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Abstract Effective boundary conditions, correct to

third order in a small parameter �, are derived by

homogenization theory for the motion of an incom-

pressible fluid over a rough wall with periodic micro-

indentations. The length scale of the indentations is l,

and � ¼ l=L � 1, with L a characteristic length of the

macroscopic problem. A multiple scale expansion of

the variables allows to recover, at leading order, the

usual Navier slip condition. At next order the slip

velocity includes a term arising from the streamwise

pressure gradient; furthermore, a transpiration veloc-

ity Oð�2Þ appears at the fictitious wall where the

effective boundary conditions are enforced. Addi-

tional terms appear at third order in both wall-tangent

and wall-normal components of the velocity. The

application of the effective conditions to a macro-

scopic problem is carried out for the Hiemenz

stagnation point flow over a rough wall, highlighting

the differences among the exact results and those

obtained using conditions of different asymptotic

orders.

Keywords Homogenization � Stagnation point

flow � Slip boundary condition � Wall transpiration

1 Introduction

The definition of the boundary conditions at a solid,

impermeable wall in contact with an incompressible

viscous fluid has occupied researchers even before the

Frenchman Henri Navier first derived the equations

which now bear his name. In his seminal 1823 paper,

Navier [1] argued that the viscous force exerted by the

fluid onto a wall is balanced by the resistance opposed

by the wall, the latter being proportional to a slip

velocity. If the wall-normal direction is denoted by Y

and the wall-tangent velocity by U, the slip velocity

reads:

U ¼ �kxUY ; ð1Þ

with the Navier constant, kx, an effective penetration

depth, equal to the distance into the wall where the

linearly extrapolated velocity component actually

vanishes. The small parameter � is defined later. In

the equation above, and in the following ones, an

independent variable used as subscript denotes partial

differentiation with respect to that variable.

Navier’s condition was challenged and argued upon

for one hundred years, until Taylor [2] settled the issue

with a series of experiments on the flow between

concentric, differentially rotating cylinders, near the

onset of the first hydrodynamic instability. Taylor

theoretical treatment, which provided results in excel-

lent agreement with the experiments, was based on the

idea that the fluid could not slip when in contact with
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the solid surface. From that moment on, the no-slip

condition gained (almost) universal acceptance. Con-

figurations for which a slip condition remained in use

included the triple-line flow (for example, to describe

the leading edge motion of a liquid drop sliding down

an incline), the flow of rarified gases, for example in

micro-fluidic devices (in this case Navier’s condition

is often associated to Maxwell’s name), or the flow

over micro-corrugated surfaces, eventually impreg-

nated with a lubricant fluid (for a recent review the

reader is referred to [3]). All of these exceptional cases

share the peculiarity that the continuum description of

the flow either breaks down or becomes too diffi-

cult/expensive to be resolved, e.g. by a computational

technique, so that a conjugate, microscopic-macro-

scopic, view becomes preferable. These are the cases

in which a homogenization strategy proves very

valuable.

The present paper is dedicated to describing an

upscaling approach to derive effective boundary

conditions near a rough wall, so that in a practical

application the rough wall can be replaced by a

smooth, fictitious surface over which the flow can slip

and through which transpiration is possible, yielding

in the bulk of the domain the same result as the real,

rough wall. This strategy permits to capture micro-

scale effects avoiding the prohibitively expensive

numerical resolution of microscopic flow structures.

Like in most of the previous studies, the rough pattern

is assumed to repeat itself periodically over a scale

much shorter than a characteristic dimension of the

macroscopic flow; this renders the problem amenable

to a multiple-scale description [4]. As opposed to the

literature reviewed below, the effective conditions

obtained here are correct to third order in terms of a

small parameter, ratio of microscopic to macroscopic

length scales. Thus, the present model describes more

accurately than previous conditions available in the

literature the effect of the asymptotic small scales onto

the large-scale flow. As a significant result, it will be

shown that all of the parameters entering the boundary

conditions at second order arise from the numerical

resolution of a unique microscopic Stokes problem; at

third order a few additional auxiliary systems must be

solved.

The need to have accurate models of the flow near

patterned walls is especially felt when the motion is

turbulent, as it occurs in multiple applications. Then, it

is known that skin friction drag usually increases,

when comparing to the smooth-wall case under

identical conditions, except for cleverly-designed wall

patterns. Examples of the latter include riblets [5–8]

and other nature-inspired wall indentations [9–12].

Provided the roughness is embedded within the

viscous sublayer, the effective rough-wall conditions

develop herein will permit to carry out, at a fraction of

the time, parametric searches of regular surface

patterns apt, for example, at minimizing skin friction.

Themost important early publication describing the

application of a two-scale expansion to infer effective

conditions at a rough wall is due to Achdou et al. [13].

These authors focussed on the two-dimensional,

incompressible case and derived conditions to second

order in terms of the small parameter �, a measure of

the relative roughness size. For later comparison, the

(nonlinear) conditions in [13] to be enforced at some

effective surface read:

U ¼�kxUY � �2½nPX þ vU2�; ð2Þ

V ¼0; ð3Þ

with P the pressure. The constants kx, n and v arise

from the solution of Stokes-like problems in a periodic

unit cell built around a single roughness element. For

the macroscopic laminar flow configurations tested in

their paper, Achdou and colleagues obtained good

results when comparing against complete simulations,

leading them to state that the first-order condition is

already very accurate, and to conclude that it is not

sure that it is worth using the second-order condition.

We will argue below that the condition (3) is not

second-order accurate.

Subsequent developments did not follow the path

initiated by Achdou and collaborators, and were

mostly limited to examining various aspects of the

Navier condition. For example, Jäger and Mikelić [14]

gave a rigorous justification of Navier slip for the flow

in a plane channel, and conducted asymptotic esti-

mates of the tangential drag force and the effective

mass flow rate. Basson and Gérard-Varet [15] used

stochastic homogenization to extend the previous

analysis to the case of a channel flow with roughness

modeled by a spatially homogeneous random field.

Kamrin et al. [16], using different scaling variables

from those employed here, recovered a tensorial form

of Navier slip for the flow over periodic surfaces as a

second-order approximation. They introduced a
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mobility tensor K (or Navier slip tensor) and, after

decomposing the wall in Fouries series, provided a

formula for K, demonstrating its symmetry. Luchini

[17] extended the analysis by considering two config-

urations. In the first, named the shallow-roughness

limit, the surface considered was Y ¼ �H(X, Z), i.e.

the roughness becomes smoother as e ! 0. The

second limit, named the small-roughness limit, was

concerned with a family of surfaces defined by

Y ¼ �H(X=�; Z=�) i.e. a pattern which remains geo-

metrically similar to itself with varying �. Luchini’s

first-order analysis accounted for the effect of the

roughness aspect ratio via a protrusion coefficient and

for the interference between equal roughness elements

placed in a periodic arrangement via a proximity

coefficient. Aspects connected to heat transfer and

concentration gradients across heterogeneous and

rough boundaries were studied by Introı̈ni et al. [18]

and Guo et al. [19] by an upscale analysis based on

volume-averaging theory. Also in this case, the Navier

slip condition was recovered to first order. More recent

analyses based on multiscale homogenization were

conducted by Jiménez-Bolaños and Vernescu [20],

Zampogna et al. [21] and Lācis et al. [22]. The latter

study was the only one to push the development to

second order, albeit only for V , deriving a transpira-

tion condition at a fictitious wall. The condition was

tested successfully for the case of a turbulent channel

flow bound by a rough wall, demonstrating the

importance of accounting for wall-normal velocity

fluctuations in a rough wall model. The present

contribution starts from these premises.

