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The direct infusion of an agent into a solid tumor, modeled as a
spherical poroelastic material with anisotropic dependence of the
tumor hydraulic conductivity upon the tissue deformation, is treated
both by solving the coupled fluidlelastic equations, and by express-
ing the solution as an asymptotic expansion in terms of a small pa-
rameter, ratio between the driving pressure force in the fluid
system, and the elastic properties of the solid. Results at order one
match almost perfectly the solutions of the full system over a large
range of infusion pressures. Comparison with experimental results
is acceptable after the hydraulic conductivity of the medium is
properly calibrated. Given the uncertain estimates of some model
constants, the order zero solution of the expansion, for which fluid
and porous matrix are decoupled, yields acceptable values and
trends for all the physical fields of interest, rendering the coupled
analysis (in the limit of small displacements) of little use. When the
deformation of the tissue becomes large nonlinear elasticity theory
must be resorted to. [DOI: 10.1115/1.4007174]
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1 Introduction

In recent years it has become common to shrink solid tumors
before surgery via intratumoral injection of chemotherapeutic
drugs, to allow cleaner/simpler/less destructive removal, or to
render operable possibly inoperable tumors. Efficient delivery of a
therapeutic agent within a solid tumor via intratumoral infusion
requires a thorough understanding of the fluid dynamics in the
gel-like region between cells (the interstitium). A number of phys-
iological barriers opposes the infusion: the abnormally elevated
density of cancer cells limits drug transport by constricting intra-
tumoral blood vessels; the high interstitial fluid pressure (IFP)
which occurs within the tumor and the lack of functional lym-
phatics hamper convective transport of the agents to the intersti-
tium; and the tumor microvasculature is leaky. The main obstacle
to efficient delivery is believed to be the high IFP (values up to
50mmHg have been reported in solid tumors [1-4]); it can pro-
duce some reabsorption of fluid by the capillary network with the
consequence that not all the therapeutic agent injected diffuses
within the tumor tissues.

It is common to model the problem of the transport of drugs and
nutrients within a solid tumor by considering it as a fluid-saturated
porous medium, characterized by the hydraulic conductivity K of
the tissue (ratio between the permeability of the medium and the
dynamic viscosity of the fluid) and by its Lamé coefficients, G
and A. Assuming negligible lymphatic drainage, the parameters
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needed to describe transvascular fluid exchange, within the Star-
ling’s law assumption, are the hydraulic conductivity of the capil-
lary walls, L,,, the vascular surface area per unit volume, S/V, and
the effective vascular pressure, p,. Macroscopic parameters can,
in principle, be inferred from homogenizing the microscopic fea-
tures of the tumor, i.e., its morphology as a micro-structured mate-
rial, with fiber matrix, proteins, fluid in the interstitial matrix, and
including the fluid exchange with the capillaries embedded in the
interstitium (see [5] for recent progress on this). A more common
approach is to infer values of the governing parameters from
in vivo and in vitro measurements. Smith and Humphrey [6] pro-
vide a review of measured values from the literature.

The rate of fluid flow within the tumor depends on the value of
K of the tissues which can, in principle, be strongly altered by the
deformation of the tissues themselves. It has been found [7] that
variations of the hydraulic conductivity by several orders of mag-
nitude may take place with a fourfold increase of the infusion
pressure, as a result of tissue expansion and compression. Hence,
the coupling between the deformation of the tumor and its con-
ductivity appears to be important, and the use of poroelasticity
theory has been proposed, see for example, [8,9]. Whereas various
empirical relations for K= K(u), with u the displacement of the
solid, are present in the literature [10,11], only McGuire et al. [12]
consider a nonlinear, anisotropic relation.

