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a b s t r a c t 

Pseudo-plastic fluids exhibit a non-linear stress-strain relationship which can provoke large, localized viscosity 
gradients. For the flow of such fluids in porous media the consequence is a strong variability of the effective 
permeability with porosity, angle of the macroscopic pressure gradient, and rheological parameters of the fluid. 
Such a variability is investigated on the basis of adjoint homogenization theory for a Carreau fluid in an idealized 
porous medium geometry, highlighting differences with respect to the Newtonian case. It is shown in particular 
that the more we depart from Newtonian conditions, the more the (often used) hypothesis of an effective viscosity 
in Darcy’s law is a poor approximation, for the effective permeability tensor becomes strongly anisotropic. 
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. Introduction 

Fluids whose apparent viscosity decreases under shear strain are very
ommon, and are often found in polymer and foam solutions; also com-
lex fluids and suspensions like ketchup, paints and blood exhibit such a
roperty which goes by the name of shear-thinning or pseudo-plasticity.
he oldest model used to describe the rheological properties of pseudo-
lastic fluids is the empirical power-law equation ( Ostwald, W. (1925,
929) ) which relates the shear stress to the shear rate elevated to a
ertain power, say n , with n < 1, via a coefficient called the flow con-
istency index. For 𝑛 = 1 the Newtonian behavior is recovered. The sim-
le power-law behavior yields infinite effective viscosity as the applied
tress vanishes, and this can cause numerical difficulties in applications,
hich is why more elaborate models have later been proposed, such as

he Carreau, Carreau-Yasuda, Cross or Powell-Eyring models ( Bird, R.B.,
rmstrong, R.C., Hassager, O. (1987) ; Tanner, R.I. (2000) ). All of these
odels are reasonably simple to implement (for example in a numerical

ode), requiring no more than three empirical constants; they all yield
ather good results, provided the fitting parameters are well chosen, as
hown in Fig. 1 for a representative engine oil in solution with viscosity-
ndex-improver polymers ( Marx, N., Fernández, L., Barceló, F., Spikes,
. (2018) . 

Several applications require knowledge of the behavior of pseudo-
lastic fluids within permeable media. For example, enhanced oil recov-
ry processes in naturally fractured petroleum reservoirs can use poly-
er solutions in water flooding to increase the amount of recovered

il ( Green, D.W., Willhite, G.P. (2018) ). Another application uses foam,
∗ Corresponding author. 
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hich appears to be the most promising blocking agent in fractured
edia for underground energy recovery and waste disposal purposes

 Hou, M.Z., Xie, H., Were, P., Eds. (2013) ). In biological applications,
on-Newtonian fluids with shear-thinning character, such as blood and
nterstitial fluid, flow through the pores of bone tissue, transporting nu-
rients to, and carrying waste from, the bone cells. Understanding this
irculation might provide insight into a number of clinical problems, as
eviewed by Cowin, S.C., Cardoso, L. (2015) . 

Several theoretical approaches might be employed to study flows
hrough porous media, including multiscale homogenization and vol-
me averaging (nicely discussed and compared by Davit, Y., Bell, C.G,
yrne, H.M., Chapman, L.A.C., Kimpton, L.S., Lang, G.E., Leonard,
.H.L., Oliver, J.M., Pearson, N.C., Shipley, R.J., Waters, S.L., White-

ey, J.P., Wood, B.D., Quintard, M. (2013) ), mixture theory (see, e.g.,
edford, A., Drumheller, D.S. (1983) ), and pore-network ( “bundle of
ubes ”) modeling (see, e.g., Balhoff, M.T., Thompson, K.E. (2006) .) 

Here we employ homogenization, in a form similar to that described
y Mei, C.C., Vernescu, B. (2010) to assess the effect of regular pore-
cale structures upon a macroscopic flow. Efforts on non-Newtonian
heologies were initiated by Lions, J.L., Sanchez-Palencia, E. (1981) and
ourgeat, A., Mikeli ć, A. (1993) , with focus on the plastic behavior of
ingham fluids. Later, the theory was applied to power-law and Car-
eau fluids by Bourgeat, A., Mikeli ć, A. (1996) and Mikeli ć, A. (2000) ;
ll of these authors emphasized mathematical issues of uniqueness of
olutions, bounds, and proofs of convergence, as the shear-rate regimes
aried. 

Filtration laws for non-Newtonian fluids are, in general, non-local,
.e. microscale and macroscale variables do not decouple, which means
e 2020 

https://doi.org/10.1016/j.advwatres.2020.103658
http://www.ScienceDirect.com
http://www.elsevier.com/locate/advwatres
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advwatres.2020.103658&domain=pdf
mailto:alessandro.bottaro@unige.it
https://doi.org/10.1016/j.advwatres.2020.103658


C. Airiau and A. Bottaro Advances in Water Resources 143 (2020) 103658 

Fig. 1. Rheogram of a shear-thinning fluid. Experimental points by Marx, N., 
Fernández, L., Barceló, F., Spikes, H. (2018) for the normalized, effective dy- 
namic viscosity 𝜇̂ ( ⋆ symbols) are plotted together with the best fits provided 
by various empirical models. For the case of the power-law model the fit has 
been done using only the points with ̂̇𝛾 > 10 4 [ 𝑠 −1 ] . Notice the Newtonian be- 
havior of the fluid at very high and very low shear rates. For the definition of 
the axes’ labels see later Eq. (5) . 
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hat simple microscopic (also called auxiliary) problems capable to
ield, upon averaging, an effective permeability tensor for a (macro-
copic) Darcy or Darcy-like relation are not available, even when inertia
s negligible ( Idris, Z., Orgéas, L., Geindreau, C., Bloch, J.-F., Auriault,
.-L. (2004) ; Orgéas, L., Idris, Z., Geindreau, C., Bloch, J.-F., Auriault, J.-
. (2006) ; Orgéas, L., Geindreau, C., Auriault, J.-L., Bloch, J.-F. (2007) ).
or this reason, Götz, T., Parhusip, H.A. (2005) opted to expand the
arreau law in terms of the time constant 𝜆 (see later Eq. (5) ), assumed
mall, obtaining a hierarchy of Newtonian-like auxiliary problems, capa-
le to successively approximate the zero-shear-rate solution (for which
̂ = 𝜇̂0 = constant.) With the expansion performed, the solutions decou-
le and good agreement was found for some selected geometries be-
ween the fields computed by direct numerical calculations and those
btained by the asymptotic expansion. We will show later that the limit
f small 𝜆 yields results which differ very little from the Newtonian case.

One of the alternative upscaling techniques to obtain macro-
copic laws is the so-called volume-averaging approach, pioneered by
hitaker, S. (1986) ; Quintard, M., Whitaker, S. (1993, 1994a, 1994b) ,

nd applicable to both organized and disordered porous skeletons. For
he case of power-law fluids a generalized Darcy’s law is available (cf.

ang, X.-H., Jia, J.-T., Liu, Z.-F., Jin, L.-D. (2014) ), with an effective ten-
orial permeability which can be found from the solution of a problem
n a representative elementary volume only once the direction of the av-
rage filtration velocity (which, in general, does not coincide with that
f the imposed pressure gradient) is prescribed. This is an indication of
he strong microscopic-macroscopic coupling; numerical results demon-
trate that the components of the effective permeability tensor depend
ignificantly on such a pre-assigned direction. Direct calculations of the
ore-scale creeping flow model for a power-law fluid through macro-
copic porous media ( Zami-Pierre, F., de Loubens, R., Quintard, M.,
avit, Y. (2016, 2018) ) show that a competition exists between the effect
f the non-Newtonian rheology and that related to the order/disorder of
he porous structure. In some cases a disordered porous structure might
ominate over the non-Newtonian non-linearity, in such a way that the
irections of the filtration speed and of the macroscopic pressure gradi-
nt are quasi-aligned. 

