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Transition to turbulence, a burning
qguestion for 100+ years ...

The simplest problem: incompressible boundary layer

What happens/why?

Time-Averaged
Velocity Profiles

Laminar Turbulent

http://en.wikipedia.org/wiki/Boundary layer transition

"... the concept of boundary layer transition is a complex one and still lacks a
complete theoretical exposition.”


http://en.wikipedia.org/wiki/Boundary_layer_transition

What we know already

e 2D TS waves
SUPERCRITICAL TRANSITION
(for ‘small’ disturbance levels)

A-vortices hairpin vortices

Schlatter, 2009




What we know already

* Emmons (1951) spots, induced by free-stream turbulence

Matsubara & Alfredsson, 2005

SUBCRITICAL (BYPASS) TRANSITION
(for ‘large’ Tu disturbance levels)

streamwise fluctuations
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0.00 0.10

Zaki & Durbin, 2005



What we know already

Classical linear stability theory provides Re_ ... above which one
eigenmode is unstable, but it seems to be of little use ...

Poiseuille Couette Hagen-Poiseuille Square duct

Re .. 5772 0 00 00
Re, ..« ~2000 ~400 ~2000 ~2000



What we know already

Can ‘optimal perturbations’ (because of non-normal evolutlon

operator) explain bypass transition? =
- Linear (based on B/L scalings): \\\ :
Andersson, Bergreen, Henningson, 1999 g \&N\\j
Luchini, 2000 e
- Nonlinear (based or not on B/L scalings): L™
Zuccher, Luchini, Bottaro, 2004 .
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Fig. 12. Curve of initial perturbation energy E as a function of § for which A = 0.2 somewhere in the domain.



What we know already

What about ECS, saddles, edge states, etc.?

edge surface

Sketch in some
phase space ...

laminar fixed point ©



What we know already \‘ turbulence

What about ECS, saddles, edge states, etc.? \ /

homoclinic cycle
° y edge surface

laminar fixed point



What we know already turbulence

What about ECS, saddles, edge states, etc.?
ﬁ
A

homoclinic cycle
A, = fixed

edge surface

laminar fixed point cv trajectory to turbulence starting from

the minimal seed, A, = fixed
disturbance amplitude



Non-normality

* A linear operator is non-normal if it does not commute
with its adjoint:

take the linear system du/dt=_Lu,
with adjoint ~dv/dt=L"v;

if LLT#L'L the operator L is non-normal

 Most hydrodynamic stability operators are non-normal



Non-normality

* A linear operator is non-normal if it does not commute
with its adjoint:

take the linear system du/dt=_Lu,
with adjoint ~dv/dt=L"v;
if LLT#L'L the operator L is non-normal

 Most hydrodynamic stability operators are non-normal

And so what?



Effects of non-normality

(let us move to finite dimensional —i.e. computational — space)

Eigenvectors may form a complete set but are not orthogonal

e This allows for transient energy growth even when all
eigenvalues are damped

-£ 1 - 0
Ex. du/dt=Au A=\ 0 -2 A*=\ 1 -2¢
O<e«l
u=2x, c u,eMt
2 damped A =-¢ u, =(1 0)f
e-values Ay=-28 u,=(1 -¢)7 (A is a disturbance of a Jordan block)

Energy E =u.u =23 % cc,elmt gy u



Effects of non-normality

(let us move to finite dimensional —i.e. computational — space)

* If e-vectors are orthogonal (and orthonormal, so that u,.u, =0,,):

E =u.u= 2272 C_kche(lkﬂ»h)t u.u, =3, "Ck"zeZRe(xk)t

Energy is the sum of the energy of all individual eigenmodes;
if all modes are damped, then any arbitrary disturbance is damped



Effects of non-normality

(let us move to finite dimensional —i.e. computational — space)

* If e-vectors are orthogonal (and orthonormal, so that u,.u, =0,,):

E = u.u = 5,3 coeeleMt you =% |cl?e2Rett

Energy is the sum of the energy of all individual eigenmodes;
if all modes are damped, then any arbitrary disturbance is damped

* |f e-vectors are not orthogonal (as in the simple 2 x 2 example for which
u, . u, = 1 and the e-vectors are almost parallel):

- -gt -2¢et



e-vectors are not orthogonal:

_ -et -2¢t
u—clule +c2u2e
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Effects of non-normality

E=zu.u = c? e?t + ¢ (1+e?)e’™ + 2c.c, e3¢t
®
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the product c,c, can be negative ...




Effects of non-normality

e e-vectors are not orthogonal:




Effects of non-normality

e e-vectors are not orthogonal:




Effects of non-normality

e e-vectors are not orthogonal:




Interesting conclusion

* In a linear system which is non-normal an arbitrary
disturbance can grow transiently (for early times)
even when all eigenmodes are damped

e Bearings onto hydrodynamic stability problems ruled
by non-normal operators = much work has gone on
in the past twenty years on transient growth of
perturbations (particularly for parallel and quasi-
parallel shear flows, but recently also for other types

of instabilities, including thermoacoustics,

cf. the recent review by R. I. Sujith, M. P. Juniper &

P. J. Schmid, "Non-Normality and Nonlinearity in
Thermoacoustic Instabilities", International Journal of

Spray and Combustion Dynamics, in press, 2015.)