In this work we follow the lead of McGuire et al. [12] to study
the intratumoral infusion of a therapeutic agent into an isolated
solid tumor of spherical shape, i.e., a tumor that is not surrounded
by normal tissue. A perturbation approach is proposed within the
linear elastic approximation, with the solution expressed in term
of powers of a small dimensionless parameter J, defined as the ra-
tio between an effective pressure at the infusion site and the tissue
solid properties (expressed via a linear combination of G and 1).
A comparison between results obtained with the full model and
with the perturbation analysis (up to order J) provides an indica-
tion on the range of applicability of the asymptotic approach.

2 The Model

Tumors are strongly heterogeneous and are often modeled as
being formed by concentric layers of tissue (eventually including a
necrotic core) of thickness defined by the proliferation/quiescent
activity of the cancer cells. Here, we consider a spherical tumor of
radius R, a compressible medium modeled as an elastic network of
communicating, fluid-filled pores, whose sources of radial inhomo-
geneity are in the hydraulic conductivity of the tumor interstitium,
K, and in the hydraulic conductivity of the capillary walls, L,,. Our
modeling assumptions are as follows: a drug is infused at the center
by a needle, and the tissue is cored out, creating a small fluid cavity
of radius @ around the needle tip (cf. Fig. 1). As fluid is injected,
the tissue swells mildly and, at the steady state, the fluid fills a
spherical cavity of radius @'. Likewise, the radius of the tumor
becomes R’ in steady infusion conditions. This model replicates the
one proposed by Basser [13] and used by many authors afterwards,
with spherical symmetry maintained. The stress tensor T is related
to the strain tensor € by a linear constitutive law,

T=—-pl+ AV -u)l+2Ge (1)

with p the IFP, and &= (Vu+ Vu’)/2 (the superscript T denotes
transpose operation). We assume that the displacement vector, u,
has only a nonzero radial component, u, so that the only nonvan-
ishing components of € are ¢, = du/dr and &gg = &4 = u/r, r being
the radial coordinate (in the following when r is used as a sub-
script a derivation is intended, except when the subscript denotes
the component of a tensor, for example, a,, or ¢,.). By setting to
zero the divergence of T, we obtain the equilibrium equation,
whose radial component is

(2G + A)(uy 4 2u/r),= p, )
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Fig. 1 Sketch of the section of a solid tumor of spherical
shape. The magnified view on the right shows a detail of the
porous interstitium, with the micro-vasculature created around
the tumor cells.

The conservation of mass in the fluid phase within the Darcy flow
assumption (see, e.g. [0]) is

—(Kp,),/1r* = Ly(p. — p)S/V (3)

with the right-hand side, the Starling’s law term, which can act as
either a source or a sink because of the leakiness of the tumor mi-
crovasculature. The tumor vasculature is structurally and function-
ally abnormal, undergoing continual adaptation in response to
blood flow and metabolite levels. The common practice of assum-
ing a constant value of the effective vascular pressure, p,, can be
questioned in the presence of significant transvascular fluid
exchange; however, given the extreme difficulty in modeling the
tumor microvascular circulation (see [14] for recent progress) and
in order to keep the present problem tractable, we have decided to
maintain p, constant and to account for the heterogeneous distri-
bution of vessels only through a variable hydraulic conductivity
of the capillary walls, L,. To model the increased activity of can-
cer cells towards the outer boundary of the tumor, where they
co-opt host vessels to obtain nutrients for their growth and sprout
new vessels from existing ones, we assume that L, varies with r as

L, = Lyof (r/R) )

with L,y a reference value and f{7/R) a dimensionless function
ranging from zero to one, which can only increase (or eventually
remain constant) with r. This should not be taken to mean that
newly formed blood vessels have larger conductivity than existing
ones, it is rather a way to model (in a continuous manner) the
fluid-exchange-activity of the microvasculature, from the inner
(possibly necrotic and hypoxic) core, through the viable tumor tis-
sue, and to the outer proliferating region. A similar (albeit dis-
crete) approach is used, for example by Smith and Humphrey [6].

