. Hence, the present simulation does not describe the evolution
of a puff induced by a Dirac-like perturbation, rather it describes the patterns
produced when transition is triggered and sustained by a permanent inflow
forcing.

2. THE TRAVELLING WAVES

The existence of families of finite-amplitude coherent states in shear flows has
been known for some time (Nagata, 1990; Clever and Busse, 1997; Waleffe,
2001). However, the symmetry properties of these families were such that no
straightforward connection could be established with the coherent structures
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Figure I. Downstream averaged travelling waves of the C, and C3 families (after Faisst and
Eckhardt).

observed in turbulent shear flows. In pipe flow the solutions found by Faisst
and Eckhardt (2003) and Wedin and Kerswell (2004) are travelling waves
(TW), moving downstream at wave speeds larger than the bulk velocity. Al-
though the stability/instability of such states is currently not known, they are
thought to be unstable solutions of the Navier—Stokes equations. It is specu-
lated that they form a chaotic repellor with the system’s trajectory wandering
in phase space among mutually repelling solutions; thus the flow would re-
main in the vicinity of a given TW state for a while before going elsewhere.
No formal mathematical justification has ever been given for this behaviour,
although Christiansen et al. (1997) have shown results on the one-dimensional
Kuramoto—Sivashinsky system endorsing the so-called “Hopf’s description of
chaos”, with a dynamics based on unstable recurrent patterns. Just as the the-
ory of finite amplitude TW was being developed, the above speculative picture
of the early stages of transition received experimental support by the measure-
ments conducted by Hof et al. (2004) and van Doorne (2004).

The TWs that appear earliest (in terms of the Reynolds number) are those
denoted as C, and C3 by Faisst and Eckhardt, where the subscripts 2 and 3
refer to the azimuthal rotation symmetry, for example a C5 state is invariant
under rotation around the pipe axis by an angle 27 /3. Streamwise averaged
C; and Cj states are displayed in Figure 1; they appear for Re as low as 1250.
Notable characteristics of such states (at their saddle-node bifurcation points)
are the streamwise wavelengths (scaled with the pipe radius), which equal 4.19
and 2.58 for the C, and C; states, respectively, and the phase speeds (scaled
with Up,x, the maximum velocity on the pipe axis in the laminar case), which
equal 0.71 and 0.64, also for the C, and Cj states, respectively. Furthermore,
the streamwise velocity disturbance (with respect to the laminar state) is found
to be one order of magnitude larger than the transverse velocity, and the dimen-
sionless peaks are found at 0.19 (C5) and 0.17 (C3), and 0.017 (C,) and 0.023
(C3). Although such peak disturbance values increase with increasing of Re,
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the qualitative picture of the states changes little, with rather static high speed
streaks near the wall (in red) and low speed streaks (in blue) which change
shape and position near the center of the cross-section.

3. THE PRESENT SIMULATION

A direct numerical simulation has been conducted for the flow in a pipe of
streamwise extent equal to 80 cylinder radii, with inflow and outflow boundar-
ies and at a Reynolds number Re = 3000. The incompressible Navier—Stokes
equations written in cylindrical coordinates are discretized by a second order
finite volume technique (for details see Eggels et al., 1994); after numerical
tests it has been decided that a resolution of 64 x 32 x 640 grid points in the ra-
dial, azimuthal and axial directions, respectively, is adequate for our purposes.
The underlying axisymmetric base motion consists of the Hagen—Poiseuille
flow plus a minimal defect (Gavarini et al., 2004), which is forced via an ap-
propriate source term in the governing equations throughout the whole length
of the pipe. We do not dwell on the possible physical origins of the imposed
mean flow deflection; we simply assume that it is due to environmental effects.
Due to the presence of the defect an axisymmetric mode of the linear stability
operator becomes unstable. Such a mode — with a given initial amplitude —
is prescribed at the inflow section of the pipe; it grows exponentially and is
responsible for the early stages of transition. For further details on the choice
of the defect and its stability characteristics refer to Gavarini et al. (2004).

In Figure 2 we have plotted the energy of the various modes produced by
nonlinear interactions against the streamwise distance x. The modes are in-
dicated be a number pair (m, n) with m the azimuthal wave number of the
disturbance and n denoting its frequency w,. The exponentially unstable dis-
turbance is noted as (0, 2) in figure 2. We further observe that small amplitude
random noise has been introduced at x = 0 to permit rapid growth of other
modes due to the subharmonic instability of the primary axisymmetric pattern.
The subharmonic mode labelled (2, 1) dominates the spectrum around x =~ 50.

It is precisely the (2, 1) mode, and to some extent also the (0, 0) and the
(4, 0) modes (the latter is shown by a thin solid line in Figure 2) which define
the structure of the motion in downstream regions of the pipe, i.e. for x around
60. In Figure 3, the pipe has been unfolded in a plane, and an instantaneous
plan view at r = 0.7 is shown. It should be noticed that axisymmetry is
gradually broken and that the subharmonic disturbance (2, 1) dominates until
x ~ 60, from which point on the mean flow correction, i.e. mode (0, 0), be-
comes more energetic and individual high-frequency, high-wavenumber struc-
tures become more blurred. The length of each individual A structure is about
5 pipe radii (in the x-range where they are visible; this is quite close to the
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Figure 2. Evolution of the different Fourier components of the disturbance energy density
with x. The number pair (m,n) next to each line defines the azimuthal wavenumber m of the
mode and its frequency wy,. For example, the initial condition, which consists only of the
(0, 2) mode, aside from small amplitude random noise, is axisymmetric since m = 0 and is
characterised by a frequency number n = =£2 (that is wp, = 1); similarly, the notation (2, 1)
denotes the mode with m = 2 (a wave with two periods along the circumference) and n = +1
(that is w; = 0.5, the fundamental frequency). The dotted vertical line at x & 75 indicates the
start of the fringe region near the outflow plane, from which point on the equations are gradually
rendered parabolic.

optimal wavelength found in the C, case by Faisst and Eckhardt), which trans-
lates to a phase speed of 0.4 (in units of Up,y) for = 0.5.