In the simple case of isotropic geometry of the porous medium,
he modified Darcy’s law which is usually adopted in the engineer-
ng community when non-Newtonian fluids are being considered reads
 Sadowski, T.J., Bird, R.G. (1965) ; Christopher, R.H., Middleman,
. (1965) ; McKinley, R.M., Jahns, H.O., Harris, W.W., Greenkorn,
.A. (1966) ; Hirasaki, G.J., Pope, G.A. (1974) ; Shahsavari, S., McKin-

ey, G.H. (2015) ; Eberhard, U., Seybold, H.J., Floriancic, M., Bertsch,
., Jiménez-Martínez, J., Andrade J.S. Jr., Holzner, M. (2019) ) 

𝐮̂ (0) ⟩ = − 

̂ 

𝜇̂eff 
∇̂ 

′𝑝̂ (0) , (1)

ith ̂ the (scalar) Newtonian permeability and 𝜇̂eff an effective vis-

osity . The term on the left hand side of Eq. (1) is the average veloc-
ty through the porous medium, which is forced by the macroscopic
ressure gradient ∇̂ 

′𝑝̂ (0) . The crux of the matter is the determination of
he effective viscosity which is usually estimated from the rheological
aw of the fluid for some effective value of the shear rate. Engineering
ractice usually models porous media as a bundle of capillary tubes, as
y the approach initiated by Kozeny, J. (1927) . When the fluid is non-
ewtonian, equating the flow rate of a Newtonian fluid in a straight
ipe to that of (say) a power-law fluid yields the power-law viscosity
orresponding to the Newtonian viscosity of a fluid which would have
roduced the same pressure drop along a capillary. Inverting such a
aw yields an effective shear rate; this is then corrected by the use of
mpirical parameters to account for the non-uniformity of the medium
orosity, the tortuosity of the capillary network, possibly of variable
ross-sectional areas, the different orientations of the capillaries, etc.
 Sadowski, T.J., Bird, R.G. (1965) ; Hirasaki, G.J., Pope, G.A. (1974) ;
annella, W.J., Huh, C., Seright, R.S. (0000) ; Berg, S., van Wunnink,
. (2017) ). Finally, an effective viscosity is computed from the given
onstitutive law. An alternative approach to estimate 𝜇̂eff for a Carreau
uid has been recently proposed by Eberhard, U., Seybold, H.J., Flori-
ncic, M., Bertsch, P., Jiménez-Martínez, J., Andrade J.S. Jr., Holzner,
. (2019) ; it is based on a direct solution for the viscosity profile inside
 single capillary of given radius, mimicking an average pore through
hich the mean speed is simply the ratio between Darcy’s velocity and

he medium porosity. The effective viscosity is then taken to coincide
ith the volume-averaged viscosity, without the need to introduce and
se an effective shear rate. Eberhard et al. also carried out experiments
orcing a xanthan gum aqueous solution through a packed of monodis-
erse beads, finding good agreement between measurements and model
esults, thus concluding that their direct effective viscosity model is a ro-
ust approach. Experiments with the same shear thinning fluid, of vary-
ng solute concentrations, have also been conducted by Rodriguez de
astro, A., Radilla, G. (2017) . They employed Eq. (1) to evaluate the ef-

ective viscosity for a Carreau fluid, including the case in which inertial
ffects are present through the pores, and found a good fits of the data
ith both Forchheimer’s and Ergun’s model equations. 

Despite its simplicity, Eq. (1) is not supported by either a multiscale
or a volume averaging analysis; also, the equation assumes that the
ectors ⟨𝐮̂ (0) ⟩ and ∇̂ 

′𝑝̂ (0) are parallel, which has been shown to be not
ecessarily true in several non-Newtonian flow configurations ( Idris, Z.,
rgéas, L., Geindreau, C., Bloch, J.-F., Auriault, J.-L. (2004) ; Orgéas, L.,

dris, Z., Geindreau, C., Bloch, J.-F., Auriault, J.-L. (2006) ; Wang, X.-H.,
ia, J.-T., Liu, Z.-F., Jin, L.-D. (2014) ). We have thus decided to take
 new look at the problem, fully accounting for the coupling between
icroscopic and macroscopic variables. By using homogenization the-

ry, we will demonstrate that, in the limit of creeping flow through the
ores, a Darcy-like equation rules the macroscopic behavior of a non-
ewtonian fluid in a porous medium, with an effective permeability

ensor which is function of the microscopic motion. A detailed paramet-
ic study will highlight how the components of the effective permeabil-
ty and the tensor anisotropy are modified for the case of a Carreau,
hear-thinning fluid in a simple geometrical configuration, in response
o variations of the medium porosity, of rheological and flow parame-
ers. 
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. Formulation of the problem at the pore scale 

The equations describing the motion of an incompressible, shear-
hinning fluid which saturates the interstices of a porous material read:( 

𝜕 ̂𝐮 
𝜕 ̂𝑡 

+ ̂𝐮 ⋅ ∇̂ ̂𝐮 
) 

= − ̂∇ ̂𝑝 + 𝛁̂ ⋅ [2 ̂𝜇( ̂𝛾̇) ̂𝐷 ( ̂𝐮 )] , 𝛁̂ ⋅ 𝐮̂ = 0 , (2)

ith 𝐮̂ and 𝑝̂ the dimensional velocity vector and pressure, function in
rinciple of spatial, ̂𝐱 , and temporal, ̂𝑡 , coordinates. Body forces are taken
o be conservative and are absorbed into the pressure gradient term.
he hat over a variable’s name is used to indicate that the variable is
imensional. The rate of deformation tensor is defined as 

̂
 ( ̂𝐮 ) = 

∇̂ ̂𝐮 + ∇̂ ̂𝐮 𝑇 
2 

, (3)

superscript T denoting transpose) and its second invariant is 

̂̇ = 

√ 

2 ̂𝐷 ( ̂𝐮 ) ∶ 𝐷̂ ( ̂𝐮 ) , (4)

ith ̂𝛾̇2 proportional to the local rate of viscous dissipation of the kinetic
nergy. The Carreau model Carreau, 1972 , with the viscosity which de-
ends on the second invariant of the rate of strain tensor, is chosen to
epresent the shear-thinning behavior of the fluid for the following rea-
ons: 

• It is widely used to describe the rheological behaviour of pseudo-
plastic materials and several phenomenological data are available
in the literature; 

• It has a sound theoretical basis, stemming from the molecular net-
work theory developed by Lodge Lodge A.S. (1968) , and has proven
capable of modelling simultaneously simple shear, complex viscos-
ity, stress growth and stress relaxation behaviors. 