To model the anisotropic dependence of the hydraulic conduc-
tivity K on the tissue deformation, when the volume fraction of
fibers and cells in the tissue is large, we assume, following
McGuire et al. [12], that

K = Ko exp{M|oe,, + (1 — a)eg] } (5)

with Ky, M, and o, model constants. The equations are closed by
boundary conditions, i.e.,

p(Rl) = 0’ p(al) = Dinfusion s (ZG + /L)Mr(Rl) =+ 2)M(Rl)/R, = 07

- p(a’) + (2G + j’)ur (a/) + 2/1“(”/)/“/ = — Pinfusion (6)
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The latter two relations specify, respectively, the absence of radial
contact stresses at the tumor margins = R’, and the continuity of
the radial components of the stress across the interface in r=da’
between the cavity and the porous matrix [15]. Since ¢’ and R’ are
a priori unknown, they must be solved for as part of the procedure,
in an iterative manner. We thus solve the equations repeatedly,
enforcing the boundary conditions (6) at R'=R+ u(R), and
d = a+ u(a), with u(a) and u(R) coming from the preceding itera-
tion, and declare convergence whenever the variations of R’ and
d’ between two successive iterations are below a given threshold
(taken to be machine accuracy).

Normalization of equations and boundary conditions brings out
the relevant parameters of this model. We thus scale the IFP with
(Pinfusion — Pe), the displacement u and the radial coordinate r with
R, and the hydraulic conductivity K with K, isolating two dimen-
sionless parameters,

(S - (pinfusion _pe)/(ZG + )) (7)
7 = (Lpo/Ko)R*S/V ®)

The first parameter characterizes the ratio between the driving
pressure forces in the fluid system and the elastic properties of the
solid; the second parameter measures the relative importance of
the resistance to interstitial percolation with respect to the resist-
ance to transcapillary fluid exchange [1,16]. Typically ¢ is much
smaller than one, whereas y is of order one.

The equations in terms of dimensionless variables read

(uy +2u/r),= op, )

(Kpy), = r*7*(p = pe)f (r) (10)
K = exp{M|out, + (1 — o)u/r|} (1)
with boundary conditions,
p(R,/R) = 0; p(al/R) = Pinfusions
u(R'/R) +22/(2G + Z)u(R'/R) /R = 0;
u,(d' /R) +24/(2G + Z)u(d' /R)/d =0 (12)

Equations (9)—(12) are solved by a finite difference second order
iterative scheme, yielding solutions for p, the hydraulic conductiv-
ity K, the Darcy flux ¢ = — K p, and the flow rate Q of the thera-
peutic agent through the tumor, for parameters corresponding
to some of the measurements by McGuire et al. [12]. We denote
by  Oinfusion the value of Q at r=d, ie.,
=4nd?q|, — o = —41d?Kp, |, — .

Qinfusion

3 The Perturbation Approach

A second approach to the solution of the problem begins, fol-
lowing Bonfiglio et al. [17], by expanding the dependent variables
into powers of J as

u = uy + ouy +0(52)
p = po + dpi +0(52)
K =Ko + 0K, + 0(5%)

When there is no pressure imbalance (6 = 0) Eq. (9) reduces to
(u, 42 u/r), =0 which yields the (trivial) result # = 0 (and corre-
spondingly K = 1). This is physically obvious since the displace-
ment u is induced by the pressure imbalance o, so that u must be
of order 0, i.e., up=0, Ky=1. The unperturbed solution for the
pressure, py, is simply found by solving

(Ppor),= r*y*(po — pe)f (r) (13)
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together with py (1) =0 and py(a) = Pinfusion- In the L, =L limit
we have

po =pe+Ae" r+Be " [r (14)
with A and B easily available from the boundary conditions. For
f{r) not constant and equal to one, the zeroth order pressure field
can be found by numerical integration of Eq. (13); this yields an
order O solution which is uniformly valid in r, i.e., the problem
being considered is a regular perturbation problem. From py it is
easy to recover the leading order Darcy flux ¢, and flow rate Q.
At order 1, the equations are

