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Abstract. The steady primary instability of G6rtler vortices developing along a curved Blasius 
boundary layer subject to spanwise system rotation is analysed through linear and nonlinear 
approaches, to clarify issues of vortex growth and wavelength selection, and to pave the way to further 
secondary instability studies. 

A linear marching stability analysis is carried out for a range of rotation numbers, to yield the 
(predictable) result that positive rotation, that is rotation in the sense of the basic flow, enhances the 
vortex development, while negative rotation dampens the vortices. Comparisons are also made with 
local, nonparallel linear stability results (Zebib and Bottaro, 1993) to demonstrate how the local theory 
overestimates vortex growth. The linear marching code is then used as a tool to predict wavelength 
selection of vortices, based on a criterion of maximum linear amplification. 

Nonlinear finite volume numerical simulations are performed for a series of spanwise wave numbers 
and rotation numbers. It is shown that energy growths of linear marching solutions coincide with those 
of nonlinear spatially developing flows up to fairly large disturbance amplitudes. The perturbation 
energy saturates at some downstream position at a level which seems to be independent of rotation, but 
that increases with the spanwise wavelength. Nonlinear simulations performed in a long (along the 
span) cross section, under conditions of random inflow disturbances, demonstrate that: (i) vortices are 
randomly spaced and at different stages of growth in each cross section; (ii) "upright" vortices are the 
exception in a universe of irregular structures; (iii) the average nonlinear wavelengths for different inlet 
random noises are close to those of maximum growth from the linear theory; (iv) perturbation energies 
decrease initially in a linear filtering phase (which does not depend on rotation, but is a function of the 
inlet noise distribution) until coherent patches of vorticity near the wall emerge and can be amplified by 
the instability mechanism; (v) the linear filter represents the receptivity of the flow: any random noise, no 
matter how strong, organizes itself linearly before subsequent growth can take place; (vi) the G6rtler 
number, by itself, is not sufficient to define the state of development of a vortical flow, but should be 
coupled to a receptivity parameter; (vii) randomly excited G6rtler vortices resemble and scale like 
coherent structures of turbulent boundary layers. 
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1. Introduction 

The subject of this work is the spatial development of the boundary-layer flow over a concave surface 
subject to system rotation, with the axis of rotation perpendicular to the plane of the base motion. 
Applications of the present problem include, for example, the flow along pressure surfaces of rotating 
blades, where the combined effects of pressure gradients, curvature, and rotation determine the flow 
character and its stability. Interest in vortices developing along curved boundary layers stems also from 
their similarities with coherent structures in the near-wall region of turbulent shear flows (Blackwelder, 
1983). Streamwise vortices can also be excited in a flat-plate boundary layer by an algebraic instability 
(Landahl, 1980; Trefethen et al., 1993), and in fact streamwise or quasi-streamwise vortices constitute the 
optimal  perturbat ion (the perturbation with the largest initial transient amplification (Butler and Farrel, 
1992)) for the Blasius flow. Vortices in nonrotating curved boundary layers have been the subject of 
renewed studies in recent years to understand issues of wavelength selection and the onset of secondary, 
time-dependent motions. The experiments of Swearingen and Blackwelder (1987), henceforth referred to as 
SB, have provided a basis for the computational studies of, among others, Lee and Liu (1992) and Guo and 
Finlay (1994). While these computations have faithfully reproduced laboratory results when experimentally 
established initial and boundary conditions are used, only theory (Floryan and Saric, 1984; Guo and 
Finlay, 1994) has provided some criteria for the wavelength selection. It has been argued that a wave- 
length in the neighborhood of the curve of maximum linear amplification has a good chance of 
being selectively amplified. This has been confirmed in experiments where the upstream flow perturbations 
are randomly distributed along the span, but it is at variance with other experimental evidence that 
indicates that different wavelengths are selected in different experiments (compare, e.g., Tani, 1962; 
Bippes and G6rtler, 1972; Bippes, 1978; SB). In fact, the available literature for the nonrotating G6rtler 
flow provides average values of the selected spanwise wave numbers that differ by up to a factor of 10. 
This fact indicates two things: the downstream vortex development is strongly influenced by the inlet flow 
and disturbance field (typical of a convective instability), and the wavelength selection mechanism is weak. 
The influence of system rotation on these two aspects of the G6rtler instability has never been addressed 
before. 

In a recent paper by Zebib and Bottaro (1993), from now on referred to as ZB, the nonlinear equations 
which describe the spatial development of G6rtler vortices with system rotation were derived. A local linear 
stability analysis which included nonparallel effects on the growth of the boundary layer was also carried 
out. It was demonstrated that positive rotation (that is rotation in the sense of the basic flow) destabilizes the 
motion, while negative rotation stabilizes it. This influence of rotation has also been demonstrated by 
Aouidef et al. (1992). Curves of maximum growth rates in the wave-number-G6rtler-number plane for 
different rotation numbers suggest that the preferred (linearly most amplified) dimensional spanwise 
wavelength of the vortices is larger for negative than for positive rotation. No experiments or nonlinear 
simulations of the rotating G6rtler flow are available to support these statements. However, some 
experimental evidence exists for the rotating flat-plate boundary layer (Matsubara and Masuda, 1991) and 
for the rotating curved channel flow (Matsson and Alfredsson, 1990, 1994), which shows that positive 
rotation indeed enhances the growth of streamwise vortices, whereas negative rotation is stabilizing. An 
interesting observation made in both experiments was the increase in the number of vortices under the effect 
of positive rotation. In the flat-plate experiment by Matsubara and Masuda, the decrease of the average 
wavelength of the vortices with the increase of the angular speed of rotation is in agreement with arguments 
based on a local, parallel linear theory (see also Potter and Chawla, 1971). Matsson and Alfredsson (1994) 
found that when a specific wavelength was forced onto the flow by small roughness elements placed 
periodically along the span, a new vortex pair emerged between two existing pairs. They attributed this to 
an Eckhaus instability (Eckhaus, 1965), by which the flow would tend to adjust the imposed spanwise 
wavelength to a more favorable one (see also Bottaro, 1993; Guo and Finlay, 1994). 

Some limited experimental results have been presented by Pexieder et al. (1993) for the rotating G6rtler 
flow. Their flow visualizations indicated clearly that vortices start growing steadily within some range of 
rotation numbers, as was the case in SB for the case of no rotation. These initial experiments provide 
qualitative support to the stabilizing/destabilizing role of rotation. 

Other studies related to the problem considered here are the stability of free shear flows subject to 
spanwise system rotation (Yanase et al., 1993) and the effect of rotation on coherent structures in a turbulent 
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channel flow (Kristoffersen and Andersson, 1993). For this latter flow case, the pressure (suction) side of 
a channel receives an effect equivalent to that of positive (negative) system rotation in a boundary layer 
along a concave wall. Kristoffersen and Andersson (1993) report that with the increase of the rotation rate 
the number of vortex pairs close to the pressure side of the channel tends to increase. Conversely, the suction 
side is restabilized and might experience relaminarization for a sufficiently large rotation rate. 