In the next section the problem is formulated

mathematically, following the approach initiated by

Lācis et al. [22]. A related, but different, strategy

believed to lead faster to accurate results is described

in Sect. 3. The coefficients stemming from the solu-

tions of the microscopic problems are then used in the

effective conditions, summarized in Sect. 4. It is

important to stress the following two points: (1) simple

Navier slip for the wall tangent velocity is modified at

higher orders by terms containing the streamwise

pressure gradient and the time-derivative of the

tangential stress near the wall, and (2) a second-order

wall-normal velocity component appears. In Sect. 5

the effective conditions are applied to a laminar

boundary layer flow and it is shown that the first-order

conditions do not produce a very accurate result, when

compared to complete, feature-resolving simulations.

The concluding section summarizes the findings of the

paper and provides the general three-dimensional

form of the effective slip/transpiration conditions

capable to model a regularly microstructured wall.

2 Mathematical formulation

A regularly microstructured surface is considered; for

reasons of clarity we limit the present analysis to two-

dimensional Cartesian coordinates. The wall has a

characteristic microscopic length scale equal to l (say,

the periodicity of the pattern); the macroscopic length

scale isL (for example, the channel half-thickness, or the

length of a flat plate). The presence of two characteristic

dimensions renders the problem amenable to a two-

scale expansions, in terms of the small parameter

� ¼ l=L. The situation is schematized in Fig. 1: two

domains can be set up, a macroscopic, outer one (with

variables denoted by capital letters) and a micro-

scopic, inner one (small letters). A matching in

velocity and traction vectors between the two domains

must be enforced and, anticipating the scalings of

inner and outer velocities, we formally have

lim
Y!0

U ¼ lim
y!1

� u; ð4Þ

and similarly for traction. In actual numerical practice

the outer, effective boundary conditions will be

enforced at some vertical position, denoted Y, with
the corresponding inner velocity evaluated at �y ¼ Y=�,
for the condition to read

UjY¼Y ¼ � ujy¼�y: ð5Þ

The goal of this section is to formulate the effective

boundary conditions for the outer flow, pushing the

development beyond the leading order Navier slip

term. Such conditions will depend on the inner flow

regime and geometry of the roughness elements.

To set up the small-scale problem we need to

normalize the equations properly. The flow in the

inner domain is driven by a dimensional force, per unit

surface area, which we will indicate as Ŝ ¼ ðŜT ; ŜN),
applied in �y. The superscripts T and N indicate,

respectively, the tangential and the normal component

of this force. Since the shear component of Ŝ drives the

flow in the roughness layer, the velocity scale there is

U ¼ OðŜT l=lÞ, with l the dynamic viscosity of the
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fluid. Using l as inner length scale, l=U as time scale,

and lU=l as pressure scale, the dimensionless equa-

tions in the inner region read:

ux þ vx ¼ 0;

Rðut þ u � ruÞ ¼ �px þr2u;

Rðvt þ u � rvÞ ¼ �py þr2v:

ð6Þ

The quantity R is the microscopic Reynolds number,

defined by R ¼ qUl=l, q being the fluid density, and

u ¼ ðu; vÞ.
The velocity scale in the outer domain is Uout

(equal, for example, to the bulk velocity in a macro-

scopic channel), so that ST ¼ Ŝ
T
L

lUout
and SN ¼ Ŝ

N
L

lUout

are the dimensionless traction components in Y ¼ Y.
By introducing also the outer time and pressure scales,

L=Uout and qU2
out, the equations in the macroscopic

domain become:

UX þ VY ¼ 0;

ðUT þ U � r0UÞ ¼ �PX þ Re�1ðUXX þ UYYÞ;
ðVT þ U � r0VÞ ¼ �PY þ Re�1ðVXX þ VYYÞ;

ð7Þ

with U ¼ (U, V) and Re ¼ qUoutL=l, Reynolds

number of the outer flow. The operator r0 is defined
by r0 ¼ (o=oX; o=oY), whereas it is r ¼ (o=ox;

o=oy). The ratio between inner and outer length scales

yields (X, Y)¼ �(x, y) and this suggests to express the

variables in the near-wall region as power series

expansions in terms of the small parameter �, i.e.

f ¼ f ð0Þ þ �f ð1Þ þ �2f ð2Þ:::; ð8Þ

with f ¼ u; v or p. Whereas the outer flow variables

(U, V, P) depend only on the macroscopic indepen-

dent variable X ¼ ðX; YÞ, plus eventually time T, the

inner flow variables, at all orders in �, are assumed to

depend on both X and x ¼ ðx; yÞ, plus time t. Thus, in

Eq. (6) we need to poser ! rþ �r0. Following the
approach initiated by Lācis et al. [22] at leading order

in � we have:

Oð�0Þ

uð0Þx þ vð0Þy ¼ 0;

� pð0Þx þ uð0Þxx þ uð0Þyy þ dðy� �yÞST ¼ 0;

� pð0Þy þ vð0Þxx þ vð0Þyy þ dðy� �yÞSN ¼ 0;

ð9Þ

provided that U is chosen as U ¼ �Uout so that

R ¼ �2Re. With the present choice, inner and outer

time scales coincide, i.e. t ¼ T . The (arbitrary)

position �y ¼ Y=� where the traction force impressed

by the outer flow, modeled via a Dirac delta function,

is assumed to apply can be taken on the outer edge of

the wall micro-structure, i.e. Y ¼ �y ¼ 0 (cf. Fig. 1).

Any other position different from �y ¼ 0 is equally

acceptable1 and applying the effective boundary

condition in the macroscopic problem at a position

Fig. 1 Sketch of a regularly microstructured surface with close-up of a unit cell

1 This is true provided we remain in the vicinity of the

roughness and do not incur in numerical instabilities in the

solution of the macroscopic problem by some unwise choice of
�y. A choice can be unwise if, for example, the Navier slip

coefficient becomes negative.
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Y 6¼ 0 leads to a solution endowed with the same

formal accuracy as the choice Y ¼ 0. The components

of the dimensionless traction vector S are

ST ¼ UY þ VX ; SN ¼ �RePþ 2VY : ð10Þ

The system of equations at first order in � is:

Oð�1Þ

uð1Þx þ vð1Þy ¼ �u
ð0Þ
X � v

ð0Þ
Y ;

� pð1Þx þ uð1Þxx þ uð1Þyy ¼ p
ð0Þ
X � 2u

ð0Þ
Xx � 2u

ð0Þ
Yy ;

� pð1Þy þ vð1Þxx þ vð1Þyy ¼ p
ð0Þ
Y � 2v

ð0Þ
Xx � 2v

ð0Þ
Yy :