(u1r + 2w /1), = por (15)
(rpi, + 1‘2K1P0r),,= Py pif(r) (16)
with Ky =M[o uy, + (1 — o) uy/r], and boundary conditions
pi(1) = —ui(1)po(1)
pi(a) = —ui(a)por(a) (17

u(1) +22/(2G + A)u; (1) =0
ui(a) +22/(2G + Auy(a)/a =0

(a is now normalized by the outer unperturbed radius, and is thus
dimensionless), obtained by Taylor expanding the boundary con-
ditions in Eq. (6) around the unperturbed positions, and collecting
terms of order 0. The variables p;, K, and u;, as well as ¢; and
the infusion flow rate at order J, can be obtained by a central dif-
ference numerical method, similar to that used for Egs. (9)—(12).
In both cases we have employed a large number of uniformly dis-
tributed radial grid points (up to 6000) to ensure that all results
presented are grid-converged.

4 Results

The configurations which can be examined with the present as-
ymptotic model are all those for which ¢ is “small”. This is not an
uncommon situation, and is encountered often (i.e., Smith and
Humphrey [6] for which 6 =0.15, Sarntinoranont et al. [9] for
which 6 =0.16 when p,=11.25mmHg, and Netti et al. [8] for
which 6 =0.012, etc.). Furthermore, we will show in the follow-
ing that “small” does not necessarily mean infinitesimal, rendering
the present approach widely applicable.

To set ideas we consider the situation examined in the study of
4T1 cell lines by McGuire et al. [12]. These lines had the highest
collagen concentration among the tested ones, and showed a
strongly nonlinear relation between the infusion pressure and the
infusion rate. They were murine mammary carcinoma cell lines,
injected subcutaneously into mice. After the tumor had grown to a
diameter of the order of the centimeter, a solution was infused
into the center of the tumor with a needle, until a small fluid cav-
ity approximately equal to the needle radius was formed. From
that point on, increasing and measuring the infusion pressure,
McGuire et al. [12] could measure the corresponding flow rate of
the solution entering the tissue. Errors in the measured pressures
could be quantified to be less than 3.7 mmHg.

In Tables 1 and 2, a list of all of the parameters in McGuire
et al.’s [12] experiments is provided together with those employed
in the present simulations (unless otherwise indicated). We still
need to define the function f{r) in the model, and we consider three
different choices, denoted as cases 1, 2, and 3; the most important
difference among the cases is the degree to which the function is
concentrated at =1, representing the increase in leakiness of the
capillary network there. Case 1 assumes a constant value of
L,=L,, ie., f{r)=1; in case 2 it is assumed that f{r) increases
radially outwards as f{r)=explb(r — 1)/(1 — a)], with b =1log (10);
the value of L, at r =R is equal to L, and it is ten times larger than
the corresponding value at r =a. The factor of 10 is arbitrary, but
within the range of values reported in the literature [1,6]. In the
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Table 1 Dimensional variables and model parameters

Physical variable Definition

a=0.18mm; R=5mm Unperturbed radii of the cavity and

of the spherical tumor
p.=11.25mmHg Effective vascular pressure [6]

Range of values of the infusion
pressure

30 mmHg < pinfusion < 70 mmHg

Lyo=1.3332x 107 cm/(mmHg s) Vascular conductivity at r =R [6]

S/V =200 cm*/cm® Vascular surface area per unit

volume [6]

Lamé coefficients; they are related
through the relation

A=2v G/(1 —2 v), with the
Poisson ratio v which is fixed at
0.35.

