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Transition to turbulence, a burning  

question for 100+ years … 

The simplest problem: incompressible boundary layer 

What happens/why? 

 
http://en.wikipedia.org/wiki/Boundary_layer_transition 
 
… the concept of boundary layer transition is a complex one and still lacks a 
complete theoretical exposition. 

http://en.wikipedia.org/wiki/Boundary_layer_transition


What we know already 

• 2D TS waves 
SUPERCRITICAL  TRANSITION 

(for ‘small’ disturbance levels) 

      

 

         

 

  
 

                                               L-vortices          hairpin vortices  

                  Schlatter, 2009 



What we know already 
 

• Emmons (1951) spots, induced by free-stream turbulence 
 

 
 

 
 
 
Matsubara & Alfredsson, 2005 
 
 
 
SUBCRITICAL (BYPASS) TRANSITION 
(for ‘large’ Tu disturbance levels) 

 
 
 
 
 
 
 
 
 
 
 
 
     
   
 

             Zaki & Durbin, 2005 
 



What we know already 
 

 
Classical linear stability theory provides Recrit above which one  
eigenmode is unstable, but it seems to be of little use … 
 
             
                  Poiseuille          Couette           Hagen-Poiseuille        Square duct 

 
Recrit       5772                         
 
Retrans   ~2000   ~400   ~2000   ~2000  
 
     
   
 



What we know already 

Can ‘optimal perturbations ’ (because of non-normal evolution 
operator) explain bypass transition? 

- Linear (based on B/L scalings):  

 Andersson, Bergreen, Henningson, 1999 

 Luchini, 2000 

- Nonlinear (based or not on B/L scalings): 

 Zuccher, Luchini, Bottaro, 2004 

 

 

… but a = 0 streaks are not  

good at kicking transition 

 Waleffe, 1995 

 Andersson et al., 2001 



What we know already 

What about ECS, saddles, edge states, etc.? 

 

edge surface 

laminar fixed point 

Sketch in some 
phase space … 



What we know already 

What about ECS, saddles, edge states, etc.? 

 

edge surface 

turbulence 

laminar fixed point 

homoclinic cycle 
 



What we know already 

What about ECS, saddles, edge states, etc.? 

 

edge surface 

disturbance amplitude 

turbulence 

laminar fixed point 

homoclinic cycle 
A0 = fixed 

trajectory to turbulence starting from  
the minimal seed, A0 = fixed 



Non-normality 

 

• A linear operator is non-normal if it does not commute 
with its adjoint: 

 

      take the linear system     du/dt = L u, 

      with adjoint                     - dv/dt = L† v;  

      if    L L†  L† L   the operator  L  is  non-normal 

 

• Most hydrodynamic stability operators are non-normal 
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And so what? 



Effects of non-normality 
(let us move to finite dimensional – i.e. computational – space) 

• Eigenvectors may form a complete set but are not orthogonal 

• This allows for transient energy growth even when all 
eigenvalues are damped 

Ex.       du/dt = A u         A = (    )             A* = (     ) 
       

u = k  ck uk e
lkt 

  

                     l1 = -e       u1 = (1   0)T 

                     l2 = -2e     u2 = (1  -e)T                   (A is a disturbance of a Jordan block) 

  

 Energy E   =   u . u   =   k  h ck ch e (lk + lh) t     uk . uh 

  

  

-e   1 
0   -2e 

-e    0 
1    -2e 

0 < e « 1 

2 damped  
e-values 



Effects of non-normality 
(let us move to finite dimensional – i.e. computational – space) 

• If e-vectors are orthogonal (and orthonormal, so that uk . uh  = dhk): 

  
  

       E   =   u . u   =   k h  ck ch e (lk + lh) t     uk . uh  = k  ǁckǁ
2 e2 Re(lk ) t   

 

Energy is the sum of the energy of all individual eigenmodes; 

if all modes are damped, then any arbitrary disturbance is damped 
 



Effects of non-normality 
(let us move to finite dimensional – i.e. computational – space) 

• If e-vectors are orthogonal (and orthonormal, so that uk . uh  = dhk): 

  
  

       E   =   u . u   =   k  h     ck ch e (lk + lh) t     uk . uh  = k  ǁckǁ
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Energy is the sum of the energy of all individual eigenmodes; 

if all modes are damped, then any arbitrary disturbance is damped 
 

• If e-vectors are not orthogonal (as in the simple 2 x 2 example for which 

      u1 . u2 = 1 and the e-vectors are almost parallel): 