ð11Þ

Bothmicroscopic systems must be solved subject to

periodic conditions along x, ‘‘no-slip’’ at y ¼ ywall, and

vanishing ‘‘stress’’ at y ! 1. The latter reads

uð0Þy þ vð0Þx ¼ �pð0Þ þ 2vð0Þy ¼ 0; ð12aÞ

uð1Þy þ vð1Þx ¼ �u
ð0Þ
Y � v

ð0Þ
X ; �pð1Þ þ 2vð1Þy ¼ �2v

ð0Þ
Y :

ð12bÞ

Once the solutions of (9) and (11) are found, the

macroscopic, effective conditions for the outer flow at

the fictitious wall in Y ¼ 0 are

UðX; 0; tÞ ¼�

Z 1

0

ðuð0Þ þ �uð1ÞÞ
���
y¼0

dx

� �
þOð�3Þ;

ð13Þ

VðX; 0; tÞ ¼�

Z 1

0

ðvð0Þ þ �vð1ÞÞ
���
y¼0

dx

� �
þOð�3Þ:

ð14Þ

2.1 The order zero solution

System (9) is linear and this permits the search of a

solution in the form:

f ð0Þ ¼ f yðx; yÞST þ f zðx; yÞSN ; ð15Þ

for the generic dependent variable f ð0Þ. The ansatz for
the unknowns yields two decoupled systems.

System 1: Shear stress forcing

uyx þ vyy ¼ 0;

� pyx þ uyxx þ uyyy þ dðyÞ ¼ 0;

� pyy þ vyxx þ vyyy ¼ 0:

ð16Þ

System 2: Normal stress forcing

uzx þ vzy ¼ 0;

� pzx þ uzxx þ uzyy ¼ 0;

� pzy þ vzxx þ vzyy þ dðyÞ ¼ 0:

ð17Þ

These two systems are endowed with ‘‘no-slip’’ and

vanishing ‘‘stress’’ conditions at, respectively, y ¼
ywall and y ! 1.

Considering, for example, a triangular microscopic

roughness element, the solutions of (16) and (17) are

readily available by a numerical approach, described

in Appendix 1. An example of solution of system 1 is

displayed in Fig. 2; the numerical domain extends

from y ¼ �0:5 (roughness troughs) up to y ¼ 5; the

latter value, denoted y1 in the following, must be

taken sufficiently far away from the roughness crest in

y ¼ 0 for the solution to be independent of it. For the

geometry under consideration we have verified that

the solution near the roughness does not change when

y1 is taken larger than about 3. By averaging the

streamwise velocity distribution along x in y ¼ 0 it is

found that kx :¼
R 1

0
uyðx; 0Þ dx ¼ 0:0780, whereas the

x-averaged values of vy and py at y ¼ 0 are equal to

zero. It goes without saying that, had we chosen a

value of �y different from 0, we would have found a

different result for kx.

System 2 has the simple solution uz ¼ vz ¼ 0,

together with p
z
x ¼ 0 and p

z
y ¼ dðyÞ. From the defini-

tion of the Heaviside step function, dH/dy :¼ dðyÞ, and
the boundary condition pz ¼ 0 at y ! 1 it is simple

to find pz ¼ HðyÞ � 1, i.e. pz is identically equal to�1

when y\0, and it vanishes for y[ 0. Eventually, we

have

Z 1

0

uð0Þðx; 0; tÞ dx ¼ kxST ; ð18aÞ

Z 1

0

vð0Þðx; 0; tÞ dx ¼ 0; ð18bÞ

Z 1

0

pð0Þðx; 0�; tÞ dx ¼ ReP� 2VY : ð18cÞ

2.2 The order one solution

On account of (15), the linear system (11) becomes
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uð1Þx þ vð1Þy ¼ �uySTX � vySTY ;

� pð1Þx þ uð1Þxx þ uð1Þyy ¼ pySTX þ pzSNX � 2uyx STX � 2uyy STY ;

� pð1Þy þ vð1Þxx þ vð1Þyy ¼ pySTY þ pzSNY � 2vyx STX � 2vyy STY ;

ð19Þ

subject at y ! 1 to the conditions:

uð1Þy þ vð1Þx ¼ �uySTY � vySTX; �pð1Þ þ 2vð1Þy ¼ �2vySTY :

ð20Þ

The solution has thus the generic form:

f ð1Þ ¼ f̂ 1ðx; yÞSTX þ �f1ðx; yÞSNX þ f̂ 2ðx; yÞSTY þ �f2ðx; yÞSNY :
ð21Þ

Four separate systems can be set up, equipped with

‘‘no-slip’’ conditions at y ¼ ywall and periodicity in x.

System 3: Forcing by X-gradient of shear stress

û1 x þ v̂1 y ¼ �uy;

� p̂1 x þ û1 xx þ û1 yy ¼ py � 2uyx ;

� p̂1 y þ v̂1 xx þ v̂1 yy ¼ �2vyx ;

subject to û1 y þ v̂1 x ¼ �vy;
� p̂1 þ 2v̂1 y ¼ 0; at y ! 1:

ð22Þ

System 4: Forcing by X-gradient of normal stress

�u1 x þ �v1 y ¼ 0;

� �p1 x þ �u1 xx þ �u1 yy ¼ HðyÞ � 1;

� �p1 y þ �v1 xx þ �v1 yy ¼ 0;

subject to �u1 y þ �v1 x ¼ 0;

� �p1 þ 2�v1 y ¼ 0; at y ! 1:

ð23Þ

System 5: Forcing by Y-gradient of shear stress

û2 x þ v̂2 y ¼ �vy;

� p̂2 x þ û2 xx þ û2 yy ¼ �2uyy ;

� p̂2 y þ v̂2 xx þ v̂2 yy ¼ py � 2vyy ;

subject to û2 y þ v̂2 x ¼ �uy;

� p̂2 þ 2v̂2 y ¼ �2vy; at y ! 1:

ð24Þ

System 6: Forcing by Y-gradient of normal stress

�u2 x þ �v2 y ¼ 0;

� �p2 x þ �u2 xx þ �u2 yy ¼ 0;

� �p2 y þ �v2 xx þ �v2 yy ¼ HðyÞ � 1;

subject to �u2 y þ �v2 x ¼ 0;

� �p2 þ 2�v2 y ¼ 0; at y ! 1:

ð25Þ

Systems 3 to 5 are computed by the same numerical

method used so far; the fields are plotted in Figs. 3, 4

to 5. The only results of interest are

m21 :¼
R 1

0
v̂1ðx; 0Þ dx ¼ �0:0058, and

m12 :¼
R 1

0
�u1ðx; 0Þ dx ¼ 0:0058. Systems 6 admits the

simple analytical solution �u2 ¼ �v2 ¼ 0 and

�p2 ¼ yHð�yÞ.

Fig. 2 Isolines of uy (left), vy (center) and py. The domain has

been cut at y ¼ 2:5 to focus on the behavior close to the

roughness, even if in the actual computation y1 ¼ 5. The small

irregularity visible in the isolines of py is related to the presence
of the delta function in y ¼ 0
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Using Eqs. (13) and (14) an approximation for the

macroscopic slip and transpiration velocity compo-

nents at Y ¼ 0 is now available. To close this section

we observe that

• we could easily extend the solution up to next

order, including inertial terms, and

• the approach outlined above is not the only one

which can be conceived to infer slip and transpi-

ration conditions for the outer flow, to mimic the

effect of a rough wall.