In this paper we perform numerical experiments by solving the steady, nonlinear equations of motion to 
assess the influence of rotation on the spatial development of the flow along a concave wall, and wavelength 
selection mechanism. These equations are parabolic, and are thus solved by straightforward marching, 
similar to that used by Lee and Liu (1992). In addition, the linearized version of these equations is also 
solved by a finite difference-spectral marching procedure, by which the amplification of vortices with 
a given spanwise wavelength is calculated. Linear and nonlinear results for different rotation numbers 
complement and confirm each other convincingly; both codes are then used to address issues of wavelength 
selection. 

2. Mathematical Formulation 

We consider the rotating boundary-layer flow over the concave wall with constant radius of curvature 
subject to system rotation f~ with the axis of rotation coinciding with the axis of curvature (see Figure 1). 

Following ZB, we introduce the length scale (, defined as the streamwise distance from the leading edge of 
the curved plate to the starting point of the calculation, and define the curvature parameter ~, the Reynolds 
number Re, and the G6rtler number G by 

7 = f ' ~ -  1, Re  --  U ° ~ ( ,  G 2 = ~/Re 1/2, (1) 
v 

where Uo~ is the free stream velocity (assumed to be constant along x) and v is the kinematic viscosity. The 
theory is developed for 7 ~ O, Re--+ c~ such that G = 0(1), and the rotation number Ro = f~N/Uoo is also 
0(1). In a cylindrical coordinate system (r, O, ~) with corresponding velocity components (v,., v0, v;) we 
introduce the dimensionless boundary layer coordinates x, y, z: 

0 ( r - N )  Rel/2, z ~- x = - ,  y -  = Re  1/2, (2) 
7 E ( 

Figure 1. Sketch of the problem. 
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and the dimensionless velocities u, v, w, together with the pressure p: 

/)0 Vr /)f P' 
u = U ~ '  v - Uoo R e  1/2, w = ~ R e  1/2, p = ~pUoo Re,, (3) 

where p is the constant density and p' is the dimensional pressure. When these variables are substituted into 
the Navier-Stokes equations, expressed in cylindrical coordinates in the rotating frame of reference of 
Figure 1, the leading-order system is found to be 

0u & Ow 
0-7 + ~yy + ~z  = O, (4) 

u +v y+w?7 z =ay  &2, (5) 

IU~X_}_V~y_~_W~Z]V_{ - G2u2 Op 021) 02U 
- Oy k Oy ~ + ~z 2 - 2RoG2u,  (6) 

u Oz 2. (7t 

The boundary conditions associated with the parabolic system (4)-(7) are taken to be 

u = v = w = O  at y = 0 ,  (Sa) 

Uy = vy = wy = 0 as y--+ ~ ,  (8b) 

where the infinite field was truncated at Ye = 50. It was also checked that the adoption of conditions at Ye 
such as in Lee and Liu (1992), 

u = l ,  vy=0,  w = 0 ,  

produced the same results as the boundary conditions (8b). Most computations are performed for half 
a wavelength (n/~, where c~ is the wave number at x = 1), and along z the symmetry conditions 

u z = v ~ = w = O  for z = 0,~, (8c) 

are adopted. The numerical solutions of the nonlinear parabolic system is accomplished by the finite 
volume procedure described in Patankar and Spalding (1972). Briefly, the y - z  computational domain is 
divided into rectangular cells with the grid points located at the geometric centers of these small cells. 
Additional boundary points are included to incorporate the boundary conditions. The discretized 
equations are obtained by integrating the conservation equations over control volumes having these cells as 
a base and extending a distance Ax in the streamwise direction. Local linear y and z dependence in any of the 
primitive variables is assumed, resulting in a second-order accurate scheme. Staggered location for the y - z  
velocity components is adopted to avoid unrealistic pressure fields and associated numerical instabilities. 
Streamwise marching is accomplished through a fully implicit first-order forward Euler scheme. For  the 
parameter values of this work, we have determined that a 71 x 25 y z grid (stretched in y and uniform in z) 
and Ax = 0.02 are adequate for computations covering half a wavelength. Numerous computations were 
also performed on a finer grid (121 x 50 and Ax = 0.01); each one of these latter calculations required of the 
order of 15 CPU hours on the Cray-2 supercomputer at EPFL.  

2.1. Linear Stability Equations 

We consider the spatial development of a perturbed Blasius profile: 

u = (U(x, y) + ul(x, y, z), V(x, y) + vl(x, y, z), Wl(X, y, z)), (9) 

where (U, V) is the Blasius solution to Prandtl°s boundary-layer equations, which remain unchanged in the 
limit y ~ 0. The linear stability equations are obtained by linearizing (4)-(7), and then reducing the system to 
a two-equation set in which the pressure and the spanwise disturbance velocity component are eliminated. 
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The resulting equations for the perturbation velocities u 1 and v 1 are 

8ul  v - V,u,  + u, / ) l  = 0, (10) -V2ul  + U-~-x + @ 

2 8l)1 8l)1 V. 8/)1 8/)1 82/~/1 
--V4/)1 q- UV ~-x-{- V V 2 ~ y  --[ - VyV2/)I-}- yy 8y -v Vyyy/) 1 - Uvy~-x+2Vysx @ 

dul /a2ul  82ul) aZul 
+ 2v.T2x + v=k 8y2 .+  Vx. l + zG2(V + Ro) S-z  =O, (11) 

with V 2 = 82/0y 2 + 82/dz 2 and V 4 = 8~/8y 4 + 2(84/@ 2 c3z 2) + 34/8z 4. These equations are equivalent to 
those given by Hall (1983), with the addition of the rotation term; they are solved by downstream marching 
with an approach analogous to the one described by Bertolotti (1991), (see also Bertolotti et al., 1992) for the 
solution of the so-called Parabolized Stability Equations, PSE. We consider disturbances f l  = (/)1, ul) r, 
with the decomposition 

f1(x, y,z) = 97(x, y)exp( f a(x)dx + i~z), (12) 

where 97(x,y)= [g(x,y),~(x,y)] r is the mode shape of the perturbation. When substituting (12) into 
(10)-(11), the following parabolic equation results: 

L97+ M ~ = 0 ,  (13) 

where L and M are 2 x 2 matrix operators in y given in the Appendix. The boundary conditions are taken to 
be 

= O = g y = 0  at y = 0 a n d y e ,  (14) 

and the initial conditions are taken from the local nonparallel stability problem (ZB). At each x-step, the 
energy growth is transferred to the exponential term, and this step is iterated until 97 fulfills the 
normalization condition 

ON 
8x 0. (15) 

Among the different choices of N (Bertolotti, 1991), we have taken N = ~Yo" u~ dy which is a measure of the 
energy of the perturbation integrated over y. An initial function 97o must be provided to initiate the 
downstream marching at x = 1, however, no initial value of a is needed, since no x-derivatives of o- appear in 
the equations. 

A local, nonparallel linear stability eigenvalue problem can be derived by setting M identically equal to 
zero. It should be noted that such local equations would be slightly different from those of ZB because of the 
inverted order of normal mode substitution and differentiation with respect to x. The results obtained with 
the two sets of local linear equations are indistinguishable from one another (Klingmann, 1993). 