Use variational analysis to find optimal initial disturbances
which grow the most over a given time stretch

——
—
Prototype problem: plane Couette flow —
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The disturbance equations are:
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lterative optimization (adjoint looping)

* Direct problem:

du/dt=Au

+ maximize G = u(T) - u(T)
u(0) . u(0)
ar=(79) =&
v,=(e 1)7
v,=(0 1)7



lterative optimization (adjoint looping)

u(T) . u(T)
u(0) . u(0)

e Direct problem: du/dt=Au + maximize G =

We can easily show that |u(t) = P(t) u(0)

P propagator of the initial condition defined by:

P(t) = U eAt Ul = U eAM VT

Pu(0).Pu(0) _ u(0)"PTPu(0) u(0). P"Pu(0)
u(0).u(0) ~  u(0).u(0) ~  u(0).u(0)

sothat G =




lterative optimization (adjoint looping)

u(T) . u(T)
u(0) . u(0)

* Direct problem: du/dt=Au + maximize G =

u(0). PT P u(0)
u(0) . u(0)

gain G as the largest (real) e-value of the problem:

The Rayleigh quotient G = yields the largest

PTPu, = Gu, PTP symmetric

The corresponding u, is the optimal (initial) perturbation

The optimal output at time T is: u(T) = P(T) u, = G (P*)1u,



lterative optimization (adjoint looping)

Direct problem: du/dt=Au + maximize G = o) 4th)
Irect propiem: u =AU Maximize = U(O)U(O)
 Adjoint problem: - dv/dt=ATv=A*v
P*P u, = Gu, (most often it is not
easy to compute P ...)

>
uo(”"'l) -

u(T) (n)




back to Couette flow ...

 The adjoint equations are linear and can be easily obtained
from the direct equations via integrations by parts

 Optimal disturbances are quasi-streamwise vortices, with
G =0.00118 Re?, a. = 35/Re, B = 1.60, at T = 0.117 Re, which
transform into elongated streaks downstream.
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FIG. 4. Development of the perturbation streamwise velocity u for the
best growing perturbation independent of x in Couette flow with R
=1000, located at B=1.66, r=138. Values are normalized by the maxi-
mum value of ¢ at time ¢=0.
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FIG. 8. Energy growth versus time for the global optimal, the streamwise
vortex, and 2-D perturbation which grow the most, and perturbations
which grow the most in 5 and 20 advective time units in Couette flow with
R=1000.

Three-dimensional optimal perturbations in viscous shear flow

Kathryn M. Butler and Brian F. Farrell

Division of Applied Sciences, Harvard University, Cambridge, Massachusetts 02138



Problem is ... this does not work!

 The optimal perturbations DO NOT set up a
flow field which undergoes transition easily.
Other (suboptimal) disturbances undergo

transition at much smaller initial energy
levels E, ...



Another way to look at it: Lagrange multipliers

du/dt=Au + b.c.
Functional: £ = u(T) . u(T)
Constraint: u(0) . u(0) = E, (imposed)

Scalar product: a.b=a'b

max L - max ‘F =£+IOTV.(du/dt-Au)dt+
+a (u(0).u(0) - E,)

v and a are Lagrange multipliers



Another way to look at it: Lagrange multipliers

max L >maxF =L+ ] (Vidu/dt-TAu)dt+
+a (uy'u, - Ey)
5F = 0

oOF
LESU_O_

=G, S up+ [, (Vid S u/dt- VA Su) dt + at,T Sug =

= upd ug+ J, (- dv/dt.d u— ATv.5u) dt+aug.dug+ [v.Su "



Another way to look at it: Lagrange multipliers

Adjoint problem: —dv/dt=ATv

Initial condition: Vp = - Up

Initial condition direct problem: u, = vy/a
(du/dt = A u)

with the scalar a chosen so that U, u, = E,

Direct-adjoint loop typically converges fast; it is
stopped when (up. up)™? - (ug. up)" < tolerance set



Another way to look at it: Lagrange multipliers

What are adjoints good for?

THEY PROVIDE SENSITIVITY MAPS (crucial for
sensitivity, receptivity, data assimilation, optimal
and robust control, etc.)

AN INTRODUCTION TO ADJOINT PROBLEMS

Paolo Luchini® and Alessandro Bottaro?
IDIIN, University of Salerno, Italy
luchini@unisa.it
DICCA, University of Genova, Italy
alessandro.bottaro@unige.it

Supplemental appendix to ADJOINT EQUATIONS IN STABILITY
ANavysis, Annu. Rev. Fluid Mech. 46:493 517 (2014)



Another way to look at it: Lagrange multipliers

IMPORTANT

Lagrangian approach can be easily extended to
perform NONLINEAR optimization.



Adding nonlinear terms ...