An alternative approach, which follows the lines

initiated by Luchini et al. [7] for the case of riblets, is

described next. In this second approach the concen-

trated volume force at �y in Eq. (9) is absent and, as

such, there is no need to approximate a delta or a unit

step distribution using an extremely dense mesh

around �y. The results obtained in this section will be

reproduced next with this alternative approach, and

extended to the subsequent � order.

3 The (easier) alternative

The same inner and outer scales used in Sect. 2 are

employed here. The main difference of this approach

with what was done in the previous section is that now

there is no source term in the equations, and the flow is

assumed to be driven by the horizontal shear traction

ST in y ! 1 [7, 16]. Notice that the traction vector at

y1 is different from (ST , SN), the latter denoting the

force on y ¼ �y (with �y set to zero in the previous

section). The outer boundary at y ¼ y1 is taken

sufficiently far away from the rough wall to guarantee

that at the outer edge of the microscopic domain the

results have lost memory of the rough-wall shape, i.e.

the solution there becomes x-independent. In the

present approach this value of y1 can then be taken to

coincide with the position �y where matching (5) is

applied. At the outer edge of the domain the conditions

are thus

uy þ vx ¼ ST ;�pþ 2vy ¼ SN : ð26Þ

The inner system of equations is constituted by

system (6), equipped with no-slip conditions at y ¼
ywall and periodicity along x. As before, we assume a

series expansion in powers of � for the dependent

variables and plug into the inner flow equations,

obtaining the homogeneous Stokes system for the

variables at leading order. The traction imposed by the

outer flow at y1 is transferred to the order zero

microscopic variables, i.e.

uð0Þy þ vð0Þx ¼ ST ;�pð0Þ þ 2vð0Þy ¼ SN : ð27Þ

At higher orders we have:

uðiÞy þ vðiÞx ¼ �u
ði�1Þ
Y � v

ði�1Þ
X ;�pðiÞ þ 2vðiÞy

¼ �2v
ði�1Þ
Y i ¼ 1; 2; ::::

ð28Þ

Employing a result by Jiménez-Bolaños and Ver-

nescu [20], the order zero solution is

uð0Þ ¼uyðx; yÞST ; ð29Þ

vð0Þ ¼vyðx; yÞST ; ð30Þ

pð0Þ ¼pyðx; yÞST � SN : ð31Þ

It is clear that the y variables here are different from
those introduced in Sect. 2. We maintain the same

notation only for reasons of convenience, and we will

Fig. 3 Isolines of û1 (left), v̂1 (center) and p̂1
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do the same also below with the variables denoted by �̂
and ��. The system in terms of y variables is the

homogeneous Stokes system, and the boundary con-

ditions at y1 are:

uyy þ vyx ¼ 1;�py þ 2vyy ¼ 0: ð32Þ

A solution of this system for the triangular rough-

ness geometry is given in Fig. 6. It is found in

particular that at the outer edge of the unit cell, taken to

be y1 ¼ 5, it is cx :¼ uyðx; 5Þ ¼ 5:07778 and

vyðx; 5Þ ¼ pyðx; 5Þ ¼ 0: It should also be observed

that the isolines of vy and py are identical to those

displayed in Fig. 2 (central and right frames).

The system at Oð�Þ is

uð1Þx þ vð1Þy ¼ �uyST
X � vyST

Y ;

� pð1Þx þ uð1Þxx þ uð1Þyy ¼ pyST
X � SN

X � 2uyxS
T
X

� 2uyyS
T
Y ;

� pð1Þy þ vð1Þxx þ vð1Þyy ¼ pyST
Y

� SN
Y � 2vyxS

T
X � 2vyyS

T
Y ;

ð33Þ

and at y1 we have

uð1Þy þ vð1Þx ¼ �uyST
Y � vyST

X ;�pð1Þ þ 2vð1Þy ¼ �2vyST
Y ;

ð34Þ

for the general solution to read (similar to Eq. 21):

Fig. 4 Isolines of �u1 (left), �v1 (center) and �p1

Fig. 5 Isolines of û2 (left), v̂2 (center) and p̂2
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f ð1Þ ¼ f̂ 1ðx; yÞST
X þ �f1ðx; yÞSN

X þ f̂ 2ðx; yÞST
Y þ �f2ðx; yÞSN

Y ;

ð35Þ

and four additional systems can be set up, equipped

with the same boundary conditions along x and at the

wall as the previous ones. These new systems read

exactly like systems 3 to 6, except that now the

Heaviside function H(y) disappears from the right-

hand-sides of (23) and (25). For example, the new

system 4 becomes

�u1 x þ �v1 y ¼ 0;

� �p1 x þ �u1 xx þ �u1 yy ¼ �1;

� �p1 y þ �v1 xx þ �v1 yy ¼ 0;

subject to �u1 y þ �v1 x ¼ 0;

� �p1 þ 2�v1 y ¼ 0; at y ! 1:

ð36Þ

All the new systems are solved numerically as done

previously, except for that relative to ð�u2; �v2; �p2Þwhich

admits the simple analytical solution �u2 ¼ �v2 ¼ 0, and

�p2 ¼ y� y1. The solution of the system for

ðû1; v̂1; p̂1Þ (Eq. 36) is displayed in Fig. 7 and, as

expected, the field of û1 is the same as that reported in

Fig. 3 (left frame.) We find that û1ðx; 5Þ ¼ 0 and

n21 :¼ v̂1ðx; 5Þ ¼ �12:89469.

The fields of ð�u1; �v1; �p1Þ are identical, to graphical

accuracy, to those shown in Fig. 4; the coefficients of

interest at �y ¼ y1 ¼ 5 are n12 :¼ �u1ðx; 5Þ ¼ 12:89469

and �v1ðx; 5Þ ¼ �p1ðx; 5Þ ¼ 0. The numerical solution

for ðû2; v̂2; p̂2Þ yields vanishing values of the fields at

y ¼ y1. The field of û2 does not go to zero monoton-

ically for increasing y, unlike v̂2 and p̂2. For y larger

than about 1 we observe that û2 becomes uniform in x

and follows closely the quadratic behavior

û2 ¼ ðyþ cx � y1Þðy1 � yÞ.
The coefficients we have found so far are different

from those obtained previously and this is due to the

fact that now the boundary conditions at the fictitious

Fig. 6 Isolines of uy (left), vy (center) and py

Fig. 7 Isolines of û1 (left), v̂1 (center) and p̂1
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wall in the macroscopic problem are not enforced at

Y ¼ ��y ¼ 0 (as we did in Sect. 2), but at

Y ¼ ��y ¼ �y1. Equation (5) thus reads

UðX; �y1; tÞ � �cxST þ �2n12S
N
X ; ð37Þ

VðX; �y1; tÞ � �2n21S
T
X: ð38Þ

It is, however, simple to reconcile the results found

here with those given in Sect. 2. Table 1 shows how

the coefficients vary as y1 is modified. All the data fit

very well to either a straight line or a parabola, and the

results can thus be easily extrapolated to any desired �y

position where we choose to match inner and outer

solutions. In particular, we have

n12 ¼� n21 ¼
�y2

2
þ kx �yþ m12; ð39Þ

cx ¼ dn12
d�y

¼ �yþ kx; ð40Þ

with kx ¼ 0:07778 and m12 ¼ �m21 ¼ 0:00581. By

setting �y ¼ 0 in (39, 40) we recover exactly the

coefficients given in Sect. 2, up to an error ofOð10�4Þ
which we attribute to the approximations made in

modelling Dirac and Heaviside distributions.