Equation (13) is solved by a second-order accurate finite-difference scheme in x and Chebyshev 
collocation (using from 50 to 80 points) in y, after mapping the infinite field in y to ( -  1, 1] through the 
exponential mapping y~ = 1 - 2  exp(-Y/Yo), where Y0 is a value between 15 and 50. Extensive tests have 
been performed to validate the code and to select accurate, cost efficient, grids, both for the Orr-Sommerfeld 
and the GSrtler problems (Klingmann, 1993). 

3. Linear and Nonlinear Development of the Vortices 

It has been shown experimentally (SB, among others) that the initial spatial development of GSrtler vortices 
is steady. This is also true in the case of weak co- or counter-rotation of the system (Pexieder et al., 1993). 
The development depends on a large number of variables, such as the shape and the streamewise position (~) 
of the initial disturbances. Other parameters at play fix the values of Re, G, and Ro. Whereas the locally 



330 A. Bottaro, B.G.B. Klingmann, and A. Zebib 

scaled wave number ~ increases a s  x 1/2 and the local G as x 3/4 (Hall, 1983), the dimensionless wavelength 
parameter A, defined as 

- = G (16) 
1) 

remains constant at all streamewise locations (unless merging and/or splitting of vortices takes place and 
the physical wavelength 2' of the vortices is modified; this is discussed in further detail in Section 4). In this 
section we consider the influence of rotation and wave number on the downstream development of the 
vortices, and compare results obtained by linear and nonlinear analyses. 

3.1 .  I n f l u e n c e  o f  R o t a t i o n  

Here we consider the influence rotation would have on previously reported experiments and computations 
(SB; Lee and Liu, 1992). The detailed measurements by SB were made at U~ = 500cm/s, R = 320cm, 
v = 0.15cmZ/s, for a vortex pair with a wavelength 2' of 1.8cm, giving A = 450 (note that the average 
wavelength over the span was reported to be 2.3 cm, which corresponds to A = 650). The simulations are 
started at # = 4 0 c m ,  so that at x =  1, G =  6.756, c~= 0.3824, and, as in Lee and Liu (1992), an initial 
disturbance (Ux, vl, Wx) composed of the local linear eigenfunctions for Ro = 04 with ulm~x = 0.042 is used to 
correspond to the experimental data in SB. 

Figure 2 illustrates the "mushroom" growth corresponding to Ro between - 0 . 2  and 0.2. Here contour 
plots of constant u are shown at five axial locations. The results obtained at Ro = 0 are in excellent 
agreement with previously published results (Lee and Liu, 1992). The stabilizing (destabilizing) influence of 
negative (positive) rotation which is predicted by the local linear analysis in ZB is verified by the nonlinear 
calculations. The penetration of low momentum fluid into the free stream, indicated by the 0.9 u-level, is 
seen to increase (decrease) according to Ro > 0 ( < 0). Further evidence of this influence can be seen from the 
"peak" and "valley" wall shear stress variation with x in Figure 3. At the mushroom stem (peak) positive 
rotation first decreases the wall gradient, with a subsequent increase which is more rapid the larger the 
rotation number. In the valley the spatial development is also faster at large positive Ro, and the maximum 
value attained is higher. Far downstream, the shear stresses at the peak and valley locations reach almost 
constant values which depend weakly on Ro. 

The growth of the perturbation energy with x as a function of Ro (all other parameters fixed as stated 
above) is compared in Figures 4(a) and (b) with linear results, local and marching, respectively. The 
nonlinear perturbation energy is defined as 

E = u ~ dy dz, (17) 

and the curves of linear growth shown in Figure 4 are computed according to 

E = E o e x  p 2 a d x  , (18) 

where E o is the kinetic energy of the perturbation at x = 1. It can be seen that the local linear results of ZB 
slightly overestimate the growth of the G6rtler vortices, whereas the linear marching results shown in 
Figure 4(b) faithfully reproduce the nonlinearly computed growth rates until quite large values of E. Far 
downstream, nonlinear saturation leads to a departure from the linearly predicted energy growth. An 
interesting observation to be made from Figure 4 is that, despite the large influence of rotation on the initial 
development, the vortices have the same perturbation energy regardless of Ro, once the nonlinear 
saturation stage is reached. 

4 Since there is really no formal mathematical justification for using the local eigenfunctions as initial conditions for the marchin9 
analysis, we have decided to use the same initial conditions (the local eigenfunctions at Ro = 0) for all the calculations, thus limiting the 
number of variables. The results show that the perturbation energy starts growing immediately for all Ro's, without noticeable 
transients. 
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Ro = -0.2 

i 

Ro = -0.1 

Ro = 0.0 

R o =  0.1 

F i g u r e  2. Development of vortices in x corresponding to differ- 
ent values of Ro and for a disturbance wave number c~ = 0.3824. 
At x = 1, G = 6.756 and a perturbation proportional to the local 
linear eigenfunction at R o = O  normalized according to 
Ulmo~ = 0.042 is assumed. Deeper penetration of low momentum 
fluid into the free stream at larger values of Ro is observed. The 
y - z  grid used is 121 x 50, with Ax = 0.01; the range of y in the plot 
is [-0, 201 and the plots are scaled correctly. Spacing between 
neighboring isolines is 0.1. 

Ro = 0.2 

x= 1.4 x = 1 . 8  x=2.2 x=2.6 x=3.0 

3.2. Influence of the Initial Wavelength 

To assess further the extent to which the linear marching theory is applicable, we have performed one more 
comparison between linear and nonlinear calculations at one Ro (Ro = 0, but it is safe to extrapolate 
qualitatively the conclusions to cases with Ro # 0) for two different wavelengths: A = 75 and 160. We fix E at 
10cm (so that the initial G = 2.39), and the initial condition is taken as the solution to the local linear 
stability problem. In the nonlinear calculations the initial amplitude was taken to be ul,~ x = 0.05. Figure 5(a) 
compares the linear and nonlinear energy growth for A = 75 and 160 in the absence of rotation. Note that 
the ratio of the specific energy levels (E/A) at saturation is about  2.7; the ratio of the absolute energy levels at 
saturation, (E)a= 160/(E)A= 75 is even larger and stands at approximately 4.5. Calculations performed for 
a range of wavelengths (not shown) indicate that saturation energies increase with A, but for each A there is 
no Ro-dependence. The fact that the larger vortices are more "vigorous" could also be deduced from 
Figure 5(b), where it is shown how the wall shear stress produced by vortices with A = 75 is consistently 
inferior to that induced by vortices with A = 160. Figures 6(a) and (b) show the nonlinear perturbation flow 
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Figure3.  Variation of wail shear stress with x for the same 
conditions as Figure 1. The destabilizing influence of rotation can 
be inferred from the decrease (increase) in shear stress at peak 
(valley) locations. 
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Figure 4. Growth of the perturbation kinetic energy E as defined in (17) and (18) corresponding to nonlinear and linear predictions, 
respectively. (a) Local theory and (b) marching theory. 