Model problem: du/dt=Au+ ||ul| Bu

a=(73) B=("

to be energy preserving,

1 .
0 ) where B is chosen

i.e. U'Bu =0 (to mimick

=10
the nonlinear terms of 1o
NS egs.) T — T T
4] 1;:; 200

Fig. 10. [ju(z)[| for solutions ta the nonlinear 2 x
2 model problem of Eq. 14 with initial ampli-

Hydrodynamic Stability Without Eigenvalues

Lioyd N. Trefethen, Anne E. Trefethen, Satish C. Reddy, Tobin A. Driscoll

tudes [[u@) = 107, 1076, 1075, 10~* 4 X
107* 8 x 1074, 1073, and 10~2. The threshold
amplitude is |u{0)|| = 4.22 x 104,



Adding nonlinear terms ...

The adjoint equation becomes:

-dv/dt=A*u- ||u]| B*v

and optimization can be carried out just like in
the nonlinear case, i.e. adjoint looping

—

DIRECT e — ADJOINT
du/dt = L(u) u e dv/dt = LXu)v
—

—>

u,=vy/a « Vv,




Couette flow
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Couette flow
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FIGURE 1. Convergence history for a nonlinear optimization at target time (a) T = 50 with

Ey = 0.005, (b) T = 30 with £y = 0.025, and (c) T = 30 with E; = 0.1. Solid line. residual;
dashed line, error on the objective function; dot-dashed line, value of the energy gain.

Nonlinear optimal perturbations in a Couette
flow: bursting and transition

S. Cherubini'?+ and P. De Palma’



ouette flow

1200
1000
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E{T)/Eqy
g
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FIGURE 3. Optimal energy gain at target time T = 50 for different values of the initial energy
Ey. The dashed line represents the linear optimization result.

FIGURE 10. (Colour online) Snapshots of the time evolution of the nonlinear optimal
perturbation obtained for E; = 0.01 and T = 50: iso-surfaces of the perturbations (grey,
blue online, for the negative streamwise component of the velocity: black and pale grey
for negative and positive streamwise vorticity, respectively) at (a) t =0, (b) r = 10, (¢) t = 30,
(d)t=150, (e) t =70, (f) 1 =90, (g) t =210 and (h) r = 320. Surfaces for (a,b) ' = —0.015,
w, =205, (c) u' = —0.025, w, = £0.75, (d-h) u' = —0.035, @, = +0.75.



Couette flow

KEY POINTS:
1. Nonlinear optimals are very different from linear ones

2. A complete parametric study is impossible,because of
- large parametric space
- each direct problem is a full DNS

Alternative: weakly nonlinear optimization of transition



WNL optimals

e The simplest possible triple development
Distortion flow Exponential
to the or algebraic
mean flow growth Uly) iz, y,z,t) wop(y, t)
_ 0 Le ?:j[i Y,2,t) 4 voo(y. )
0 w(z,y,z,t) woo(y, t)
P@)]  |s@uzn] Lol

Non—linear
mixing

(L p)(z,y, 2. 1) = (g, pra)(w. )P 4 (uyy L piq)(y, t)e @T+5)



WNL optimals
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WNL optimals

voo = 0.
1 _ L
Uoor — o~ U00yy = —[Ullully + ifwquyy + c.c..
p(}Dy — —[iauilvll —+ ’Ull‘l}lly -+ 3.-"31’31'11?11 -+ C.t‘_?.]5
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WNL optimals

e(T) =+ [ (una@y + 010y + win @y )dy

(a)

100 | £
=7~
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J. O. Pralits, A. Bottaro and S. Cherubini
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0.9
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Fiaurg 6. Gain G in the o« — 3 plane for Re = 400 and 1" = 20; (a) e — 0 with contour values
from 20 to 120, (b) ¢ = 0.0145 with contour values from 20 to 240, (¢) € = 0.0153 with contour
values from 20 to 300, (d) e = 0.01603 with contour values from 20 to 380. The interval among
adjacent isolines is AG=20 in frames. The maximum value of GG for each ¢ is denoted by a filled

circle.



What of industrial aspects of




What of thermoacoustic instabilities
in combustion chambers???

Non-normality and Nonlinearity in Thermoacoustic Instabilities

R. L. Sujith!, M. P. Juniper? & P. J. Schmid®



Thermoacoustics

* Can a combustor sustain limit-cycle oscillations
even when its base flow is linearly stable?



Thermoacoustics

* Can a combustor sustain limit-cycle oscillations
even when its base flow is linearly stable?

 "Triggering" is driven by nonlinearities and
nonnormality!



Thermoacoustics

* NN and NL stems from the convective terms in the
governing equations and it has been known since
Dowling (1996) that convective terms should not be
discarded (Ma =2 0 limit is questionable)

* NN and NL effects are present also in the flame-
acoustic interaction term

* Any model of annular (or other) combustor must
account for nonlinearity and modal interactions



Work in progress

* Much has been accomplished, in particular by the
groups of Sujith and Juniper, for the Rjike tube

* There is much scope for investigating more
complex configurations, with low order models
like LOTAN/LOMTI or higher fidelity simulations
(COMSOL, OpenFOAM)

e Bottleneck: unsteady heat release model
(progress along the lines of Maria’s FDF)

A new perspective on the flame
describing function of a matrix flame

Maria Heckl