The results embodied by Eqs. (39–40) permit to

state that, for two-dimensional roughness elements

such as those considered here, it is sufficient to solve

system (36) twice, evaluating n12 for two different

values of �y ¼ y1, to recover the two coefficients, kx

and m12.

An even better result is however available. We

observe, in fact, that

n12 ¼ �n21 ¼
Z 1

0

Z y1

ywall

uy dy dx; ð41Þ

this implies that a single resolution of the homoge-

neous Stokes system for the y variables, equipped with
(32), is sufficient to recover all coefficients necessary

to write the matching interface conditions at second

order, whether they are enforced at �y ¼ y1 (cf.

Eqs. 37–38) or at �y ¼ 0. This is confirmed by several

other calculations for different roughness patterns,

reported in Appendix 2. The advantage of the strategy

described in this section is its simplicity, precision and

accuracy; all the numerical results here and in

Appendix 2 are believed to be correct up to the last

reported decimal digit.

Eventually, at Y ¼ 0 the effective conditions to

second order read:

UðX; 0; tÞ ��kxST þ �2m12S
N
X ; ð42Þ

VðX; 0; tÞ ��2m21S
T
X : ð43Þ

3.1 Going to higher order in �

It is possible, and relatively easy, to obtain the higher-

order correction to assess the role of the convective

terms on the effective conditions at large scale. The

microscopic equations at Oð�2Þ are

uð2Þx þ vð2Þy ¼ Fmass;

� pð2Þx þ uð2Þxx þ uð2Þyy ¼ Fx�mom;

� pð2Þy þ vð2Þxx þ vð2Þyy ¼ Fy�mom;

ð44Þ

subject to the usual ‘‘no-slip’’ and x-periodic boundary

conditions, plus

uð2Þy þ vð2Þx ¼ �u
ð1Þ
Y � v

ð1Þ
X ;�pð2Þ þ 2vð2Þy ¼ �2v

ð1Þ
Y at y1:

ð45Þ

The source terms present in the system of Oð�2Þ are

Table 1 Variation of higher-order coefficients with the choice of y1

y1 ¼ �y 4 5 6 7 8 9

cx 4.07778 5.07778 6.07778 7.07778 8.07778 9.07778

n12 ¼ �n21 8.31693 12.89469 18.47249 25.05028 32.62806 41.20585
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Fmass ¼ �û1 S
T
XX � �u1 S

N
XX � û2 S

T
XY

� v̂1 S
T
XY � �v1 S

N
XY � v̂2 S

T
YY ;

Fx�mom ¼ ½p̂1 � 2û1 x � uy�ST
XX þ ½�p1 � 2�u1 x�SN

XX

þ ½p̂2 � 2û2 x � 2û1 y�ST
XY

þ ½�p2 � 2�u1 y�SN
XY � ½2û2 y þ uy�ST

YY

þ Re ½uyST
t þ ðuyuyx þ vyuyy ÞðS

TÞ2�;

Fy�mom ¼ ½�2v̂1 x � vy�ST
XX � 2�v1 x S

N
XX

þ ½p̂1 � 2v̂2 x � 2v̂1 y�ST
XY

þ ½�p1 � 2�v1 y�SN
XY

þ ½p̂2 � 2v̂2 y � vy�ST
YY þ �p2 S

N
YY

þ Re ½vyST
t þ ðuyvyx þ vyvyy ÞðS

TÞ2�;
ð46Þ

so that the unknown vector gð2Þ ¼ ðuð2Þ; vð2Þ; pð2ÞÞ can
be written as

gð2Þ ¼ g1 S
T
XX þ g2 S

N
XX þ g3 S

T
XY þ g4 S

N
XY

þ g5 S
T
YY þ g6 S

N
YY þ g7 S

T
t þ g8 ðSTÞ2;

ð47Þ

with gi ¼ ðai; bi; ciÞ; i ¼ 1:::8. This leads to eight new

auxiliary problems (all equipped with the same

boundary conditions along x and at the wall), given

in Appendix 3. As it was the case previously, we are

interested in the (constant) values of ai and bi at y1,

for i ¼ 1:::8. The numerical solutions of the systems at

Oð�2Þ are easily available and the non-trivial results of
interest, obtained employing y1 ¼ 5, are:

qx :¼a1ðx; 5Þ ¼ 218:21;

p12 :¼
1

Re
a7ðx; 5Þ ¼ �43:64;

p21 :¼b2ðx; 5Þ ¼ �43:64:

With the coefficients in our hands, the microscopic

second order terms evaluated in y1 ¼ �y ¼ 5 finally is

uð2Þ ¼qxST
XX þ Re p12S

T
t ; ð48Þ

vð2Þ ¼p21S
N
XX: ð49Þ

It is possible to compute the coefficients at different

values of �y ¼ y1 to infer trends for the effective

conditions to be applied, for example, at the roughness

rim. The results we have computed are summarized in

Table 2 and we have verified that they fit cubic curves

to very good accuracy. In particular, it is

qx ¼ 5

3
ðcxÞ3 ¼ 5

3
ð�yþ kxÞ3; ð50Þ

p12 ¼p21 ¼ �ðcxÞ3

3
¼ � 1

3
ð�yþ kxÞ3; ð51Þ

by setting �y ¼ 0, the coefficients to be employed in the

macroscopic conditions for U and V at Y ¼ 0 are:

hx ¼ 5

3
ðkxÞ3 ¼ 0:00078; ð52Þ

q12 ¼q21 ¼ �ðkxÞ3

3
¼ �0:00016: ð53Þ

It is important to stress, again, that the choice �y ¼ 0 is

just one among infinitely many other possibilities. A

different choice of the fictitious wall is always possible

and, for example, Lācis et al. [22] typically set �y
slightly above the upper rim of the roughness

elements.

4 The effective wall conditions

For the two-dimensional micro-indentations consid-

ered, the matching interface conditions read:

UðX; 0; tÞ ¼ �kxST þ �2m12S
N
X

þ �3½hxSTXX þ Re q12S
T
t � þ Oð�4Þ;

ð54Þ

VðX; 0; tÞ ¼ �2m21S
T
X þ �3q21S

N
XX þOð�4Þ; ð55Þ

Table 2 Variation of higher-order coefficients with �y

�y 4 5 6 7 8 9

qx 113.01 218.21 374.18 590.94 878.47 1246.77

p12 ¼ p21 �22:60 �43:64 �74:84 �118:19 �175:69 �249:36
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i.e., the X-component of the velocity at the fictitious

wall in Y ¼ 0 is Oð�Þ and the Y-component is Oð�2Þ.
Observe that m12 ¼ �m21 [ 0 and q12 ¼ q21\0.

While preparing this paper for submission we

became aware of a very recent work by Sudhakar et al.