The dynamic viscosity of the Carreau model is 

̂ = 𝜇̂∞ + 

(
𝜇̂0 − 𝜇̂∞

)[ 
1 + 

(
𝜆̂ ̂̇𝛾

)2 
] 𝑛 −1 

2 
, (5) 

ith 𝜇̂∞ and 𝜇̂0 , respectively, the infinite- and the zero-shear-rate
iscosity coefficients ( ̂𝜇∞ ≪ 𝜇̂0 Bird, R.B., Armstrong, R.C., Hassager,
. (1987) ; Tanner, R.I. (2000) , so that the former can safely be discarded

n later analysis), n is the power-law index, representing the degree of
hear-thinning, and 𝜆̂ is the material relaxation time. The parameters in
he Carreau model are typically 0.2 ≤ n < 1 and  (10 −1 ) < 𝜆 <  (10 2 )
ird, R.B., Armstrong, R.C., Hassager, O. (1987) ( ̂𝜆 is made dimension-

ess with characteristic length and velocity scales, 𝓁 and  in the fol-
owing). Using Fig. 1 as a reference, when the shear rate is low ( ̂𝛾̇ ≪ 𝜆̂−1 )
he apparent viscosity is equal to 𝜇̂0 ; conversely, it becomes negligible
hen the shear rate is very large. 

At this point the variables are normalized as: 

 = 

𝐮̂ 
 

, 𝐱 = 

𝐱̂ 
𝓁 
, 𝑝 = 

𝑝̂ 𝓁 2 

𝜇̂0  𝐿 

, 𝑡 = 

𝑡  

𝓁 
. (6)

he speed  is the magnitude of the seepage velocity within the medium
nd the length 𝓁 is a characteristic microscopic dimension (e.g. the size
f the pores or of the solid inclusions); conversely, L is a (large) length
cale of the problem, i.e. the distance across which a macroscopic pres-
ure gradient is imposed. It is further assumed that each dependent vari-
ble is function of both a microscopic and a macroscopic length scale
the latter defined as 𝐗 = 𝐱̂ ∕ 𝐿 ), and can be expanded as a power series
n terms of the small parameter 𝜖 = 𝓁∕ 𝐿 as: 

 = 𝑓 (0) + 𝜖𝑓 (1) + 𝜖2 𝑓 (2) + … , (7)

ith 𝑓 = 𝑓 ( 𝐱, 𝐗 , 𝑡 ) a generic variable. A multiple scale analysis along the
ines of Mei, C.C., Vernescu, B. (2010) leads to finding that, for slow flow
hrough small pores, i.e. when the microscopic Reynolds number, 𝑅𝑒 =
 𝓁∕ ̂𝜇0 , is of order 𝜖 (or smaller), the leading order dimensionless

ystem reduces to 

 𝛁 𝑝 (1) + 𝛁 ⋅ [2 𝜇(0) 𝐷( 𝐮 (0) )] − ∇ 

′𝑝 (0) = 0 , 𝛁 ⋅ 𝐮 (0) = 0 , (8)
ith 

(0) = 𝜇( ̇𝛾 (0) ) = 

[
1 + ( 𝜆𝛾̇ (0) ) 2 

] 𝑛 −1 
2 . (9)

ystem (8) is the same as that given by Orgéas, L., Geindreau,
., Auriault, J.-L., Bloch, J.-F. (2007) . The microscopic field ( u 

(0) ,
 

(1) ) is forced by the imposed, macroscopic pressure gradient, ∇ ′ p (0) .
n three-dimensional cartesian coordinates the operator ∇ ′ is ∇ 

′ =
 𝜕 ∕ 𝜕 𝑋 , 𝜕 ∕ 𝜕 𝑌 , 𝜕 ∕ 𝜕 𝑍 ) . The pressure at leading order, also called pore pres-

ure or mean interstitial pressure , does not depend on microscopic spatial
ariables. The pressure at order one, p (1) , is defined up to an integration
constant ” (which is function of only macroscopic spatial variables). In
 numerical resolution approach such a constant is set by fixing equal
o zero the mean value of p (1) in the fluid domain. The whole domain
oincides with the unit cell Mei, C.C., Vernescu, B. (2010) in most of
he calculations presented in the paper; we assume periodicity of the
ariables on opposing lateral boundaries of the cell and no-slip at the
uid-solid interface. An example of two-dimensional unit cell is pro-
ided in Fig. 2 , highlighting the finite element grid used in the compu-
ations capable to yield grid-resolved results, and displaying the sym-
etric isolines of the u (0) and v (0) velocity components, obtained for

 𝜕 𝑝 (0) ∕ 𝜕 𝑋, 𝜕 𝑝 (0) ∕ 𝜕 𝑌 ) = (1 , 0) when the fluid is Newtonian ( 𝑛 = 1 ); the
hysical set up of Fig. 2 has a porosity equal to 𝜃 =  f luid ∕  tot = 0 . 90 ,
ith  f luid the volume occupied by the fluid and  tot the total volume
f the unit cell (fluid plus solid). 

. Adjoint homogenization: Darcy’s equation and the 

on-Newtonian permeability 

To derive the macroscopic equation ruling the motion of a non-
ewtonian fluid in a porous medium formed by periodic repetitions of
nit cells we follow the adjoint homogenization approach outlined by
ottaro, A. (2019) , forming the dot product of system (8) with the test
ector ( u † , p † ), and integrating over the fluid domain. Integrations by
arts are then conducted, employing the periodicity conditions on the
uter boundaries of the domain and the no-slip condition on the grain’s
oundary, to identify the adjoint system which holds in the unit cell: 

 𝛁 𝑝 † + 𝛁 ⋅ [2 𝜇(0) 𝐷( 𝐮 †)] = − 𝐆 , 𝛁 ⋅ 𝐮 † = 0 , (10)

ith the vector G defined below. Problem (10) must satisfy conditions
f periodicity for u † and p † on the lateral boundaries of the unit cell,
lus 𝐮 † = 𝟎 on the boundaries of the solid inclusions. For uniqueness of
he adjoint state we also impose the vanishing of the integral of p † over
 𝑓𝑙𝑢𝑖𝑑 . The coupling of direct and dual problems, via the fluid viscosity
(0) evaluated from the leading order velocity, is inevitably due to the
on-linearity of the direct system (8) . 

With systems (8) and (10) (and respective boundary conditions)
osed as above, the Lagrange-Green identity readily yields: 

 f luid 
(
𝐆 ⋅ 𝐮 (0) + 𝐮 † ⋅ ∇ 

′𝑝 (0) 
)
d  = 0 . (11)

e now divide Eq. (11) by the total volume of the unit cell, to obtain 

𝐆 ⋅ 𝐮 (0) ⟩ = − ⟨𝐮 †⟩ ⋅ ∇ 

′𝑝 (0) . (12)

here 

𝑎 ⟩ = 

1 
 tot ∫ f luid 𝑎 d  (13)

enotes the phase , or superficial, average of the generic quantity a . For
implicity of notation, we switch to two-dimensional cartesian coordi-
ates, and set up the two auxiliary problems which follow: 

• Problem 1 Set 𝐆 = (1 , 0) and solve system (10) . Eq. (12) then yields
the horizontal component of the seepage velocity: 

⟨𝑢 (0) ⟩ = −  

𝐶 
𝑥𝑥 

𝜕𝑝 (0) 

𝜕𝑋 

−  

𝐶 
𝑥𝑦 

𝜕𝑝 (0) 