 

 u = c1 u1 e-et + c2 u2 e-2et 

 E = u . u   =   c1
2  e-2e t   +  c2

2  (1 + e2) e-4e t  +  2 c1 c2  e-3e t  

 

 

 



Effects of non-normality 
 

• e-vectors are not orthogonal: 
 

 u = c1 u1 e-et + c2 u2 e-2et 

 E = u . u   =   c1
2  e-2e t   +  c2

2  (1 + e2) e-4e t  +  2 c1c2  e-3e t  

                              

                                                                        the product  c1c2 can be negative … 

 

 

 

       c1 = 1 

        c2 = -1 

       e = 0.01 
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Effects of non-normality 

 

• e-vectors are not orthogonal: 

  

 

 

    u1 

 
 
 
 
                                  u2 

u1 + u2 
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• e-vectors are not orthogonal: 

  

 

 

    u1 
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Effects of non-normality 

 

• e-vectors are not orthogonal: 

  

 

 

    u1 

 
 
 
 
                                  u2 



Interesting conclusion 

• In a linear system which is non-normal an arbitrary 
disturbance can grow transiently (for early times) 
even when all eigenmodes are damped 

• Bearings onto hydrodynamic stability problems ruled 
by non-normal operators  much work has gone on   
in the past twenty years on transient growth of 
perturbations (particularly for parallel and quasi-
parallel shear flows, but recently also for other types  
of instabilities, including thermoacoustics,                     
cf.  the recent review by R. I. Sujith, M. P. Juniper &                   
P. J. Schmid, "Non-Normality  and Nonlinearity in 
Thermoacoustic Instabilities", International Journal of      
Spray and Combustion Dynamics, in press, 2015.) 



       Use variational analysis to find optimal initial disturbances   
     which grow the most over a given time stretch 
 
 
Prototype problem: plane Couette flow 
 
 
base flow:                      = (y, 0, 0, 0)T 

 
 
 
 
 

disturbance:                                          + c.c. 
 



The linear stability equation read: 
 

The disturbance equations are: 

Objective: 



Iterative optimization (adjoint looping) 

• Direct problem:   du/dt = A u   +   maximize G = 

 

                             A = (    )             A* = (    ) = AT 

       

                     l1 = -e       u1 = (1   0)T                               v1 = (e   1)T  

                     l2 = -2e     u2 = (1  -e)T                 v2 = (0   1)T           

 

  U = (    )             V = (    ) 
 

u(T) . u(T)  

u(0) . u(0)  

-e   1 
0    -2e 

-e    0 
1    -2e 

1     1 
0    -e 

e     0 
1     1 



Iterative optimization (adjoint looping) 

• Direct problem:   du/dt = A u   +   maximize  G = 

                             

We can easily show that    u(t) = P(t) u(0) 
 

 

P  propagator of the initial condition defined by: 
 

 
 

         P(t)  =  U  eLt  U-1  =  U  eLt  VT  
 

 

so that    G  =                              =                               =   

u(T) . u(T)  

u(0) . u(0)  

P u(0) . P u(0)  
u(0) . u(0)  

u(0)T PT P u(0)  

u(0) . u(0)    u(0) . u(0)  

u(0) .  PT P u(0)  



Iterative optimization (adjoint looping) 

• Direct problem:   du/dt = A u   +   maximize  G = 

 

     The Rayleigh quotient  G  =                                yields the largest 

 

     gain G as the largest (real) e-value of the problem: 

 

                                                                                         PT P  symmetric 

         

     The corresponding  u0 is the optimal (initial) perturbation 

 

     The optimal output at time T is:  u(T) =  P(T) u0 =  G (P*)-1 u0 

 

 

u(T) . u(T)  

u(0) . u(0)  

  u(0) . u(0)  

u(0) .  PT P u(0)  

PT P u0  =  G u0  



Iterative optimization (adjoint looping) 

• Direct problem:   du/dt = A u   +   maximize  G = 

 

• Adjoint problem:  - dv/dt = AT v = A* v 

 

      

 

         

 

 

 

u(T) . u(T)  

u(0) . u(0)  

P* P u0  =  G u0  

u0
(n) 

P u0
(n) 

 
u(T) (n) 

 
 

P* u(T) (n) 

 u0
(n+1) 

(most often it is not 
easy to compute P …) 



back to Couette flow … 
 • The adjoint equations are linear and can be easily obtained       

from the direct equations via integrations by parts 

• Optimal disturbances are quasi-streamwise vortices, with                
G = 0.00118 Re2, a = 35/Re, b = 1.60, at T = 0.117 Re, which 
transform into elongated streaks downstream. 