[23] with the development of conditions to second

order for both U and V, obtained as a subset of the

dividing-line conditions between a clear fluid and a

porous medium. The approach followed by these

authors is similar to that described in Sect. 2 and their

second-order result coincides with ours. The present

contribution is the first to push the development to

third order.

By observing that the shear stress at Y ¼ 0 is

ST ¼ 1

�kx
UðX; 0; tÞ þ Oð�Þ; ð56Þ

and using continuity, we can write the leading term of

the transpiration velocity in Y ¼ 0 as

VðX; 0; tÞ � ��kyUX ; ð57Þ

with ky ¼ m12=k
x a (positive) transpiration length, as

postulated by Gómez-de-Segura et al. [24]. With the

geometry considered here it is ky � 0:0747. By

writing out the components of traction, the effective

rough-wall conditions (up to second order) can be

written as:

UðX; 0; tÞ � �kxUY|fflffl{zfflffl}��2m12Re PX

þ �2ð2m12 þ kxkyÞVXY ;
ð58Þ

VðX; 0; tÞ � �kyVY|fflffl{zfflffl} : ð59Þ

The terms in (58–59) with underbraces correspond

to those used previously [3, 22] to assess the effect of

wall transpiration for the case of a turbulent flow in a

channel with regularly corrugated walls. However, for

things to be formally correct, all of the terms Oð�2Þ in
Eq. (58) should be included. Equation (59) states that

blowing and suction occur through the fictitious wall

in Y ¼ 0 and that the location where the vertical

velocity vanishes is a penetration distance equal to

about �ky below Y ¼ 0. Note also that the integral of V

over the whole Y ¼ 0 plane must vanish if the rough

surface is impermeable.

In the following section an example will be shown

in which the effective conditions are tested up to order

one, two and three.

5 Macroscopic results

To assess the accuracy of the effective wall conditions

we have chosen to study a steady boundary layer flow

past a rough wall; the configuration considered is the

stagnation point flow, an exact solution of the Navier–

Stokes equations when the wall is smooth. As it turns

out, a similarity solution exists also when the wall is

rough and this is addressed first.

5.1 Hiemenz flow over a rough wall: a similarity

formulation

The ansatz behind Hiemenz similarity solution [25]

consists in writing the velocity components in (7) as

U ¼ Xf 0ðYÞ;V ¼ �f ðYÞ; ð60Þ

so that the continuity equation is automatically

satisfied. The pressure is further expressed as

P ¼ P0 �
1

2
½X2 þ gðYÞ�; ð61Þ

with P0 the stagnation pressure. These assumptions are

also applied to the case of a regularly microstructured

wall, with boundary conditions (54–55) on Y ¼ 0, so

that the two momentum equations become

1

Re
f 000 þ ff 00 � f 02 þ 1 ¼ 0; ð62Þ

1

Re
f 00 þ ff 00 � g0

2
¼ 0: ð63Þ

The first nonlinear ordinary differential equation

above can be solved for f(Y) and, once the solution is

available, Eq. (63) can be solved for g(Y), upon

imposing that P ¼ P0 at the stagnation point (which

translates into gð0Þ ¼ 0:) The boundary conditions up

to Oð�3Þ to be used with Eq. (62) are

�kxf 00 � f 0 þ �2m12Re ¼ 0;

�2m21f
00 þ f þ �3q21Re ¼ 0 at Y ¼ 0;

ð64Þ

f 0 ¼ 1 at Y ! 1; ð65Þ

the second-order conditions are found by setting q21 to

zero, while for those at first order it is sufficient to also

impose m12 ¼ �m21 ¼ 0.
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5.2 The numerical approximation

Rather than solving (62–65) we have opted to address,

by the same finite elements method used for the

microscopic systems, the full Navier–Stokes equa-

tions (7), either resolving the flow field within the

roughness elements, or modelling it with the effective

conditions. We consider a domain of length equal to

10L along X�, and focus on the results over the first

four units of length past the stagnation point. The outer

edge of the domain is set in Y� ¼ 2L (� superscripts are
employed to denote dimensional variables.) Symme-

try conditions are enforced along the X� ¼ 0 axis, and

the flow is considered to develop only in the positive

X� direction. The external potential flow is

U� ¼ aX�;V� ¼ �aY�; the constant a is the inverse

of a time scale; the characteristic velocity can thus be

chosen as aL and the dimensionless outer irrotational

motion is thus of the form ðU;VÞ ¼ ðX;�YÞ.

Fig. 8 Stagnation point flow over a rough wall, visualized via

velocity vectors (left.) In the images on the right the flow in the

vicinity and within the micro-indentations is visualized by

streamlines around X ¼ 3:4, highlighting Moffatt eddies in the

triangular cavities. Only for comparison purposes, such eddies

are shown at two Reynolds numbers, Re ¼ 25 (top) and 250

(bottom) (in both cases it is � ¼ l=L ¼ 0:2.)

Fig. 9 Comparison between the wall-parallel velocity profiles

along Y evaluated at X ¼ 1, 2 and 3 in the case of smooth wall

(solid lines) and rough wall (dots) with � ¼ 0:2, in correspon-

dence to the roughness peaks. The rough-wall results displayed

are those computed with a feature-resolving simulation; results

for a microstructured wall simulated by employing effective

conditions at order one, two or three are superimposed to the

feature-resolving results and cannot be distinguished to graph-

ical accuracy
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For the viscous near-wall flow we choose a

Reynolds number Re ¼ aL2=m (m the fluid’s kinematic

viscosity) equal to 25; to account for the presence of a

constant-thickness boundary layer, in enforcing the

inflow condition the vertical coordinate must be

shifted by a quantity equal to the displacement

thickness d1, i.e. at Y ¼ 2, outer edge of the domain,

the inflow conditions in dimensionless formmust read:

U ¼ X; V ¼ �Y þ d1: ð66Þ

Finally, on the X ¼ 10 boundary the usual ‘‘do-

nothing’’ condition is employed, which corresponds to

zeroing the traction components.

In the no-roughness case the computed solution

compares very well with the similarity solution, and it

is found d1 ¼ 0:64795Re�1=2. When roughness is

present on the lower wall, cf. Fig. 8, the solution

changes slightly as shown in Fig. 9, and the displace-

ment thickness decreases to 0:5680Re�1=2.

The case lends itself to being treated with the

effective conditions (54–55) even if, on the one hand,

the parameter � is not so much smaller than one and, on

the other, the microscopic Reynolds number,

R ¼ �2Re, is equal to one so that the terms on the

left-hand-side of the two momentum equations in (6)

might appear to be leading order terms. This is thus a

strenuous test for the theory.