𝜕𝑌 
, (14)

with  

𝐶 
𝑥𝑥 = ⟨𝑢 †(1) ⟩ and  

𝐶 
𝑥𝑦 = ⟨𝑣 †(1) ⟩. Superscript (1) (or (2)) next to

the dagger in the name of the adjoint variables is used to indicate
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Fig. 2. Two-dimensional, periodic unit cell with 
the solid, circular inclusion shown in white color. 
The image labelled (a) shows the grid used for the 
computations, composed by 10 808 triangles; New- 
tonian results for 𝐅 = (1 , 0) are displayed in frames 
(b) and (c), via isolines of, respectively, horizontal 
( x -aligned) and vertical ( y -aligned) velocity com- 
ponents. 
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𝑒  
the solution of problem 1 (or 2). Eq. (14) defines two components of
the effective permeability tensor K 

C . 
• Problem 2 Set 𝐆 = (0 , 1) for Eq. (12) to yield the vertical component

of the seepage velocity: 

⟨𝑣 (0) ⟩ = −  

𝐶 
𝑦𝑥 

𝜕𝑝 (0) 

𝜕𝑋 

−  

𝐶 
𝑦𝑦 

𝜕𝑝 (0) 

𝜕𝑌 
, (15)

with the two other permeability components  

𝐶 
𝑦𝑥 = ⟨𝑢 †(2) ⟩ and  

𝐶 
𝑦𝑦 =⟨𝑣 †(2) ⟩. 

It needs to be stressed that the four components of the tensor K 

C are
vailable after solving the linear system (10) twice in the microscopic
nit cell. The extension to three dimensions is trivial and will not be
ursued here, the present contribution being limited to illustrating two-
imensional results. 

The dimensionless Darcy’s law is thus recovered, and in compact
orm it reads 

𝐮 (0) ⟩ = − 𝐊 

𝐶 ⋅ ∇ 

′𝑝 (0) . (16)

his equation relates the Darcy’s velocity of a pseudo-plastic fluid in a
orous medium to the macroscopic gradient of the pore pressure via a
arreau permeability tensor, K 

C , also called the effective mobility tensor

hahsavari, S., McKinley, G.H. (2015) , which depends on the direct flow
tate through 𝛾̇ (0) , so that macroscopic and microscopic state variables
o not decouple. The vector Eq. (16) must be solved together with the
ass-conservation constraint which, by virtue of the spatial-averaging

heorem Mei, C.C., Vernescu, B. (2010) , is simply ∇ 

′ ⋅ ⟨𝐮 (0) ⟩ = 0 . 
In dimensional form, the effective Darcy’s Eq. (16) reads: 

𝐮̂ (0) ⟩ = − 

1 
𝜇̂0 

𝐊̂ 

𝐶 ⋅ ∇̂ 

′𝑝̂ (0) , (17)

ith 𝐊̂ 

𝐶 = 𝐊 

𝐶 𝓁 2 . Using the Newtonian (or intrinsic) permeability 𝐊̂ ,

q. (17) takes the alternative form 

𝐮̂ (0) ⟩ = − 

1 
𝜇̂0 

𝚽 ⋅ 𝐊̂ ⋅ ∇̂ 

′𝑝̂ (0) , (18)

ith 𝚽 = 𝐊̂ 

𝐶 ⋅ 𝐊̂ 

−1 , whose dimensionless version is simply 

𝐮 (0) ⟩ = − 𝚽 ⋅𝐊 ⋅ ∇ 

′𝑝 (0) . (19)

q. (18) is the extended version of Eq. (1) in which 𝚽∕ ̂𝜇0 plays the
ole of a fluidity tensor McCain Jr., W.D. (1990) . The simplest possi-
le form of this tensor is, in principle, 𝚽∕ ̂𝜇0 = 𝜙 𝐈 ∕ ̂𝜇0 ( I being the
dentity matrix), with the effective viscosity which would thus become

eff = 𝜇̂eff ∕ ̂𝜇0 = 1∕ 𝜙 (cf. Eq. (1) ). For the isotropic geometry displayed
n Fig. 2 it is 𝐊 =  𝐈 , so that 𝚽 coincides with the Carreau permeability
p to the multiplicative constant  

−1 . However, even for the elemen-
ary isotropic arrangement of solid inclusions under consideration here,

does not take the simple form 𝚽 = 𝜙 𝐈 (and, likewise, we cannot write
 

𝐶 =  

𝐶 𝐈 ), so that, aside from limiting cases in which deviations from
he Newtonian behavior are minimal, it is not formally correct to in-
roduce an effective viscosity and use Darcy’s law together with a scalar,
ewtonian permeability. This conclusion, to be supported shortly by
umerical results, is a major departure from standard engineering prac-
ice. We also observe that Eq. (18) has been postulated recently by Zami-
ierre, F., de Loubens, R., Quintard, M., Davit, Y. (2018) , and 𝚽 was
nterpreted as the product of a rotation tensor, to capture changes in
he direction of the average velocity with respect to the Newtonian case,
imes a scalar factor capable to account for variations in velocity mag-
itude because of non-Newtonian effects. 

The aim of this paper is to assess and discuss, for the geometry of
ig. 2 , variations of the Carreau permeability with the fluid properties,
and n , with the porosity of the medium, 𝜃, and with the orientation

f the macroscopic, forcing pressure gradient. The norm of ∇ ′ p (0) will,
rom now on, be taken unitary, and the pressure gradient parameterized
y the angle 𝛼 ∈ [0 ∘, 90 ∘], i.e. 

𝜕𝑝 (0) 

𝜕𝑋 

= − cos 𝛼, 𝜕 𝑝 (0) 

𝜕 𝑌 
= − sin 𝛼. (20)

he limiting cases 𝛼 = 0 ◦ and 𝛼 = 90 ◦ correspond to pressure gradient
long X and Y , respectively, with the fluid being forced from left to right
n the first case and from bottom to top in the second, with reference to
he axes in Fig. 2 . Results for other macroscopic forcing directions can
asily be recovered by rotation. 

. Numerical method, validation and sample results 

The incompressible two-dimensional creeping flow Eq. (8) are solved
ith a finite element method using the FreeFEM open source code
echt, F. (2012) . The approach is based on a weak formulation of the
quations, which means introducing two regular test functions q and v ,
nd solving the integral 

 f luid 
(−2 𝜇( ̇𝛾 (0) ) 𝐷𝐮 (0) ⋅ ∇ 𝐯 + 𝑞 𝛁 ⋅ 𝐮 (0) + 𝑝 (1) 𝛁 ⋅ 𝐯 − ∇ 

′𝑝 (0) ⋅ 𝐯 ) 𝑑 = 0 (21)

or the direct variables p (1) and u 

(0) , approximated by triangular 𝑃 1 − 𝑃 2 
aylor-Hood elements Brezzi, F., Falk, R. (1991) ; Chen, L. (2014) . The
on-linearity present in the viscosity law is treated by the use of the
ewton method, and a few iterations (typically between four and ten)
re needed to obtain a converged solution for the direct flow state. A
imilar approach in weak form is also employed for the u 

(0) -dependent
djoint problem. 