 



Problem is … this does not work! 

• The optimal perturbations DO NOT set up a 
flow field which undergoes transition easily. 
Other (suboptimal) disturbances undergo 
transition at much smaller initial energy 
levels E0 … 



Another way to look at it: Lagrange multipliers 

du/dt = A u    +    b.c. 
 

Functional:  L  =  
 

Constraint:            u(0) . u(0) = E0 (imposed) 
 

Scalar product:             a . b = aTb  
 

max L  → max F  = L + ∫
0

T
 v . (du/dt - A u ) dt + 

            + a (u(0) . u(0) - E0 ) 
           
                  v and a are Lagrange multipliers 

u(T) . u(T)  



Another way to look at it: Lagrange multipliers 

max L  → max F  = L + ∫
0

T
 ( vTdu/dt - vTA u ) dt + 

            + a (u0
Tu0 - E0 ) 

dF = 0 

                
 
 

 

 

 

= uT
T d uT + ∫

0

T
 ( vTd d u/dt - vTA du ) dt + a u0

T du0 =  

= uT . d uT + ∫
0

T
(– dv/dt . d u – ATv . du ) dt + a u0

 . du0 + [v . du ]0
T 

u 
du = 0 = 
 
 
 

F 



Another way to look at it: Lagrange multipliers 

Adjoint problem:   – dv/dt  = ATv 
 

Initial condition:                                                     vT = - uT 
 

Initial condition direct problem:  u0 = v0/a  

                               (du/dt = A u) 

with the scalar a chosen so that        u0. u0 = E0  

 

Direct-adjoint loop typically converges fast; it is 
stopped when (uT

. uT)n+1 - (uT
. uT)n < tolerance set  

 



Another way to look at it: Lagrange multipliers 

                     What are adjoints good for? 

 

THEY PROVIDE SENSITIVITY MAPS (crucial for 
sensitivity, receptivity, data assimilation, optimal 
and robust control, etc.) 



Another way to look at it: Lagrange multipliers 

                                 IMPORTANT 

 

Lagrangian approach can be easily extended to 
perform NONLINEAR optimization. 



 Adding nonlinear terms … 

Model problem:  du/dt = A u + ǁuǁ B u 

A = (     )      B = (    )  where B is chosen       

to be energy preserving,  

i.e. uTBu = 0 (to mimick  

the nonlinear terms of  

NS eqs.) 

 

 

-e   1 
0   -2e 

0   -1 
1    0 



Adding nonlinear terms … 
The adjoint equation becomes: 
 

                       - dv/dt = A* u - ǁuǁ B* v 
 

and optimization can be carried out just like in 
the nonlinear case, i.e. adjoint looping 

 

DIRECT 
du/dt = L(u) u 

ADJOINT 
dv/dt = L*(u) v 

uT 

u0 = v0/a 
 

vT = - uT 

 

v0 



Couette flow 



Couette flow 



Couette flow 



                         Couette flow 
 
 
KEY POINTS: 
1. Nonlinear optimals are very different from linear ones 
2. A complete parametric study is impossible,because of 
          -  large parametric space 
          -  each direct problem is a full DNS 
 
Alternative: weakly nonlinear optimization of transition 



WNL optimals 

The simplest possible triple development 



WNL optimals 



WNL optimals 



WNL optimals 



What of industrial aspects of 
thermoacoustics?????????? 



What of thermoacoustic instabilities   
in combustion chambers??? 



Thermoacoustics 

• Can a combustor sustain limit-cycle oscillations 
even when its base flow is linearly stable? 

 



Thermoacoustics 

• Can a combustor sustain limit-cycle oscillations 
even when its base flow is linearly stable? 

• Triggering is driven by nonlinearities and 
nonnormality! 



Thermoacoustics 

• NN and NL stems from the convective terms  in the 
governing equations and it has been known since 
Dowling (1996) that convective terms should not be 
discarded (Ma  0 limit is questionable) 

• NN and NL effects are present also in the flame-
acoustic interaction term 

• Any model of annular (or other) combustor must 
account for nonlinearity and modal interactions 



Work in progress 

• Much has been accomplished, in particular by the 
groups of Sujith and Juniper, for the Rjike tube 

• There is much scope for investigating more 
complex configurations, with low order models  
like LOTAN/LOMTI or higher fidelity simulations 
(COMSOL, OpenFOAM) 

• Bottleneck: unsteady heat release model   
(progress along the lines of Maria’s FDF) 