Model constant in Eq. (5). The
literature typically reports smaller
values for Ky, cf. [6]

Model constant in Eq. (5). The
range of o is [0, 1]; the value

o =0.733 provided the best fit with
the experimental data in the model
by McGuire et al. [12]

A=175mmHg, G =75 mmHg

Ko=3x 1073 cmz/(mmHg s)

o=0.733

Model constant in Eq. (5).

Table 2 Dimensionless parameters in the present simulations

a 3 (Eq. (7)) 7” (Eq. (8))

Pinfusion

0.036 [0.05769, 0.1807] 22222 [1.1915, 1.6]

third case we make the hypothesis that transvascular fluid exchange
is concentrated near the tumor outer margins, possibly as a result of
strong localized angiogenesis, so that f{r)=exp[—150(-— 1)7].
These three distributions cover a large spectrum of configurations,
and are plotted in Fig. 2. In Figs. 3 and 4 results are reported
from simulations using the full model, ie., Eqgs. (9)—(12), at
0=0.05 (corresponding t0 pPipfusion=27.5mmHg) and §=0.2

0.8 24

0.6 . f 4

0.2 - : 8

Fig. 2 Shape of the dimensionless function f(r) (representing
the hydraulic conductivity coefficient, L, of the capillary walls)
for cases 1-3, as reported in the text. Case 1: solid line; case 2:
dashed line; case 3: dotted line.
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Fig. 3 Solution of the full model (in dimensionless form) for
4 =0.05. From top left frame, and clockwise: radial distribution
of the displacement u, of the hydraulic conductivity K of the tis-
sue, of the flow rate Q through any given spherical surface at
radius r (including transvascular fluid exchange), and of the
IFP. Cases 1-3 with line styles as in Fig. 2 The thin horizontal
line in the figure with the IFP denotes the dimensionless value
of the effective vascular pressure.

(Pinfusion = 76.25 mmHg). As expected the deformation u is larger
for larger infusion pressure. The trend of the u-curves with r varies
with the case considered: it decreases rapidly near the infusion site
for all cases, to eventually increase (case 1), settle (case 2) or
slowly decrease (case 3); smaller radial displacements (and smaller
flow rates Q) are associated with the reduced activity of the micro-
vasculature towards the center of the tumor in cases 2 and 3. Per-
haps unexpectedly the conductivity K of the tissue is but mildly
affected by variations in the hydraulic conductivity of the capillary
walls; in both Figs. 3 and 4 one observes a very steep increase of K
from the infusion point, and a rapid equilibration around K ~ 1.
The IFP is very large at the infusion site, but it decreases rapidly
and monotonically from pjpssion t0 zero, the effect of L, being
minor; the IFP is thus smaller than the effective vascular pressure
over a large range of r, which means that, under the conditions
examined here, there is efficient transport of the drug to the tumor
tissue. This is reflected also by the increase in the flow rate Q
through the system for increasing radii, indicating extravasation of
fluid from the vessels into the tumor interstitium, not balanced by
reabsorption by the capillary system.

The rate of agent entering the tumor at r = ¢’ for varying values
of the infusion pressure is displayed in Fig. 5, for the three cases
of Fig. 2. It is interesting to observe that for the value of K
(Kp=3x 1073 cmz/(mmHg s)) employed by McGuire et al. [12]
our model overestimates the infusion rate. On the other hand, val-
ues of the average hydraulic conductivity typically much lower
than 3 x 10> cm?/(mmHg s) are often reported for neoplastic tis-
sues (see, e.g., Swabb et al. [18] who measure in vitro values of
4% 1078 cm /(mmHg s), or Smith and Humphrey [6] who indi-
cate a range between 4 X 107° sz/(mmHg s) and 2.5 x 1076
cmz/(mmHg s)). Therefore, in Fig. 5 we have also included results
for the three cases of Fig. 2 when the value of K is ten times
smaller than that indicated by McGuire et al. [12], achieving a bet-
ter match with experimental data. McGuire et al. [12] observed a
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Fig. 4 Solution of the full model (in dimensionless form) for
4 =0.2. From top left frame, and clockwise: radial distribution of
the displacement u, of the hydraulic conductivity K of the tis-
sue, of the flow rate Q through any given spherical surface at
radius r (including transvascular fluid exchange), and of the
IFP. Cases 1-3 with line styles as in Fig. 2 The thin horizontal
line in the figure with the IFP denotes the dimensionless value
of the effective vascular pressure.