The mesh, n s × n c , is defined by the number of points n s , equi-
istributed along each side of the square computational box, and the
umber of points n c , equi-distributed on the boundary of the circular
olid inclusion. Numerical results have been obtained with three grids:
0 × 120, 120 × 180 and 200 × 360. For 𝜃 = 0 . 9 these yield, respec-
ively, 10 808, 36 378 and 111 516 triangles. The results obtained with
he fine mesh (mesh 3) are used as a reference against which to measure
he results obtained with the coarser grids. In particular, a percentage
rror sensor on the permeability (whether intrinsic or non-Newtonian)
an be defined, as 

 𝑖 (  

𝐶 
𝑥𝑥 ) = 

|(  

𝐶 
𝑥𝑥 ) 𝑖 − (  

𝐶 
𝑥𝑥 ) 3 |

(  

𝐶 ) 3 
, 𝑖 = 1 and 2 , (22)
𝑥𝑥 
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Fig. 3. (a) Intrinsic permeability against porosity for a 
regular arrangement of circulardisks. (b) Components 
of the apparent permeability tensor of a Carreau fluid 
(normalized by  = 0 . 0403 ) for varying directions of the 
mean pressure gradient ( 𝜃 = 0 . 9 , 𝑛 = 0 . 5 , 𝜆 = 5 ). 

Table 1 

Mesh convergence analysis for Newtonian and Carreau fluid in terms of the 
components of the permeability tensor (in the Carreau case we have selected 
𝑛 = 0 . 5 and 𝜆 = 5 , while in the Newtonian case it is simply 𝑛 = 1 ). The ma- 
trix porosity is 𝜃 = 0 . 9 and the driving pressure gradient is parallel to the 
x -axis (i.e. 𝛼 = 0 ◦). For such a forcing condition it is  

𝐶 
𝑥𝑦 

=  

𝐶 
𝑦𝑥 

= 0 for both 
rheologies. 

 

𝐶 
𝑥𝑥 

 

𝐶 
𝑦𝑦 

𝑒 1 (  

𝐶 
𝑥𝑥 
) 𝑒 1 (  

𝐶 
𝑦𝑦 
) 𝑒 2 (  

𝐶 
𝑥𝑥 
) 𝑒 2 (  

𝐶 
𝑦𝑦 
) 

Newtonian 0.0403 0.0403 0.030% 0.030% 0.010% 0.010% 

Carreau 0.0632 0.0543 0.040% 0.040% 0.015% 0.015% 
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Table 2 

Effective, anisotropic components of the permeabil- 
ity for the case of Fig. 4 , against the single perme- 
ability component which arises when introducing 
an effective viscosity. 

 

𝐶 
𝑥𝑥 

 

𝐶 
𝑦𝑦 

 

𝐶 
𝑥𝑦 

𝜇eff  ∕ 𝜇eff 

0.5315 0.0758 

0.1034 0.0962 0.0162 0.4505 0.0894 
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nd likewise for  

𝐶 
𝑦𝑦 . The subscript 1, 2 or 3 next to the permeability

omponent indicates that the component is evaluated on the basis of grid
, 2 or 3 (1 being the coarsest). Thus, for example, 𝑒 1 (  

𝐶 
𝑥𝑥 ) represents

he percentage difference between the values of the streamwise perme-
bility component obtained with grids 1 and 3. Representative results
or both the Newtonian and a Carreau rheology are reported in Table 1
nd are very reassuring in terms of the accuracy of the numerical proce-
ure; for example, grid 1 yields values of  

𝐶 
𝑥𝑥 and  

𝐶 
𝑦𝑦 which are always

ithin 0.040% of those obtained with the (very fine) grid 3. Additional
nformation on the grid convergence of the results is provided in Ap-
endix A. In the following, all results reported are obtained using grid
, which permits a faster and accurate exploration of parameter space. 

For a Newtonian fluid, the results obtained with grid 1 coincide to
raphical accuracy with those reported previously by Zampogna, G.,
ottaro, A. (2016) , as shown in Fig. 3 (a). 

For the same non-Newtonian parameters as used in Table 1 , it is in-
tructive to study how the effective permeability components change
ith the variation of the angle 𝛼 of the forcing pressure gradient.
hese results are reported in Fig. 3 (b) and highlight the symmetry of
he problem; in particular,  

𝐶 
𝑥𝑥 ( 𝛼) =  

𝐶 
𝑦𝑦 (90 

◦ − 𝛼) ,  

𝐶 
𝑥𝑦 ( 𝛼) =  

𝐶 
𝑥𝑦 (90 

◦ − 𝛼)
nd  

𝐶 
𝑥𝑦 =  

𝐶 
𝑦𝑥 . The off-diagonal components of the permeability are

ypically one order of magnitude smaller that the diagonal components,
ut cannot be neglected. Their maximum values are found when the
ressure gradient is oriented at 45 ∘ with respect to the horizontal (or at
35 ∘). For these two angles, it is also  

𝐶 
𝑥𝑥 =  

𝐶 
𝑦𝑦 as clearly imposed by

ymmetry. 
It is also instructive to focus on microscopic results in a non-

ewtonian case, to try and assess how the viscosity varies within the
nit cell, via its coupling with the strain, and to evaluate whether an
ffective viscosity can be introduced. Fig. 4 displays direct microscopic
olutions computed for a Carreau fluid with 𝑛 = 0 . 5 and 𝜆 = 10 , with
he porosity of the regular arrangement of disks maintained at 𝜃 = 0 . 9 ,
nd the macroscopic pressure gradient oriented at 𝛼 = 30 ◦. In Fig. 4 (a)
he focus is on the second invariant of the rate of deformation tensor;
he image demonstrates the presence of strongly deformed, localized re-
ions of the flow, sitting next to other regions characterized by very low
alues of 𝛾̇ (0) . 
This behavior reflects directly onto the distribution of viscosity,
hown in Fig. 4 (b). A large apparent viscosity is present in areas where
̇ (0) is low, and viceversa. From these results it is easy to extract, via
ntrinsic averaging , the mean viscosity and the mean strain. In particular,
enoting the intrinsinc averaging operation Whitaker, S. (1986) with
· ⟩f we have: 

𝜇(0) ⟩𝑓 = 

1 
 f luid ∫ f luid 𝜇

(0) d  = 

1 
𝜃
⟨𝜇(0) ⟩ = 0 . 5315 , (23)

𝛾̇ (0) ⟩𝑓 = 

1 
 f luid ∫ f luid 𝛾̇

(0) d  = 0 . 4825 . (24)

he latter averaged value can be introduced into the viscosity law
9) to yield another estimate of the dimensionless effective viscosity ,

eff = 0 . 4505 . Whether one uses 0.4505 (as suggested, for example, by
hahsavari & McKinley Shahsavari, S., McKinley, G.H. (2015) ) or avoids
oing through the strain rate and uses directly the intrinsic average
alue 0.5315 (as suggested by Eberhard, U., Seybold, H.J., Florian-
ic, M., Bertsch, P., Jiménez-Martínez, J., Andrade J.S. Jr., Holzner,
. (2019) ) the conclusion is the same and is readily apparent through

nspection of the numbers in Table 2 . An effective viscosity method is
ncapable of accounting for anisotropic effects and underestimates the
ermeability to be used in Eq. (16) . This is also clear after evaluating
he eigenvalues of K 

C which, in this case, are equal to 𝜆max = 0 . 1164 and

min = 0 . 0832 ; the anisotropy factor, defined as 

= 

𝜆max 
𝜆min 

, (25) 

s appreciably larger than one ( 𝛿 = 1 . 399 ) and the mean permeability, ge-
metric average of the principal permeabilities, is  mean = 

√
𝜆max 𝜆min =

 . 0984 , exceeding by 14% the largest value of  ∕ 𝜇eff in Table 2 . 
The components of the effective mobility tensor,  

𝐶 
𝑖𝑗 
, in Table 2 are

btained by phase averaging adjoint “velocities ”, as defined right after
qs. (14) and (15) . Such microscopic adjoint fields, for the geometry
nd the fluid being discussed here, are shown in Fig. 5 . Whereas the
wo fields v † (1) and u † (2) are the same, aside from a 90 ∘ rotation plus
eflection operation, the two fields which yield the diagonal components
f K 

C , after rotation and reflection, still display some differences (and,
n fact,  

𝐶 
𝑥𝑥 is about 7% larger than  

𝐶 
𝑦𝑦 .) 
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Fig. 4. (a) Second invariant of the rate of strain tensor, 𝛾̇ (0) , and (b) viscosity 
𝜇(0) . The macroscopic pressure gradient within the unit cell is inclined at 𝛼 = 30 ◦

with respect to the direction of the x -axis. 