S A slight "disagreement" between linear and nonlinear results is present at low x. It is due to the imperfect satisfaction of 
conservation balances in the nonlinear equations close to the starting point (x = 1). A nonlinear calculation which was carried out with 
Ax = 0.01 and with up to 10,000 iterations at each x step (for i < x _< 2.5) showed a perfect agreement with the linear marching results, 
It was deemed unnecessary to pursue such an expensive calculation. 
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Figure 7. Comparison between linear and nonlinear mode shapes at the same three values ofx as in Figure 6. The nonlinear results for 
/Arm s and Vrm s are shown with continuous lines and the linear results for u 1 and v 1 are dotted. The lower set of curves represent the 
streamwise components of the disturbance velocity at three x's and the upper set represent the normal com!0onents. 

remains strictly sinusoidal). The spanwise-averaged longitudinal velocity is defined as 

= - u d z ,  (19) 

and the spanwise r.m.s, of the u velocity field is defined as 

Ur s:E f:,. ,2o  
Similarly, for v. The spanwise r.m.s, of the u- and v-fields of the nonlinear solution at three values of x are 
compared in Figure 7 with the mode shapes obtained from linear calculations. The comparison is made in 
such a way that the linear and nonlinear maximum values of u 1 and U,m s coincide, at each x. Once u I is 
defined, the variation of the vertical mode shape v~ with t/follows (t] is the wall-normal similarity axis in the 
Blasius boundary layer). It can be seen that the relative size of v l / u  1 of the linear solutions is slightly 
underestimated, however, the general agreement is remarkably good, even at x = 4.2. 

In summary, both the z-averaged shape and the energy growth rate of G6rtler vortices are well 
approximated by the linear theory even at u-amplitudes as high as 30% of the free-stream velocity (which 
correspond to energy amplification by a factor of 50, see Figure 5). Nonlinear effects result in an 
enhancement of the internal shear layers, which are important for the development of secondary 
instabilities and transition to turbulence (Bottaro and Klingmann, 1996). Such phenomena, which may 
already be operational before the stage of nonlinear saturation (SB), clearly cannot be reproduced by our 
steady calculations. 

4. Wavelength Selection 

The good agreement between linear and nonlinear results concerning the initial development of G6rtler 
vortices indicates that the wavelength selection mechanism should be linear, insofar as it is the amplification 
rate which determines the dominant vortex wavelength. As will be seen in the following, there are also other 
aspects which play an equally important role, one being the upstream flow conditions, another being the 
nonlinear modification of the wavelength through an Eckhaus instability. 

In the absence of rotation, theoretical considerations based on the optimal growth rates (see Floryan and 
Saric, 1984; Gun and Finlay, 1994) indicate a preference for vortices with a dimensionless wavelength 
parameter A ~ 200. This wavelength has also been found to dominate in experiments where disturbances 
were introduced uniformly over the span. In the experiments of Bippes and G6rtler (1972), an isotropic field 
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of disturbances, induced by screens, was introduced into the incoming flow, and the average wavelength 
observed downstream was A ~ 200. This was confirmed later by Swearingen and Blackwelder (1986), who 
also studied the effect of various screen configurations on the wavelength selection. Hence, there is 
experimental evidence for the selection of vortices with the linearly most amplified wavelength, if the 
background disturbances are sufficiently broadband. However, larger wave numbers are usually found in 
experiments with low levels of free-stream turbulence, where disturbances are not triggered in a uniform 
manner (such as by a grid); e.g., SB observed an average spanwise wavelength of A = 650, and Tani 
(1962) found wave numbers of up to A = 1900. In these cases, small irregularities on the surface of the curved 
plate or in the free stream beyond experimental control are probably responsible for the wavelength 
selection. 

4.1. Predictions from Linear Theory 

According to the local linear theory given by ZB, the most amplified wavelength A lies in the neighborhood 
of 260 (160) for Ro = - 0.3 (0.3). This can be inferred from Figure 7 of ZB by plotting lines at constant A and 
finding the wavelength which most closely coincides with the curve of maximum amplification. In the 
parametric study described below, the linear marching code was used to obtain solutions for a large number 
of A's and Ro's. Each run was initiated at G = 1 with the solution of the local stability problem. It was noted 
that varying the starting point of the downstream marching did not significantly affect the results; this is 
clearly a consequence of the fact that, in some asymptotic sense (Day et al., 1990), the marching results tend 
toward the local results (which are independent of initial conditions and starting point) some distance 
downstream of the leading edge of the plate. 

Figure 8 shows how the amplification rates vary with A and Ro, at fixed values of G. In all cases the 
dependence of a on A (wavelength selection) is weak at low G where the linear amplification starts, giving 
similar amplification rates within a wide range of A's between 100 and 2000. As G increases, the region of 
intensively amplified A's becomes slightly narrower, particularly for positive Ro. Some nonlinear calcula- 
tions did indeed show that vortices with widely varying A had practically equal amplification rates, and 
more so for Ro < 0 than for Ro > O. With increasing Ro the most amplified wavelengths shift toward lower 
values. This is seen clearly in Figure 9, where the most unstable A (i.e., the A where a is locally maximum at 
a given downstream position, G) is plotted as a function of Ro. When Ro < 0 the range of the most unstable 
A's varies quite broadly with G, whereas the variation is contained for Ro > 0 (Figure 9); for example, when 
Ro = 0.5, the most amplified A is in a narrow range centered on A = 160, whereas for Ro = 0, it varies 
between A = 185 and 240 as G increases from 2 to 15. 6 This fact could he interpreted as an indication that 
the wavelength selection mechanism is weaker at negative Ro, which is not surprising since the spatial 
development of the instability itself is weakened by counter-rotation. At low G and negative Ro, 
amplification rates are quite low, and the solutions are strongly dependent on the initial conditions. The 
results in this region should therefore be regarded with caution. 

The interesting conclusion of the parametric study conducted here is that the selection mechanism for 
A is weak for all Ro, and particularly so at low G (or x), where the initial linear growth presumably starts. 
This fact underscores the strong sensitivity on initial conditions and the fact that a whole spectrum of initial 
perturbations may be amplified with practically equal growth rates. Receptivity is then likely to be a more 
important factor for the wavelength selection than maximal amplification rates. 

Up to now we have considered vortices which already developed at the starting point of the calculation. 
Hence the whole initial receptivity phase, where perturbations organize themselves in a coherent form, is 
not represented. Linear results are often presented in the form of N factors, integrated from the point of 
neutral stability according to local linear theory. Such results may be misleading since in an experiment 
G6rtler vortices do not necessarily start growing from the neutral point of the local analysis. As a matter of 
fact, the whole local linear stability problem is subject to justifiable criticism because it neglects the influence 
of initial conditions (Hall, 1983). Calculations using the present linear and nonlinear codes indicate that the 
initial development is very sensitive to the upstream condition used to initiate the marching, particularly at 
low G. This issue is addressed in more detail in the following subsection. 

6 If the accumulated energy growth (in the form of N factors) is considered instead of the local amplification rate or, like in the 
analysis of Floryan and Saric (1984), the most amplified A's are slightly lower. 
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4.2. Nonlinear Results for a Random Inlet Field 

It is by now clear that a system subject to controlled perturbations can amplify vortices of almost any 
desired wavelength within a large range. On the other side, a randomly distributed field of incoming 
disturbances can be expected to develop into vortices with the linearly most amplified wavelength. This can 
be verified by considering a long (in z) test section and applying at the entrance of the computational 
domain a white-noise perturbation field. This is the strategy adopted in the nonlinear calculations of this 
and the following section. These runs start from G = 6.756 with a computational box of dimensionless 
spanwise length equal to 89.7. The inlet conditions used are stationary; this is an adequate representation of 
the situation in which vortices are triggered by upstream grids or wall roughness. On the other hand, an 
unsteady analysis should be employed when free-stream turbulence or acoustic disturbances are dominant. 
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In this latter case the vortices could present a continuous temporal  evolution, with seemingly chaotic 
merging and splitting events. Clearly, these phenomena are excluded by our steady simulations. 