4.5

4

3.5

3

Q [em¥s]

nfusion
25

20 30 40 5
Pision [

0
mmHg]

Fig. 5 Inflow rate at r= & as function of the infusion pressure
(both variables are in dimensional form). Symbols are used to
denote the experimental data points by McGuire et al. [12]. The
three cases of Fig. 2 are plotted with the same line style used
previously. The top curves refer to K, = 3 x 10~° cm?(mmHg s);
the bottom curves, closer to the experimental data, are for
Ko =3 x 106 cm?/(mmHg s). The order zero results of the as-
ymptotic model in the L, = L, limit are also displayed, with thin
solid lines; when L, varies (as in Fig. 2) the leading order
results are but mildly affected.

marked reduction of the infusion rate after the infusion pressure
exceeds 50 mmHg (cf. their Fig. 4, bottom frame) and argued that
the bell-shaped curve in the pinfusion — Qinfusion plane is partly
related to the formation of a thin membrane around the needle tip,
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Fig. 6 Exact (thick solid lines), order zero (thin solid lines) and
order one asymptotic results (dashed lines) in dimensionless
form for pintusion = 43.75mmHg (6 =0.1) and Ko =3 x 10 %cm?
(mmHg s). The leading order value of u is zero and K, =1 (not
drawn). The horizontal line in the frame with the IFP denotes
the effective vascular pressure.

forcing the pressure in the cavity to be above a given threshold
before intratumoral infusion can take place. The existence of a
threshold pressure for infusion had been reported previously [19]
and the mechanism still awaits a complete physical description.
Another possible reason of discrepancy between the numerical
results that we have obtained and those by McGuire et al. [12] is
due to the neglect/account of fluid exchange between the intersti-
tium and the blood vessels. Accounting for it, via the Starling’s
law term, we find that Q increases with r, with fluid filling the
extra-cellular matrix and contributing to the increase of the strain.
Figure 5 shows also results obtained from the asymptotic model at
order zero, with constant L, =L, (i.e., results directly available
from Eq. (14)). It is interesting to observe that, particularly at low
infusion pressures, they do not differ much from the solutions of
the full system (9)—(12), and are similarly affected by variations
in K,. As expected, the agreement between the exact solution of
the full model and the leading order solution deteriorates with the
increase of J. Given the uncertainties in the estimate of the hy-
draulic conductivity, for practical purposes, in the limit of very
small deformations, the leading order term of the expansion yields
field values which are sufficiently accurate. On the other hand, for
“large” deformations (within the limits of linear elasticity theory),
it is appropriate to extend the asymptotic solution up to next
higher order.

In Figs. 6 and 7 we investigate limits of validity of the expan-
sion. Here the solutions, up to order 9, of the asymptotic model
are drawn together with the results of the full system of Egs.
(9)—(12), for two cases,  =0.1 and 0.3, corresponding, respec-
tively, tO Pinfusion =43.75mmHg and pipgusion = 108.75 mmHg.
Case 1 has been considered in both figures. The agreement is
good, despite the fact that the larger value of pinpsion greatly
exceeds those commonly encountered in applications; such a large
value of J is of interest only to test the limitations of the asymp-
totic analysis. The validity of the latter statement stems also from
[20] observation that the porosity ¢ of the interstitial matrix is
approximately 0.2; this means that the pore velocity (equal to the
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Fig. 7 Exact (thick solid lines), order zero (thin solid lines) and
order one asymptotic results (dashed lines) in dimensionless
form for pinsusion = 108.75mmHg (6 = 0.3) and Ko =3 x 10 %cm?
(mmHg s). The horizontal line in the frame with the IFP denotes
the effective vascular pressure.