Fig. 5. Adjoint fields for the microscopic problems defined, respectively, by 
𝐆 = (1 , 0) (superscript (1)) and 𝐆 = (0 , 1) (superscript (2)) for the same Carreau 
fluid as in Fig. 4 . 
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. Parametric analysis 

The main output of the parametric study is the apparent permeability
ensor, with its three independent components,  

𝐶 
𝑥𝑥 ,  

𝐶 
𝑦𝑦 and  

𝐶 
𝑥𝑦 ; an-

ther interesting output is the anisotropy factor, 𝛿, which stems directly
rom the mobility tensor. Four input variables are present; one of them,
, is related to the orientation of the macroscopic pressure gradient, an-
ther is the porosity 𝜃 of the medium, and the last two, n and 𝜆, are
elated to rheological properties of the fluid. The space of parameters
s thus formidable and here we aim to provide a reasonably complete
nd accurate synthesis of the results, based on over 3 300 direct-adjoint
umerical simulations. 

.1. Trend of the viscosity with carreau parameters 

First, it is instructive to assess how the viscosity changes with the
arreau parameters n and 𝜆, since the more the fluid’s behavior differs

rom Newtonian, the more anisotropic we expect the permeability ten-
or to be. We have thus fixed the value of the second invariant of the
ate of strain tensor to a (reasonable) constant value, i.e. 𝛾̇ (0) = 0 . 5 (cf.
ig. 4 (a)); a different choice of the value of 𝛾̇ (0) does not change the
ualitative trend of 𝜇(0) which can be observed in Fig. 6 . For small 𝜆 the
uid acts as Newtonian (in the case being consider the upper threshold

s about 𝜆 = 1 ); the behavior of 𝜇(0) with n in the limit 𝜆𝛾̇ (0) → 0 is 

(0) ≈ 1 + 

𝑛 − 1 [ 𝜆 𝛾̇ (0) ] 2 + 

( 𝑛 − 1)( 𝑛 − 3) [ 𝜆 𝛾̇ (0) ] 4 . (26)

2 8 
ith the increase of 𝜆 (above a few units) the typical Ostwald-de Waele
stwald, W. (1929) power-law relationship ensues, of the form 

(0) ≈ [ 𝜆 𝛾̇ (0) ] 𝑛 −1 , (27)

ith 𝜆𝑛 −1 the dimensionless flow consistency index. The trends ex-
ressed by Eqs. (26) and (27) are represented in Fig. 6 (a). The variation
f the viscosity with n is more clearly displayed in frame (b) of the same
gure. When 𝑛 = 1 the fluid is Newtonian for any 𝜆, and 𝜇(0) = 1 ; a mild
eviation from 𝑛 = 1 yields 

(0) ≈ 1 − 

1 − 𝑛 

2 
ln 

{
1 + [ 𝜆 𝛾̇ (0) ] 2 

}
. (28)

As n is reduced further the fluid becomes more shear-thinning and
hen n → 0 the asymptotic behavior is 

(0) ≈
{ 

1 + 

𝑛 

2 
ln [1 + ( 𝜆𝛾̇ (0) ) 2 ] 

} {
1 + [ 𝜆𝛾̇ (0) ] 2 

}− 1 2 , (29)

ith 𝜇(0) which decreases more rapidly with the increase of 𝜆𝛾̇ (0) . 
The observations just made reflect onto the components of the Car-

eau permability. In particular, we will verify that the normalized com-
onents of the effective mobility tensor, ̃ 𝑥𝑥 =  

𝐶 
𝑥𝑥 ∕  and ̃ 𝑦𝑦 =  

𝐶 
𝑦𝑦 ∕ 

thus, scaled by the intrinsic permeability  , evaluated at the same value
f the porosity, 𝜃) tend to 1 in the limit of 𝜆 going to 0 or n to 1. We
ill further show that the off-diagonal, normalized permeability term,
̃
 𝑥𝑦 =  

𝐶 
𝑥𝑦 ∕  , approaches zero in the same limits. Finally, when 𝜆 be-

omes very large, the Carreau viscosity model reverts to the simpler
ower-law equation. 

.2. The normalized permeability 

Because of the property  

𝐶 
𝑥𝑥 (45 

◦ − Δ𝛼) =  

𝐶 
𝑦𝑦 (45 

◦ + Δ𝛼) (cf. Fig. 3 (b))
nly the behavior of the first component of the normalized mobility
ensor will be described, with 𝛼 ranging from 0 ∘ to 90 ∘. Values of ̃ 𝑦𝑦 are
mmediately available by symmetry. To analyze the behavior of ̃ 𝑥𝑥 we
rst evaluate it against the relaxation time, 𝜆 (cf. Fig. 7 ) and then against
he porosity, 𝜃 (cf. Fig. 8 ). Isotropicity is maintained until 𝜆 remains
elow an order one threshold value, function of the other (flow and
heological) parameters. As the time constant in the Carreau law exceeds
he threshold, the permeability grows monotonically, and the more so
or increasing porosity, and decreasing power law index and forcing
ngle. The behavior of the first mobility coefficient against 𝜆 ( Fig. 7 ) is
emarkably similar to that of 𝜇(0) sketched in Fig. 6 (a) (where 𝛾̇ (0) had
een set, for simplicity, to a constant value), and can be expressed by
he following law: 

̃
 𝑥𝑥 ≈ (1 + 𝐴𝜆𝑝 ) 

1 
𝑚 , (30)

ith m and p positive, real numbers. At each fixed n , it is 𝑚 = 𝑝 . In gen-
ral, the coefficients A, m and p depend non-trivially on the parameters
f the problem and can be identified by regression analysis. 
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Fig. 7. Variation of ̃ 𝑥𝑥 with 𝜆. In frame (a) 𝜃 and 
𝛼 are kept constant, equal to the values indicated 
above the figure, and the different curves are pa- 
rameterized by n , with n increasing in the direction 
of the arrow. In frame (b) the curves are parame- 
terized by 𝜃, with n and 𝛼 constant, while in frame 
(c) the parameters kept at a fixed value are 𝜃 and n , 
with different lines drawn by varying the angle 𝛼. 