4.2.1. Mesh Resolution Requirements. First we establish the grid-size distribution necessary to resolve 
adequately the vortical structures in the long cross section under consideration. 

A perturbation field composed by random noise of amplitude varying between - 0.042 and 0.042 in each 
of the three velocity components is applied at the inlet of our computational  domain, for the case Ro -- 0.3. 
The first grid employed has the same number and distribution of points along x and y as in the previously 
described calculations, namely 71 control volumes along y, and a streamwise marching step equal to 
Ax -- 0.02. In the spanwise direction 151 control volumes are used. The curve of the computed perturbation 
energy (defined by (17)) versus x is displayed in Figure 10. An initial phase appears in which E decreases, 
signifying decay of many components of the initial conditions when projected on the eigenfunction space of 
the linear problem, followed by a phase, for x > 1.52, of growth and nonlinear saturation. Two other grids, 
one coarser and one finer, have been tested to validate the present run. Because of the completely 
uncorrelated nature of the disturbance flow field at x = 1, it turned out to be impossible to interpolate the 
velocity field there properly onto different grids to produce identical, or even similar, downstream 
evolutions. We have thus resorted to interpolating the velocity distribution at x = 1.6, close to the initial 
growth phase of the vortices, since at this point a more correlated distribution of perturbation variables has 
been produced by the application of the governing equations of motion. Even then, the initial point of 
vortex growth differs slightly among the three grids adopted.7 The starting points of the two new grids have 
a slightly lower perturbation energy compared with the original run; the downstream developments, 
however, closely follow one another in the linear growth regime as well as in the nonlinear phase. 
Furthermore,  the details of the disturbance fields are very well captured by all three simulations. 

4.2.2. Influence of Random Noise Distribution. In this and all the following numerical simulations the 
mesh adopted is the "intermediate" one, whose adequacy has been established above. The two calculations 
described here start from the same global disturbance amplitude, but with different random noise 
distributions. Results for Ro = 0.3 are displayed in Figures 11 and 12. The perturbation energies differ 
between the two cases, except clearly for x = 1, and the saturation levels reached are also slightly different. 
The latter is an effect of the different filtering selection actuated by the equations in the linear regime when 
E decreases, and of the different average wavelengths achieved in the two cases in the nonlinear stages. Note, 
however, that the streamwise extent of the initial energy-decreasing phase is the same (from x = 1 to about 
x = 1.5) for the two different random noise distributions. The streamwise velocity fields are shown in 
Figure 12 at five different x values; the spatial evolutions produced are qualitatively similar. Most of the 

7 It is also to be noted that through bilinear interpolation we introduce approximations locally proportional to Ay and Az. 
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Figure 11. Perturbation energy versus x, for two different inlet 
noise distributions but same initial amplitude levels; Ro = 0.3. 

vortices are bent toward a side highlighting the disparity in streamwise vorticity levels on either side of the 
vortex pair. Such asymmetries are due to interactions originating from an Eckhaus instability (Guo, 1992; 
Guo and Finlay, 1994). 

The main difference between the two cases lies in the average wavelength produced; the flow field on the 
right-hand side of Figure 12 (corresponding to the dotted curve in Figure 1 l) presents consistently one less 
upwash region than the case on the left. Simple hand counting of the visible upflows in the cross sections 
indicates that there are 11, 10, and 9 pairs for x equal to, respectively, 2.4, 2.8, and 3.2 (flow field on the right). 
Even this count is approximated, since some vortices do not have a "companion" and resemble cross-flow 
vortices (see Malik et al., 1994). Further discussions on the wavelength selection, together with an 
interpretation of the energy curves, are provided in the next two subsections. 

4.2.3. Effect of the Initial Amplitude Level. Starting with the same white noise but with different 
amplitudes, the disturbance energy for Ro = 0.3 decreases (Figure 13(a)); this occurs over an extent which is 
independent of the initial amplitudes. The perturbation amplitudes chosen on the different velocity 
components are 1%, 4.2%, 10%, and 33.3%, corresponding to curves 1, 2, 3, and 4, respectively. Thus, the 
boundary-layer equations act as a linear filter between x = 1 and x o = 1.52 (dotted vertical line in the figure) 

~;~i,? i~i'/"rl '~'~~ ~ "~ ............................................................................................................................... . . . . . .  , ,r x = 1.6 
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Figure 12. Contours of the streamwise velocity fields for the two cases of Figure 11. The plots are scaled correctly. 
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for whatever  initial per tu rba t ion  amplitude.  Quasi -exponent ia l  g rowth  follows x o according to 

A 
- -  ~ e 2~(x~- ~°), (21) 

. A o  i 

where A is the ampl i tude  of the energy per turbat ion,  o- is the linear growth rate, and x i > Xo, i = 1, 2, 3, 4, is 
the s t reamwise location where the level A is achieved for any initial level Aoc Thus,  we find, using the fact 
that  Aol = 0.014, Ao2 = 0.233, Ao3 = 1.329, and _/to4 = 16.130 at the c o m m o n  m i n i m u m  point  of the three 
curves, x o = 1.52, the relat ions 

x 1 - x 3 ~ 1.61 (x 1 - x2), 
X1 __ X4 ~ 2.50 (x 1 _ x 2 ) .  (22) 

This scenario is conf i rmed by sliding curve 2 horizontal ly  distance L until it coincides, for x large enough, 
with curve 1. When  curve 3 is likewise shifted a distance 1.61L to the right and curve 4 a distance 2.5L, we 
find the nice collapse indicated in Figure 13(b). The overlap of the four curves for some x range till nonl inear  
sa tura t ion  is a powerful  result which indicates conclusively that  a linear receptivity opera t ion  is actuated by 
this flow when subject to steady, r a n d o m  perturbat ions.  A similar conclusion was arrived at by Pexieder 
et al. (1993). They  steadily triggered organized G6r t ler  vortices through small ampli tude jets, located near  
the leading edge of a curved test section. By simply using, as a measure  of growth,  the vertical size ~ of the 
m u s h r o o m  structures visualized with dye, and th rough  var ia t ion of the initial per turba t ion  ampl i tude of the 
jets, they were able to find a similar collapse of/~ versus x by relative shifting of curves measured  start ing 
f rom different initial per tu rba t ion  levels. This, in fact, is equivalent  to finding some kind of virtual origin, 
f rom which point  on c o m m o n  growth takes place. Fully grown vortices are shown in Figure 14 th rough  
isocontours  of ul at x = 3.2 (for the flow situation corresponding to curve 1), x = 2.8 (case 2), x = 2.6 (case 3), 
and x = 2.2 (case 4). The similarities are evident, a l though there is not  a perfect coincidence between 
the different cases because the four stations displayed are not  exactly the "same."  The value of L, defined 
above,  is equal  to abou t  0.4; 1.61L and 2.5L cor respond to distances x 1 - x 3 ~ 0.64 and x ,  - x 4 ~ 1.0 (so 
that  (22) is satisfied). 