Darcy flux ¢ divided by ¢) can be properly represented by the
expansion proposed only when d is much smaller than 0.2. In the
results shown here we have fixed K to the value of 3 x 107 sz/
(mmHg s) which appears to provide flow rates of the agent at
r=a closer to the measured ones. The plots of the IFP resemble
those presented by [6] for a similar configuration. The pressure
decays over a small radial distance from the infusion site, and
remains close to the effective vascular pressure over a range of r,
before ultimately decaying to the value imposed at the tumor mar-
gin. When the infusion pressure is very large (0 =0.3) the agree-
ment between the asymptotic solution at order ¢ and the full
solution deteriorates but mildly, supporting the statement made at
the beginning of Sec. 4. on the better-than-expected range of
applicability of the asymptotic theory. As far as the hydraulic con-
ductivity (computed with the asymptotic formulation) is con-
cerned, it becomes negative very near the infusion boundary (cf.
Fig. 7); one might imagine that second order in J is needed to
improve matters, but this is not consistent with linear elasticity
theory which holds to first order in the deformation. In hindsight,
the negative values of K are not of concern, they are irrelevant
(just like the value of the pressure which appears to exceed the
infusion pressure at r=a), since they occur (in the unphysical
portion of the domain) where r < d'.

5 Closing Remarks

An asymptotic approach has been proposed for the study of the
infusion of a therapeutic agent into a solid tumor, modeled as a
poroelastic medium of conductivity anisotropically dependent on
the material strain rate. In the model we have included fluid
exchange with the capillary system, and observed the influence of
variations of the vascular conductivity L, on the results. In partic-
ular, when there is little or no fluid exchange between the inner tu-
mor tissue and the vascular network, reduced radial displacements
and flow rates are found as function of the radius, compared to the
results of the original Starling’s law model (for which L, is
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constant across the radius). For the conditions examined here it is
notable that the flow rate Q systematically increases with r, an in-
dication of the efficient delivery of the drug, related to the absent
(or very reduced) reabsorption of fluid by the tumor capillaries.

By adopting values of the parameters which are commonly
found in the literature, there is a reasonably good agreement of
the computed infusion flow rates with the experimental results by
McGuire et al. [12], for varying infusion pressures. The parameter
that most strongly influences the results is the average hydraulic
conductivity K of the medium, whereas the radial distribution of
K plays a relatively minor role. Given the large scatter of data
present in the literature for Ky, there seems to be little need in cou-
pling the elastic deformation of the fluid with the hydraulic prop-
erties of the interstitium: the leading order, uncoupled, solution is
sufficiently accurate, at least for sufficiently low values of the
infusion pressure. The situation is obviously different should very
large strains of the tissue occur.

Several lines of research arise in light of the results reported
here. One is based on the use of nonlinear theory for the behavior
of materials undergoing strong displacements. The neo-Hookean
material, often used for modeling elastin and collagen, could pos-
sibly be used, as well as the Fung-elastic constitutive model
[21,22], appropriate for soft tissues characterized by pronounced
mechanical anisotropy, highly nonlinear stress—strain relation-
ships, large deformations, and viscoelasticity. Another avenue of
research consists of developing a model which couples the intra-
vascular and interstitial flow, reducing the need for model con-
stants of uncertain determination. Progress along this line has
been recently reported by Wu et al. [23,24]. Finally, even assum-
ing that the tumor has a spheroidal shape, given the haphazard for-
mation of cracks, hypoxic, and necrotic regions in tissues, it is
estimated that only about 20% of the cases end up with a spherical
distribution of flow and drugs [25], with irregular, three-dimensional
infusion in all other cases. This is one of the major problems to
overcome when modeling intratumoral infusion.
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