Aside from the C; state which exists only at values of Re exceeding 3000
(Wedin and Kerswell, 2004), the theory predicts that as Re increases past 1250
successively new TWs with C,, symmetries make their appearance (the index
n increasing monotonically with Re), i.e. finer and finer scales should emerge
downstream in our spatial simulation. In the late transitional and turbulent
regimes the problem becomes that of discerning each repelling state from one
another in every given experimental/numerical data set, a task which could
possibly be pursued by wavelet transform or by POD analysis.

In the qualitative approach pursued here, we will satisfy ourselves with
showing that in the cross-section of the pipe flow structures exist resembling
those found theoretically. In Figure 4, the instantaneous flow patterns at x = 54
and 56.6 are shown. Large scale streaks similar to those of the C, state are
present near the pipe walls: the largest transverse velocity is around 0.07,
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Figure 3.  Instantaneous streamwise disturbance velocity in a (x, r9) plane, with » = 0.7 The
azimuthal modulation of the flow and the formation of staggered arrays of A vortices is strongly
reminiscent of the so-called H-type transition in the flat plate boundary layer. The axes are not
to scale; the horizontal axis spans from x = 35 to x = 70.

Figure 4. Instantaneous isocontours of the streamwise disturbance velocity, and velocity
vector plots of the secondary flow, at x = 54 (left) and x = 56.6. The states resemble the
travelling wave solution with Cp symmetry. The colour scale to the left of each figure refers to
the streamwise disturbance speed. The full range of disturbance velocity values is given only
for the figure on the right.

whereas the streamwise disturbance velocity peaks at 0.2. The latter value
is in line with theory (at a smaller Re), whereas the secondary speed is four
times as large. The discrepancy could be attributed to a number of factor, e.g.
to the presence of many harmonics in the flow. In fact, when we superpose
only the three dominant modes present at x = 56.6, i.e. modes (2, 1), (0, 0)
and (4, 0), the resulting solution (Figure 5) is much less energetic than the full
solution, besides displaying a remarkable similarity to the C, state.

In the streamwise interval shown in Figure 4 (which corresponds to roughly
half a wavelength) the slow streaks (shown in blue) appear to have rotated half
a wavelength in the azimuthal direction. In reality this is not the case, since
in the two cases we are at x-positions centered on different (and staggered)
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Figure 5. Sum of the three dominant Fourier modes at x = 56.6.
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Figure 6. Instantaneous isocontours of the streamwise disturbance velocity, and velocity
vector plots of the secondary flow, at x = 59 (left) and x = 60. The full range of disturbance
velocity values is given only for the figure on the right.

A vortices (cf. Figure 3). As we proceed downstream (Figure 6), high and
low speed streaks are intensified (the latter more, cf. the colour scale for the
figure corresponding to x = 60), although the qualitative picture remains that
of Figure 1 (left frame).

Even further downstream, the picture in Figure 3 would suggest that co-
herence is almost lost. However, inspection of the flow at the cross-sections
x = 74 and 75 (the latter value already in the fringe region), reveal a configur-
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Figure 7. Instantaneous isocontours of the streamwise disturbance velocity, and velocity
vector plots of the secondary flow, at x = 74 (left) and x = 75.

ation which matches well both the experimental observation of a puff by Hof et
al. (2004) and theoretical predictions In particular, we observe in Figure 7 the
presence of several high speed streaks near the wall, likely to result in increased
values of the friction factor. At these streamwise positions the disturbance ve-
locity peaks at 0.5U,x, with a maximum transverse speed exceeding 0.1U -
The states depicted resemble the TW solution with C; symmetry.

4. CONCLUSIONS

A qualitative analysis of the instantaneous flow patterns observed in a trans-
itional pipe flow at Re = 3000 has been presented. In contrast to previous
numerical studies, transition has been triggered by the exponential amplifica-
tion of small disturbances, evolving in a mildly distorted base flow, which have
been followed in their spatial evolution. The path to transition considered is
not necessarily that which is universally followed by all pipe flow experiments,
it is just a plausible scenario which displays sufficiently generic features. Other
scenarios exist (Gavarini et al., 2004). In the present case, central to transition
is the formation of large A vortices which form staggered arrays, before small
scale structures grow enough to destroy the coherence of such vortices. It can
be argued that A structures constitute the basic units of transition; within them,
low speed fluid is contained so that, in a cross-section, two large scale slow
speed streaks appear. This corresponds to the C, travelling state of the the-
ory. Along the flanks of the A structures (blue regions in Figure 3) high speed
streaks of smaller dimensions can be observed. Downstream of the position
where the A vortices break down, the cross-sectional picture of the flow dis-
plays a large patch of slow velocity fluid at the center of the pipe, with several
small scale high-speed streaks near the wall. This picture is highly suggestive
of the Cj state of Faisst and Eckhardt.
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Although these results are preliminary, they are sufficiently promising to
warrant a more detailed analysis of the available data base. In particular, it
would be interesting to decompose the results of the DNS to extract the states —
bound to satisfy specific azimuthal symmetry constraints — which maximise the
rate of dissipation energy, following the lead of recent results in this direction
by Plasting and Kerswell (2005).
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