The wall-normal velocity at the fictitious wall in

Y ¼ 0 is zero, by definition, at first order, but we find

that it does not vanish when applying the effective

conditions at higher orders. In particular, V(X, 0, t) is

approximately constant and equal to �0:0014

(�0:0017) when second (respectively, third) order

effective conditions are used. This means that a net

mass flux into the wall occurs and this might be due to

two causes. On the one hand, � is not infinitesimal in

the problem considered here (� ¼ 0:2) and thus the

terms neglected in the expansion of the conditions at

Y ¼ 0 are not vanishingly small. On the other, when

evaluating STX and SNXX to be used in (55) discretization

errors are inevitable. Note, however, that the unphys-

ical mass flux through the wall is less than 0:1% of the

total mass flux which enters the domain from the upper

boundary. An even more difficult test case for the

condition on the vertical velocity at Y ¼ 0 would be

represented by a three-dimensional turbulent wall

flow, because of the presence of violent near-wall

events, such as ejections and sweeps. As shown by

Bottaro [3], the transpiration condition seems ade-

quate in a turbulent channel flow when � ¼ 0:2 and the

friction Reynolds number is 180; however, a better

Fig. 10 Close-up of the streamwise velocity near Y = 0, for X =

1.1, 2.1 and 3.1, i.e. on the troughs of the roughness elements.

The solid lines represent the result of the feature-resolving

simulation, the white bullets are the results of the Navier

condition, the black square symbols correspond to the second-

order condition, and the third-order results are shown with white

triangles
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approximation is necessary when � ¼ 0:4 (cf. fig-

ures 17 and 20 in the cited reference.)

In Fig. 10 a close-up view of the U velocity

component is shown near the surface where the

effective conditions are enforced, highlighting the

fact that the approximations made do a good job at

representing the physics near the roughness. Further

away from the wall the disagreement with the ‘‘exact’’

solution cannot be ascertained, to graphical accuracy.

The slip and transpiration velocity components at Y ¼
0 for the same cases are displayed in Fig. 11, together

with the pressure. Whereas the vertical velocity at the

fictitious wall oscillates around zero in the complete

simulation, and is very close to zero when Eq. (55) is

Fig. 11 Top: slip velocity U at Y ¼ 0 for the feature-resolving

solution, displaying typical oscillations (dashed line); the results

at different asymptotic orders are displayed using the same

symbols as in Fig. 10. The second/third order conditions are

very close to the running average of the ‘‘exact’’ slip velocity,

displayed with a solid line. The ‘‘exact’’ wall-normal velocity V
at Y ¼ 0 is plotted in the same image, using a dotted line.

Bottom: pressure at Y ¼ 0, same symbols and line-styles as

above. The parabolic behavior of the pressure withX agrees with

ansatz (68)
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used, the streamwise velocity displays amplifying

oscillations in the resolved case, and grows linearly in

X when the effective conditions are employed,

consistent with (60). The conditions at second and

third orders almost coincide and are very close to the

running average of the feature-resolving simulation

(displayed with a solid line): the growth of the ‘‘exact’’

solution is more rapid than that found with simple

Navier slip and the difference is appreciable.

6 Conclusions

Two different approaches have been presented to

derive effective boundary conditions which go beyond

the usual Navier–slip paradigm, to model regularly

microstructured walls without the need to numerically

resolve fine-scale near-wall details. The techniques

employed, inspired by previous studies [7, 22], differ

in the details of the small-scale formulation but

produce the same results. They are based on matching

the outer flow solution, which only depends on

macroscopic spatial variables and time, to the inner

flow state, which is assumed to depend on both small-

and large-scale variables. Thus, the effect of rough-

ness shape and periodicity is captured by the inner

equations and transferred to the outer flow at the

matching location (set at Y ¼ Y ¼ ��y) through a set of
coefficients. The inner, microscopic equations are

treated via an asymptotic development of the variables

and the solution is found at orders zero, one and two.

At leading order Navier-slip is recovered for the wall-

tangent velocity, together with a no-transpiration

condition. At next order the tangential gradient of

the normal stress appears in the wall-parallel velocity

component(s), whereas the wall-normal velocity dis-

plays the appearance of the tangential gradient of the

tangential stress. This means that blowing and suction

through the inner-outer interface might occur. The

position of this interface can be chosen at will, and the

convenient choice Y ¼ 0, coinciding with the rim of

the roughness elements, is pursued here. Any other

position Y ¼ ��y would have been acceptable and

would have produced results to the same order of

accuracy.

One important result obtained here for a two-

dimensional configuration is that a single solution of

the homogeneous Stokes system of equations in a x-

periodic unit cell, equipped with no-slip at the wall and

forced at the outer edge by conditions (32), is

sufficient to recover the coefficients cx and n12. This

is all we need in the effective conditions at order �2 (cf.

Eqs. 37, 38). The discussion which follows Eq. (38) in

the paper addresses the issue of how these coefficients

must be modified for the inner-outer matching to be

enforced elsewhere, for example, at Y ¼ 0 (Eqs. 42,

43). Finally, Sect. 3.1 of the paper illustrates the

development at the next higher order in �, to account

also for convective terms at the microscale, to

eventually reach the macroscopic matching

Eqs. (54–55), correct to Oð�3Þ.
The application of the effective conditions to a

steady, laminar flow case, the Hiemenz flow over a

rough wall, demonstrates that the nominally higher-

order terms can produce sizable effects. In particular,

for the problem examined a difference is observed

between the macroscopic effective conditions at order

one and two, whereas the terms of order three correct

the order-two result by very little. The Oð�3Þ terms

may become important in more complex flow config-

urations, possibly three dimensional and unsteady. In

this latter case, after naming the two tangential stress

components STx ¼ UY þ VX and STz ¼ WY þ VZ , we

argue that the effective slip/transpiration is

U

W

� �
¼ �K

STx

STz

� �
þ �2M

SNX
SNZ

� �
þ �3Hx

STxXX
STxXZ
STxZZ

2
64

3
75

þ �3Hz

STzXX

STzXZ

STzZZ

2
64

3
75þ �3 ReQ

STxt

STzt

" #
þOð�4Þ;

ð67Þ

V ¼ �2m1
STxX
STxZ

" #
þ �2m2

STzX

STzZ

" #

þ �3p

SNXX
SNXZ
SNZZ

2
64

3
75þOð�4Þ:

ð68Þ

K, M and Q are 2	 2 matrices; Hx and Hz are

2	 3 matrices;m1 andm2 are 1	 2 while p is 1	 3.

In principle, obtaining all coefficients of the matrices

above would require a large number of numerical

resolutions of differently forced three-dimensional

Stokes systems. It is expected, however, that the

effective number of auxiliary problems to be solved is
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significantly lower, in analogy to the two-dimensional

case. Challenging test cases for the conditions given

above are envisaged in future work, including in

particular turbulent wall flows. It is indeed a nice and

unexpected surprise to observe [3, 22] that a model of

the rough surface based on only the leading order, non-

trivial terms for the velocity components (i.e. those

including only the factorsK,m1 andm2 in Eqs. 67, 68)

produces good results for both mean flows and second

order statistics, in a large-Re turbulent channel flow.

The issue, related to the effect of the wall normal

velocity fluctuations [26], deserves a thorough look.