These results clearly demons t ra te  that  the G6r t le r  number ,  by itself, is not  a sufficient measure  to define 
the state of growth  of a vortex pair. Some other  quanti ty,  as yet undefined, is necessary; such a quant i ty  
should take into account  ampl i tude level and structure of the inlet per tu rba t ion  field. It  is, in fact, 
a receptivity parameter .  

Finally, it is to be noted tha t  the same quali tat ive behavior  described in this and the preceding 
subsections is expected to occur  at different values of Ro. 

4.2.4. Effect of Rotation on the "Natural" Wavelength Selection. Starting f rom the same r a n d o m  noise 
distr ibution and level as case 1 above,  three cases have been compared:  Ro = - 0 . 3 ,  0, and 0.3. In  Figure 15 
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Figure 14. Streamwise per turbat ion  fields for the four cases of Figure 13, at four different x(G) values. The plots are scaled correctly in 
t hey  zplane,  and the vertical scale extends to y = 15. Positive values ofu  1 are shown with full lines, negative values with broken lines, 
and the zero lines are omitted. The spacings between adjacent isolines is 0.1. 

we have plot ted isolines of the s t reamwise velocity for these three cases at different downs t r eam posit ions x. 
As a l ready shown, the vortices start  growing at r a n d o m  locations in z, and vortices with different individual  
wavelengths  and ampl i tudes  coexist at each x. The  average wavelength at the x-posi t ion where the vortices 
first appea r  can be obta ined  by simply count ing the n u m b e r  of outf low regions; this gives A = 125 (for 
Ro = 0.3), 181 (Ro = 0), and 250 (Ro = -0 .3 ) .  Because of the irregulari ty of  the vortices, the value of the 
average wavelength is app rox ima te  to _+ 10%. I t  is also clear (Figure 12) that  different inlet noises would 
produce  slightly different results. The  average "na tura l"  wavelengths  obta ined  in this way are in agreement ,  
a l though slightly lower, with those predicted by linear stability (see Figure 9). This confirms that, on the 
average,  the l inearly mos t  amplified wavelength  is selected when the flow is subjected to r a n d o m  inlet 
per turbat ions .  

The  dis tr ibut ion of the per tu rba t ion  energy E with the downs t r eam distance x is represented in Figure 16 
for the three values of Ro shown by the thin solid lines. F o r  each Ro, in cor respondence  to the point  of 
steepest posit ive gradient  of  the solid thin lines E versus x, we have plot ted the curves of linear growth  
(dotted lines) for the initial average  values of A of 125, 181, and 250 (for Ro = 0.3, 0, and - 0 . 3 ,  respectively). 
No te  that  the nonl inear  amplif icat ion rate (i.e., the slope of the full lines in Figure 16) is always lower than  
tha t  of the linear solut ion for the average A before the two curves intersect. This could be ascribed to 
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a number of reasons, among which is the absence of a monochromatic wave and, hence, the coexistence of 
vortices at different growth stages in the nonlinear simulations. The bold line in Figure 16 is the difference 
between the full solution and the linear solution for the average A (valid up to the point of intersection 
between the linear and nonlinear curves). Interestingly, this line, indicative of the linear receptivity phase, is 
not a function of Ro. Although the representation chosen is not unique (different linear growth curves could 
be employed, for example) it is instructive to think of the initial phase of the vortices as the coexistence of 
two events: the damping of the disorganized noise and the creation of patches of organized vorticity near 
the solid wall (see also Figure 17). Hence, we can introduce three cross-over points x i (i-- 1, 2, 3 for, 
respectively, Ro = 0.3, 0, -0.3),  defined as the points of intersection of the dotted lines and the bold solid 
line. These cross-over points are equal to 1.7, 1.9, and 2.2 for Ro of, respectively, 0.3, 0, and - 0.3. For  x > xi, 
there is a clearly distinguishable linear amplification region, where the vortices appear and grow (see 
Figure 17). 

A notable difference between the three cases computed is the fact that A changes significantly for 
the positive rotation case, in the range of x considered, because of the merging of vortices. For  Ro = 0.3, 
there are 13 vortex pairs at x = 2 (average A is 125), 12 at x = 2.4 (A = 138), 11 at x = 2.8 (A = 157), and 
10 at x = 3.2 (A = 181). To a lesser degree this also occurs for Ro = 0, where only one merging event 
occurs for 2.2 < x < 2.4, whereas the average wavelength remains constant for the negative value of Ro. This 
points out the fact that the case Ro = 0.3 is more susceptible to an Eckhaus instability than Ro = -0 .3;  
hence, in the nonlinear regime for Ro > 0 an Eckhaus criterion should be used to interpret the selected 
wavelength. 

The vortex merging at positive Ro can be clearly observed both in the contours ofu in Figure 15(c) and in 
the streamwise vorticity field of Figure 17. A clear example is the merging of two vortex pairs near the center 
of the cross section at x = 2.4 into one pair at x = 2.8; a similar phenomenon is also produced between 
x = 2.8 and 3.2. Both events are marked by vertical arrows in Figure 17 for easy identification. Typically, the 
merging involves two vortex pairs, where one pair is much stronger than its neighbor. The stronger pair 
"jumps" above the weaker one with a spanwise shift of half a wavelength. In so doing, at first one cell 
of the weaker pair is annihilated and secondly two corotating cells (orginally belonging to two different 
pairs), placed one above the other, merge into one. The end result is one strong pair (central pair at 
x = 3.2) with the upwash region somewhat inclined, and a tilting of the neighboring vortices. This process is 
likely to be the cause of the irregularity of vortices seen to prevail in many experimental flow visualizations. 
We now wish to present some parallels between longitudinal vortices and organized structures in 
wall-bounded flows. Although these comparisons are somewhat speculative, it appears that the G6rtler 
flow represents a good "laboratory" on which to study the dynamics of wall vortices, with a view toward 
flow control. 