Fig. 8. Variation of ̃ 𝑥𝑥 with 𝜃. 
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When looking at the results in a ̃ 𝑥𝑥 versus 𝜃 plot, the trends are
lso monotonic and the role of the parameters discussed on the basis of
ig. 7 is confirmed, cf. Fig. 8 . In particular, the shape of all curves is
ell fit by an expression of the form 

̃
 𝑥𝑥 ≈

𝐴 

′ 𝜃𝑚 
′

(1 − 𝜃) 𝑝 ′
. (31) 

nterestingly, Eq. (31) has the same form of Kozeny equation
ozeny, J. (1927) , aside from the fact that the regression parameters
 ′ , m ′ and p ′ depend on the constant in the viscosity law and on the
irection of the forcing pressure gradient. It is also found that the expo-
ential increase of ̃ 𝑥𝑥 with n is well correlated by 

n ̃ 𝑥𝑥 ≈
𝐴 

′′ (1 − 𝑛 ) 𝑝 ′′

𝑛 𝑚 
′′ . (32) 

or any 𝜆, 𝜃 and 𝛼. As before, the regression coefficients in Eq. (32) de-
end non-linearly on all other parameters. We have unfortunately been
nable to sort out a single equation, ̃ 𝑥𝑥 = 𝑓 ( 𝜃, 𝛼, 𝜆, 𝑛 ) , capable to inde-
endently account for the variation of each variable. 

The off-diagonal component of the Carreau permeability is symmet-
ic about 𝛼 = 45 ◦ (cf. Fig. 3 (b)), which is why in this case the paramet-
ic plots cover only the interval of angles from 0 ∘ to 45 ∘. The results in
ig. 9 show how ̃ 𝑥𝑦 changes with 𝛼 upon variation of the other param-
ters. The off-diagonal component of K 

C rises monotonically from zero
t 𝛼 = 0 ◦ to a maximum at 𝛼 = 45 ◦, reaching non-negligible magnitudes
hen compared to those of the diagonal components. Large values of

he porosity, 𝜃, and of the time constant, 𝜆, as well as a low power-law
ndex, n , yield increasing ̃ 𝑥𝑦 , just as it occurs for the diagonal compo-
ent ̃ . Analysis of the plots in Fig. 9 further reveals that as long as 𝛼
𝑥𝑥 
oes not exceed about 25 ∘, ̃ 𝑥𝑦 depends linearly on 𝛼, i.e. 

̃
 𝑥𝑦 ≈ 𝐶( 𝜃, 𝑛, 𝜆) 𝛼, (33)

ith the slope coefficient a non-trivial function of the other parameters.
urthermore, by considering a figure analogous to Fig. 9 (b), but with
in abscissa and 𝛼 as a parameter, an accurate power law regression

ields an expression of the form: 

̃
 𝑥𝑦 ≈

𝐴̃ 𝜆𝑝̃ 

(1 + 𝐵̃ 𝜆𝑞 ) 
1 
𝑚̃ 

, (34) 

ith coefficients, 𝐴̃ and 𝐵̃ , and exponents, 𝑝̃ , 𝑞 and 𝑚̃ , functions of the
ther parameters; in particular, 𝑞 is close to 𝑚̃ and 𝑝̃ is quasi-constant
nd equal to 2 in this situation ( 𝑛 = 0 . 5 , 𝜃 = 0 . 9 ). 

The results obtained attest to the strong non-linear footprint of Car-
eau’s rheology on the fluid flow and on the effective quantities appear-
ng in Darcy’s equation. 

.3. The anisotropy factor 

A concise way to sum up the results of the parametric study is al-
owed by focusing on the anisotropy factor. Fig. 10 displays 𝛿 as func-
ion of the dimensionless relaxation time 𝜆. The immediate observation
s that the permeability is a scalar quantity (isotropic conditions) at low
’s (as already seen before, when 𝜆 is less than about 1, Newtonian con-
itions are recovered). The anisotropy factor then rises monotonically
n some range of 𝜆, range which stretches with the increase of 𝛼 and
he decrease of 𝜃. Conversely, the interval of values of 𝜆 over which 𝛿
rows appears to be independent of the power-law index, n . After this
egion of growth, the anisotropy factor saturates. Larger values of 𝛿 are
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Fig. 9. Parametric variation of ̃ 𝑥𝑦 as function of 
𝛼 (expressed in degrees). 

Fig. 10. Variation of anisotropy factor with 𝜆. 

Fig. 11. Variation of anisotropy factor with 𝜃. 
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bserved for 𝛼 = 45 ◦, when the porosity is small and for low n ’s. In the
imit of very small n , the viscosity is ruled by Eq. (29) and 𝜇(0) tends
o zero when 𝜆𝛾̇ (0) → +∞. Thus, as 𝜆 increases and n decreases, the per-
eability tensor becomes more anisotropic and, as anticipated, this is

ssociated to a reduced value of the fluid’s dynamic viscosity. 
Fig. 10 seems to suggest that the anisotropy factor can only grow
onotonically with 𝜆, and more so for larger 𝛼’s, but this is the case

nly when the porosity is large ( 𝜃 = 0 . 9 in Fig. 10 (b).) An alternative
anner to observe the system’s behavior is displayed in Fig. 11 , where
is plotted against the porosity. 
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Fig. 12. The flow angles. 
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The figure indicates clearly that 𝛿 does not behave monotonically
ith 𝜃. In particular, the system is more anisotropic for 𝜃 in a range
round 0.7 when 𝛼 and 𝜆 are fixed as in frame (a); the maximum value
f 𝛿 shifts to lower porosities as the relaxation time 𝜆 grows (frame b).
rame (c) of Fig. 11 illustrates the behavior of 𝛿 with the angle of the
mposed pressure gradient. At low 𝛼’s (until about 15 ∘ for the chosen

and n ) there is a peak at an intermediate value of porosity; when 𝛼
xceeds an angle of about 20 ∘ the most anisotropic configurations are
ound when the porosity tends to its upper limit value ( 𝜃 → 1), i.e. for
olid grains of small size. In other words, when the pores are small the
argest anisotropy occurs at 𝛼 = 0 ; when the pores become sufficiently
arge the maximum 𝛿 occurs when the angle between the axes and the
ressure gradient is 45 ∘. This behavior highlights the non-trivial influ-
nce of porosity and inclination of the pressure forcing on the strain
eld and, as a consequence, on the system’s anisotropic response. 

.4. Flow angles 

Another aspect linked to the anisotropicity of this system is the angle
etween the directions of the mean flow velocity vector, ⟨u 

(0) ⟩, and of
he macroscopic pressure gradient, ∇ ′ p (0) . Such an angle is defined in
ig. 12 , as the difference between 𝛽 and 𝛼. The deviation angle varies
ith the parameters of the problem as displayed in Fig. 13 . 

Coherently with the indications of the previous section, 𝛽 − 𝛼, hence
he system’s anisotropy, is enhanced by increasing values of 𝜆, with a
aturation observed for 𝜆 exceeding a value of about 25, and decreasing
alues of n ; not unexpectedly, the behavior with 𝜃 is not monotonic. On
he positive side, the deviation angle remains always limited to a few
egrees and this bodes well for the development of simplified models. 