We will also address the cases of elastically deforming

microstructures and of rigid roughness elements

impregnated by a lubricant fluid (cf., respectively,

Zampogna et al. [27] and Alinovi and Bottaro [28] for

the theories at first order.)
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Appendix 1: Numerical approach

The incompressible two-dimensional creeping flow

equations for the generic unknown (u, p) are solved

with a finite element method using the FreeFEM open

source code [29]. The approach is based on a weak

formulation of the equations, which means

introducing two regular test functions v and q, and

solving the integral

Z 1

0

Z y1

ywall

�v � rp�rv � ruþ qr � u dy dx ¼ r:h:s;

ð69Þ

with the variables approximated by triangular P1 � P2

Taylor-Hood elements. The term denoted as r.h.s. can

contain contributions from volume source terms, from

boundary conditions, or from both, depending on the

system being treated. A similar approach, also based

on the FreeFEM code, is used also for solving the

Navier–Stokes equations. Particular care is needed

when the Dirac delta in y ¼ 0 or the Heaviside step

functions appear in the equations. In these cases, the

grid needs to be refined locally (cf. Fig. 12.) We have

chosen to model the delta function as a normal

distribution of variance r2 ¼ 5	 10�7; i.e.

dðyÞ � 1ffiffiffiffiffiffiffiffiffiffi
2pr2

p e�y2=2r2 ; ð70Þ

and the step function as

Fig. 12 Sample grids used in the absence (left) or presence of

force singularities in the equations at y ¼ 0. When a delta or a

step function is present the grid is refined around the tip of the

roughness in y ¼ 0; conversely, when the fields are smooth the

points are chosen to be uniformly distributed along each side of

the domain. The grids displayed are composed by 1132 (left)

and 1913 (right) triangles, whereas those used in the actual

computations have, respectively, 125,720 and 88,419 triangles
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Hð�yÞ � 0:5½tanhðayÞ � 1�; ð71Þ

with a ¼ 103. All results reported here have been

checked for grid-convergence; validation tests have

also been carried out using the software COMSOL

(www.comsol.com). The results described in Sect. 2,

obtained using the approximations (70) and (71),

converge towards those presented in Sect. 3 as the grid

is refined and the parameters a and r2 are increased. A
better way to treat the delta and step functions would

be to split the domain into two parts and enforce jump

conditions across, as proposed by Lācis et al. [22].

However, it is not necessary to proceed this way, since

a simpler and very accurate alternative is available (cf.

Sect. 3.)

Appendix 2: Sample results for other roughness

geometries

The coefficient of the effective slip conditions (42–43)

to second order are easily available for a variety of

wall shapes by any one of the approaches described in

the paper. We have considered the indentations shown

in Fig. 13 and the relevant coefficients are reported in

Table 3. Pattern B, which at y ¼ 0 has the largest

wetted surface, displays the lowest slip and transpira-

tion coefficients. This is expected since no-slip

prevails at the roughness edge over half of the total

streamwise distance. By the converse argument, the

blade-like indentationA has larger coefficients (which

can increase even further by reducing the thickness of

the blade). Shapes D and E present values of the

coefficients very close to one another, and in case D,

where a quasi-cusped tip is present, the slip is largest.

Fig. 13 Microscopic domains with some two-dimensional

roughness shapes tested. Shape A is a blade of dimensionless

thickness equal to 0.2. The thickness of the square roughness

element B is 0.5. Roughness C is a semicircle. Roughness D is

defined by a parabolic-linear contour, and roughness E is a 90

degrees triangle (right)

Table 3 Variation of slip and transpiration parameters for different roughness geometries

A B C D E

kx 0.06293 0.01781 0.04087 0.08119 0.07991

m12 ¼ �m21 0.00325 0.00043 0.00182 0.00544 0.00551
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This provides an indication also of the geometries to

be preferentially tested in cases where the microcav-

ities are filled with an immiscible lubricant fluid (such

as air or vapor, when considering superhydrophobic

coatings); first order results [28] confirm this indica-

tion and feature-resolving direct numerical simula-

tions of turbulence in a channel bound by lubricant-

impregnated walls [30] further highlight the signifi-

cance of wall-normal velocity fluctuations and their

strong correlation to the total drag. The high-order

approach described here can easily be extended to the

case of lubricant-filled micro-cavities, to better cap-

ture phenomena which, to date, have only been

modelled using the (first-order) Navier condition.

Appendix 3: The systems at order �2

The eight microscopic systems which arise at order �2

are given below, together with the boundary condi-

tions which apply at the outer edge of the domain.

Forcing by ST
XX

a1x þ b1y ¼ �û1;

� c1x þ a1xx þ a1yy ¼ p̂1 � 2û1 x � uy;

� c1y þ b1xx þ b1yy ¼ �2v̂1 x � vy;

ð72Þ

together with

a1y þ b1x ¼ �v̂1and� c1 þ 2b1y ¼ 0aty1:

Forcing by SN
XX

a2 x þ b2 y ¼ ��u1;

� c2 x þ a2 xx þ a2 yy ¼ �p1 � 2�u1 x;

� c2 y þ b2 xx þ b2 yy ¼ �2�v1 x;

ð73Þ

together with

a2 y þ b2 x ¼ ��v1and� c2 þ 2b2 y ¼ 0aty1:

Forcing by ST
XY

a3 x þ b3 y ¼ �û2 � v̂1;

� c3 x þ a3 xx þ a3 yy ¼ p̂2 � 2û2 x � 2û1 y;

� c3 y þ b3 xx þ b3 yy ¼ p̂1 � 2v̂2 x � 2v̂1 y;

ð74Þ

together with

a3 y þ b3 x ¼ �û1 � v̂2and� c3 þ 2b3 y ¼ �2v̂1aty1.

Forcing by SN
XY

a4 x þ b4 y ¼ ��v1;

� c4 x þ a4 xx þ a4 yy ¼ �p2 � 2�u1 y;

� c4 y þ b4 xx þ b4 yy ¼ �p1 � 2�v1 y;

ð75Þ

together with

a4 y þ b4 x ¼ ��u1and� c4 þ 2b4 y ¼ �2�v1aty1:

Forcing by ST
YY

a5 x þ b5 y ¼ �v̂2;

� c5 x þ a5 xx þ a5 yy ¼ �2û2 y � uy;

� c5 y þ b5 xx þ b5 yy ¼ p̂2 � 2v̂2 y � vy;

ð76Þ

together with

a5 y þ b5 x ¼ �û2and� c5 þ 2b5 y ¼ �2v̂2aty1.

Forcing by SN
YY

a6 x þ b6 y ¼ 0;

� c6 x þ a6 xx þ a6 yy ¼ 0;

� c6 y þ b6 xx þ b6 yy ¼ �p2;

ð77Þ

together with a6 y þ b6 x ¼ 0and� c6 þ 2b6 y ¼
0aty1:Given that �p2 ¼ y� y1 it is simple to find a6 ¼

b6 ¼ 0 and c6 ¼ �ðy� y1Þ2

2
.

Forcing by ST
t

a7 x þ b7 y ¼ 0;

� c7 x þ a7 xx þ a7 yy ¼ Re uy;

� c7 y þ b7 xx þ b7 yy ¼ Re vy;

ð78Þ

together with

a3y þ b3x ¼ 0and� c3 þ 2b3y ¼ 0aty1.

Forcing by ðSTÞ2

a8 x þ b8 y ¼ 0;

� c8 x þ a8 xx þ a8 yy ¼ Re ðuyuyx þ vyuyy Þ;

� c8 y þ b8 xx þ b8 yy ¼ Re ðuyvyx þ vyvyy Þ;

ð79Þ

together with

a8 y þ b8 x ¼ 0and� c8 þ 2b8 y ¼ 0aty1:
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