4:2.5. Similarities to Turbulent Coherent Structures. The flow patterns computed present a clear resem- 
blance to organized (coherent) structures of transitional and turbulent boundary layers (see Blackwelder, 
1983). Robinson (1991) reports that the buffer-layer region is densely populated with relatively strong 
quasi-streamwise vortices which play a major role in the formation of low-speed streaks. To verify whether 
the similarities are more than just qualitative, the dimensions of the vortices are rescaled into wall units, 
using the viscous length characteristic of the diffusion of vorticity away from the wall. Such a length scale, 
commonly used in turbulent boundary layers, is, in dimensional form, 

= LOu/3ylw j • (23) 

By using the scaling of (2)-(3) it is easy to find 

l+ = Re_O.ZS 8u -0.5 
gy w ' (24) 

where everything is now dimensionless as by (2). Ou/Sy]w is taken to be the average across the span at each 
given x-position (note that l + varies with x, since the wall shear stress changes with x, and so does the 
spanwise wavelength). The results obtained for the average spanwise wavelength of the vortices ~ +, and the 
average location of the cell centers y+ (defined as the y location where the spanwise integral of w 2 has 
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Figure 15. (a) Isolines of the streamwise velocity for Ro = -0.3 at, from the top, x = 1.6, 2, 2.4, 2.8, 3.2. The isolines are spaced 0.1 
apart. Note that, for comparison purposes, a small horizontal arrow has been drawn in correspondence to the edge of the undisturbed 
Blasius boundary layer, i.e., t/= 5, at each x station. (b) Ro = 0, same x values as (a). (c) Ro = 0.3, same x values as (a). A tendency toward 
further merging events, for x > 3.2, manifests itself. 

a minimum) are summarized in Table 1. There we also report  the average spanwise wavelength A and t/c, the 
cell centers in Blasius similarity coordinate,  for the flow cases discussed in Section 4.2.4. Limited numerical 
experiments have shown that different inlet noise distributions yield spanwise wavelengths A and 2 + 
differing from those quoted in Table 1 by at most  10% (see also Section 4.2.2); on the other  hand, r/c and 
y~+ remain practically unchanged.  Note  that  for Ro = - 0 . 3 ,  x = 2 (still below the cross-over point  x3), 
vortices are not  yet identifiable. 

These dimensions are in the range of those typically quoted for streamwise or quasi-streamwise vortices 
in the wall region of low Reynolds number  turbulent boundary  layers. The mean spacing between 
low-speed streaks in the sublayer is about  100 wall units, and the vortex centers are typically located at 
y+ < 50. A note of caution is in order, however: In  the definition of l ÷ the Reynolds number  appears. We 
have used the value of Re corresponding to the experiments of SB, but it should be clear that  Re is not  
a parameter  in (4)-(7), and that  an infinite number  of combinat ions  of Re and 7 (ratio between the distance 
from the leading edge ~ and the radius of curvature .~) can produce the value of G = 7°SRe °'25 = 6.756 used 
in the simulations. We could, alternatively, write 

l+ = G_17o. 5 ~yyOu ~o.5, (23) 

and a dependence on 7 appears. O ur  results have been computed  for , /=  0.125 taken from SB. If, for 



344 A. Bottaro, B.G.B. Klingmann, and A. Zebib 

101 • 

10 °, 

-1 \ / /  / ..." 

.,.," 
/ y ,/ 

$ ,,' 
! "  

oq, ~ 

" Ro = 0.3 1 e" 
"'~' "'"~--- ] 

/" Ro = 0.0 

Ro = -0.3 

/ .... 
....' 

/ 

] '  

.."" X 

1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0 3.25 3.5 

x 

Figure 16. Spatiat perturbation energy growth. The initial phase in which the random noise is damped is shown with a bold solid line, 
the linear growth curves corresponding to the average wave numbers computed at each Ro are shown with dotted lines, and the 
nonlinear simulation results (which for x sufficiently low are given by the linear superposition of the two previous curves) are 
represented with thin fuli lines. 

example, N was twice as large or small (with { and G fixed), the value of l + would differ by a factor of 

x/2 (and all quantities scaled in viscous units would change accordingly). 
The average spanwise wavelength scaled in wall units increases rapidly when the system is subjected to 

a positive rotation, whereas it remains practically constant for zero and negative system rotation. From 
inspection of the numbers presented in Table 1 we can also observe that as the vortices detach from the wall 
with the increase of x, their centers move upward both in physical units and in wall units. This is particularly 
clear for positive Ro, where merging events contribute to the ejection of vortices from the wall. This is in 
broad agreement with recent findings by Kristoffersen and Andersson (1993) concerning the effect of 
rotation on sublayer streaks in a turbulent boundary layer. 

5. Concluding Remarks  

In this paper results for nonlinear spatially developing G6rtler vortices subject to system rotation have been 
presented. Comparisons with recent nonparallel linear theories, using both local and nonlocal solution 
procedures, have also been shown. Both approaches produce similar solutions to the linear problem; 
however, the nonlocal (marching) approach gives more accurate results, when compared with the fully 
nonlinear solutions. Extensive comparisons between linear and nonlinear marching results show good 
agreement until quite large amplitudes of perturbation, both for the z-averaged shape and the growth rate of 
the vortices. Given its speed of execution, the linear marching code promises to be a powerful tool for 
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Figure  17. St reamwise  vor t ic i ty  field in the cross sect ion at  the same x values as F igure  15, R o  = 0.3. Isol ines  spacings are 0.3 (for 
x = 1.6), 0.6 (x = 2), 1.2 (x = 2.4), and  2 (x = 2.8, 3.2); zero l ines are not  drawn• 

T a b l e  1 

x = 2 x = 2.4 x = 2.8 x = 3.2 

R o  - 0 . 3  0 0.3 - 0 . 3  0 0.3 - 0 . 3  0 0.3 - 0 . 3  0 0.3 

N u m b e r  10 13 8 9 12 8 9 11 8 9 10 
ofce l l s  

A 181 125 250 212 138 250 212 157 250 212 181 

2 + 84 66 100 92 86 97 104 122 96 130 144 
y~ 26 24 34 29 39 34 38 49 35 57 75 

~c 1.98 1.77 2.45 2.00 2,20 2.33 2.15 1.97 2.23 2.35 2.63 
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extensive parametric studies, including, in particular, receptivity calculations. Nonparallel linear approxi- 
mation ceases to be valid at the stage where the vortices develop their typical "mushroom" shape, and the 
perturbation energy then saturates and remains at a nearly constant level, which depends on the wavelength 
but not on Ro. Our calculations show that the energy density E/E  o grows with A. 

In this paper it is shown how positive rotation enhances the development of the vortices while negative 
rotation retards their spatial development. For Ro = 0, the linearly most amplified wavelength was found to 
be close to A = 200, in agreement with previous experimental and numerical results. It decreases with 
positive Ro, and increases when Ro is negative (consistent with experimental evidence by Matsubara and 
Masuda (1991) for the rotating flat-plate boundary layer). However, wavelength selection is weak when the 
instability is weak, i.e., at low G and negative Ro. This may explain why widely varying wave numbers have 
been obtained in different experiments. In an experiment the spanwise distance between neighboring 
vortices can be forced by the upstream field or imposed conditions, or can be allowed to form naturally. We 
have performed numerical experiments to study the natural formation of steady G6rtler vortices in a long 
(along the span) box, subject to random inlet perturbation fields. Initially, the flow fields go through a linear 
receptivity phase which selects the modes to be amplified independently o f  the initial perturbation amplitude 
level. However, different inflow random noise distributions yield different vortical structures downstream, 
but approximately the same average wavelengths. This indicates that the initial filtering phase is similar for 
different initial conditions. The natural average wavelengths obtained are very close to those predicted by 
linear analysis. As the vortices develop into the strongly nonlinear stage, the wavelength increases due to 
merging of the most narrowly spaced vortices, a process related to Eckhaus instability. This is seen most 
clearly at positive Ro, for which the nonlinear development of the vortices is enhanced. Interestingly, the 
characteristic dimensions of the vortices scaled in viscous (wall) units are in the range of those found in 
turbulent boundary layers. 

The conclusions of this numerical study should be relevant to future experiments on the rotating G6rtler 
problem. Some such experiments are currenly being carried out at EPF Lausanne. In this paper we have 
shown how sensitive the system is to initial perturbations. Therefore, it is of utmost importance to 
document the inlet conditions carefully. If these cannot be properly defined, it is preferable to trigger the 
vortices at the entrance of the test section in a controlled fashion. Because of the different growth rate and 
saturation levels of vortices with different A's, it may also be possible to tailor the streamwise variation of 
wall skin friction and the onset of secondary instabilities and transition to specific applications such as flow 
over turbine blades. 
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Appendix 
The elements of the two-dimensional matrix operators in y defining the linear problem are: 

El 1 _-- _ ( D  2 _ g2)2 _}_ V(D 2 __ o~2)D + Vy(D 2 _ c~:) + (TU(D 2 - ~2) + VyyD + Vyyy - ~rUyy, 

E l  2 = _ ~fx(O 2 _~ (~2) _ 2 ~ 2 G z ( U  + R o )  -}- 20-(VyD + Vyy) + Vxyy , 

L21 = Uy, 

L22  = __ (O 2 _ ~2) _~_ o U  --  Vy + VD, 

M 1 1  = g ( o  2 _ ~2) _ Uyy, 

M .  = 2(V,D + V,,), 

M 2 1  = 0, 

M22 = U, 

denotes ~?/~y. where D 



G6rtler Vortices with System Rotation 347 

References 

Aouidef, A., Wesfreid, J.E., and Mutabazi I. (1992) Coriolis effects on G6rtler vortices in the boundary-layer flow on concave wall. 
AIAA J. 30, 2779. 

Bertolotti, F.P. (1991) Linear and Nonlinear Stability of Boundary Layers with Streamwise Varying Properties. Ph.D. Thesis, The 
Ohio State University. 

Bertolotti, F.P., Herbert, T., and Spalart, P.R. (1992) Linear and nonlinear stability of the Blasius boundary layer. J. Fluid Mech. 242, 
441. 

Bippes, H. (1978) Experimental study of the laminar-turbulent transition of a concave wall in a parallel flow. NASA TM 75243. 
Bippes, H., and G6rtler, H. (1972) Dreidimensionale St6rungen in der Grenzschicht an einer konkaven Wand. Acta Mech. 14, 251. 
Blackwetder, R.F. (1983) Analogies between transitional and turbulent boundary layers. Phys. Fluids 26, 2807. 
Bottaro, A. (1993) On longitudinal vortices in curved channel flow. J. Fluid Mech. 251,627. 
Bottaro, A., and Klingmann, B.G.B. (1996) On the linear breakdown of G/Srtler vortices. European J. Mech. B/Fluids, in press. 
Butler, K.M., and Farrel, B.F. (1992) Thre-dimensional optimal perturbations in viscous shear flows. Phys. Fluids A 4, 1637. 
Day, H.P., Herbert, T., and Saric, W.S. (1990) Comparing local and marching analyses of G6rtler instability. AIAA J. 28, 1010. 
Eckhaus, W. (1965) Studies in Non-IJnear Stability Theory. Springer Tracts in Natural Philosophy, Vol. 6. Berlin: Springer-Verlag. 
Floryan, J.M., and Saric, W.S. (1984) Wavelength selection and the growth of G6rtler vortices. AIAA J. 22, 1529. 
Guo, Y. (1992) Spanwise Secondary Instability of Dean and G6rtler Vortices. Ph.D. Thesis, University of Alberta. 
Guo, Y., and Finlay, W.H. (1994) Wavenumber selection and irregularity of spatially developing nonlinear Dean and G6rtler vortices. 

J. Fluid Mech. 264, 1. 
Hall, P. (1983) The linear development of G6rtler vortices in growing boundary layers. J. Fluid Mech. 130, 41. 
Klingmann, B.G.B. (1993) Linear Parabolic Stability Equations Applied to Three-Dimensional Perturbations in a Boundary Layer. 

Report T-93-12, IMHEF-DME, Swiss Federal Institute of Technology, Lausanne. 
Kristoffersen, R., and Andersson, H.I. (1993) Direct simulations of low-Reynolds number turbulent flow in a rotating channel. J. Fluid 

Mech. 256, 163. 
Landahl, M.T. (1980) A note on an algebraic instability of inviscid parallel shear flows. J. Fluid Mech. 98, 243. 
Lee, K., and Liu, J.T.C. (1992) On the growth of mushroomlike structures in nonlinear spatially developing Goertler vortex flow. Phys. 

Fluids A 4, 95. 
Malik, M.R., Li, F., and Chang, C.-L. (1994) Cross-flow disturbances in three-dimensional boundary layers: nonlinear development, 

wave interaction and secondary instability. J. Fluid Mech. 268, 1. 
Matsson, O.J.E., and Alfredsson, P.H. (1990) Curvature- and rotation-induced instabilities in channel flow. J. Fluid Mech. 210, 537. 
Matsson, O.J.E., and Alfredsson, P.H. (1994) The effect of spanwise system rotation on Dean vortices. J. Fluid Mech. 274, 243. 
Matsubara, M., and Masuda, S. (1991) Three dimensional instability in rotating boundary layer. In Boundary Layer Stability and 

Transition to Turbulence (D.C. Reda, H.L. Reed, and R. Kobayashi, eds.). FED, Vol. 114, p. 103 New York: ASME. 
Patankar, S.V., and Spalding, D.B. (1972) A calculation procedure for heat, mass and momentum transfer in three-dimensional 

parabolic flows, lnternat. J. Heat Mass Transfer 15, 1787. 
Pexieder, A., Truong, T.V., Maxworthy, T., Matsson, J.O.E., and Alfredsson, P.H. (1993) G6rtler vortices with system rotation: 

experimental results. In Spatio-Temporal Properties of Centrifugal Instabilities. NATO Advanced Research Workshop, Nice, 
March 28-29, 1993. 

Potter, M.C., and Chawla, M.D. (1971) Stability of boundary layer flow subject to rotation. Phys. Fluids 14, 2278. 
Robinson, S.K. (1991) Coherent motions in the turbulent boundary layer. Annual Rev. Fluid Mech. 23, 601. 
Swearingen, J.D., and Blackwelder, R.F. (1986) Spacing of streamwise vortices on concave walls. AIAA J, 24, 1706. 
Swearingen, J.D., and Blackwelder, R.F. (1987) The growth and breakdown of streamwise vortices in the presence of a wall. J. Fluid 

Mech. 182, 255. 
Tani, I. (1962) Production of longitudinal vortices in the boundary layer along a curved wall. J. Geophys. Res. 67, 3075. 
Trefethen, L.N, Trefethen, A.E., Reddy, S.C., and Driscoll, T.A. (1993) Hydrodynamic stability without eigenvalues. Science 261,578. 
Yanase, S., Flores, C., M&ais, O., and Riley, J.J. (1993) Rotating free-shear flows. I. Linear stability analysis. Phys. Fluids A 5, 2725. 
Zebib, A., and Bottaro, A. (1993) Goertler vortices with system rotation: Linear theory. Phys. Fluids A 5, 1206. 