.5. Effects of flow domain’s size and grains’ randomness 

The final point which deserves scrutiny is the effect of the domain’s
ize. Until now all results have concerned the case of a single unit cell.
owever, the nonlinearity of the direct problem suggests asking (and

rying to answer) the question: is the single unit cell a sufficient do-
ain for this analysis? A related question which ensues is the following:
hen considering dozens of grains what is the effect of spatially sta-

ionary, irregularly positioned grains? Is the fluid’s nonlinear behavior
nhanced or damped by a disordered placements of identical disks? In
 previous study on ordered and disordered porous media Lasseux, D.,
bbasian Arani, A.A., Ahmadi, A. (2011) the same question was ad-
ressed for the case of weak and strong inertial effects, for a Newtonian
uid. Here the question can be posed when nonlinearities are induced
y the viscosity law, focussing on the variation of the Darcy’s effective
ermeability coefficients. 

To answer the questions above we start by examining the case of a
arreau fluid with 𝑛 = 0 . 5 and 𝜆 = 5 , for a medium of porosity 𝜃 = 0 . 9 ,
ith a driving pressure gradient inclined by 𝛼 = 45 𝑜 . Three different
oubly periodic RVE’s ( representative volume elements) are used: 1 × 1,
 × 2, and 3 × 3, with respectively, one, four and nine regularly arranged
ircular inclusions within the domain. In all cases the same results are
ound, i.e.  

𝐶 
𝑥𝑥 =  

𝐶 
𝑦𝑦 = 0 . 0594 and  

𝐶 
𝑥𝑦 =  

𝐶 
𝑦𝑥 = 0 . 0070 . 

Another test concerns the case of a RVE of dimensions 10 × 10, with
00 identical circular inclusions, arranged in either an orderly or a dis-
rderly fashion. Two different fluids, with the same value of 𝑛 = 0 . 5 , are
onsidered: one with 𝜆 = 5 and a second with 𝜆 = 50 , to assess the effect
f spatial disorder on both the case of weak and strong nonlinearities.
lso, two values of the porosity 𝜃 are considered, while 𝛼 is kept fixed
t the value of zero degrees. The results are summarized in Table 3 , and
ompared to the Newtonian case (for which 𝜆 = 0 ). 

The grid employed is less dense in the 10 × 10 cases than in the sin-
le unit cell computations for reasons of available computer memory;
onetheless, the results permit to draw a few interesting considerations
or both weakly nonlinear (WNL, 𝜆 = 5 ) and strongly nonlinear (SNL,
= 50 ) fluids. The first is that, even for a 10 × 10 RVE, the components
f 𝐊 

𝐶 coincide with those found by using a single unit cell, in the or-
ered configuration. The possible exception appears to be the SNL case
f the porous medium with large interstital spaces ( 𝜃 = 0 . 9 ), which dis-
lays a large permeability. In this configuration, however, the difference
ith respect to the reference 1 × 1 case is less than 1% for both compo-
ents of the effective permeability; we believe that it should be ascribed
o the relative inaccuracy in capturing large velocity gradients in the
nterstices of the medium, and thus the effective viscosity of the direct
tate. The same 1% error bar can be expected in the corresponding dis-
rdered case ( 𝜆 = 50 , 𝜃 = 0 . 9 ). Regardless, it is clear that when the 100
rains are positioned randomly in the RVE (cf. Fig. 14 ) channeling of
uid through less resistive flow paths occurs, resulting in larger values
f the permeability when the porosity is large. Such an excess is typi-
ally of order 10% for both WNL and SNL fluids. Conversely, when the
orosity is 𝜃 = 0 . 6 , differences with respect to the reference, single-cell
ase are modest. 
Fig. 13. Deviation angle 𝛽 − 𝛼 in degrees. 
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Table 3 

Effective permeability components (  

𝐶 
𝑥𝑥 
,  

𝐶 
𝑦𝑦 

) for a single unit cell, and for the case of one hundred, ordered 
or disordered, cells. The off-diagonal components either vanish or are very small for a motion with 𝛼 = 0 𝑜 . 
The last two lines of the table provide the grid resolution for the two values of 𝜃 and for each configuration 
studied. The numbers in parentheses are ( n s , n c ), respectively the number of points along each side of the 
RVE, and the number of points on the boundary of each circular grain. The numbers in italics after the 
round brackets are the numbers of triangles used in each case. 

𝜆 𝜃 Reference (1 × 1) Ordered (10 × 10) Disordered (10 × 10) 

0.9 (0.0403, 0.0403) (0.0405, 0.0405) (0.0433, 0.0449) 

0 0.6 (0.0046, 0.0046) (0.0046, 0.0046) (0.0046, 0.0045) 

0.9 (0.0632, 0.0543) (0.0636, 0.0546) (0.0720, 0.0624) 

5 0.6 (0.0055, 0.0046) (0.0055, 0.0047) (0.0055, 0.0048) 

0.9 (0.5437, 0.4266) (0.5469, 0.4304) (0.6318, 0.4886) 

50 0.6 (0.0313, 0.0072) (0.0314, 0.0072) (0.0303, 0.0166) 

0.9 (240, 120), 66 544 (120, 30), 131 554 (240, 30), 141 762 

0.6 (240, 120), 54 662 (240, 60), 94 954 (240, 60), 94 892 

Fig. 14. Isolines of u (0) in a random 10 × 10 porous 
medium with 𝜃 = 0 . 9 (a) and 0.6 (b), for a Carreau 
fluid with 𝜆 = 50 and 𝑛 = 0 . 5 . The pressure gradient is 
aligned with the horizontal axis in both cases. 
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. Conclusions 

Multi-scale homogenization has been used to study the creeping flow
f a shear-thinning fluid, modelled through the Carreau viscosity law, in
 porous medium. The leading order approximation of the direct, micro-
copic flow problem is non-linear because of the fluid rheology. By em-
loying an “adjoint ” approach, initiated by Bottaro Bottaro, A. (2019) ,
e can easily address such a nonlinearity to find that, also for the case
f non-Newtonian fluids, the macroscopic flow is ruled by Darcy’s equa-
ion, as postulated by Zami-Pierre et al. Zami-Pierre, F., de Loubens,
., Quintard, M., Davit, Y. (2018) . The important parameter in Darcy’s
quation is the effective permeability tensor, also denoted Carreau mo-
ility or permeability. This is available by phase averaging the fields
f an auxiliary (adjoint) problem in the unit cell. Because of the de-
endence of viscosity on the behavior of the fluid a strongly coupled
olution must be pursued, and this coupling has a direct consequence
n the anisotropy of the Carreau permeability, even for simple isotropic
orous microstructures. 

To highlight such an effect, consideration has been limited to the
ase of an elementary, two-dimensional porous geometry. Probably the
ain result of the work is that, except in limiting cases where the viscos-

ty is close to Newtonian, the permeability cannot be reduced to a scalar
uantity (despite the isotropicity of the geometrical configuration exam-
ned), so that the introduction of an effective (scalar) viscosity and the
se of Eq. (1) leads to errors. 

An extensive parametric analysis has been carried out to assess how
he components of K 

C vary with the rheological parameters 𝜆 and n ,
ith the porosity of the material, 𝜃, and with the direction of the macro-

copic pressure gradient forcing the flow, expressed via the angle 𝛼. Low
alues of the power-law index n and large values of the time constant
have the effect of significantly increasing the streamwise and trans-

erse permeability components, as compared to their intrinsic counter-
art. The off-diagonal component is also biased in an analogous manner
nd can grow to comparable magnitude, rendering the system strongly
nisotropic. Anisotropicity can be assessed on the basis of a single scalar
arameter, the anisotropy factor 𝛿; whereas the variation of this factor
s monotonic with respect to the two rheological constants, the behavior
s non-trivial when analyzed with respect to the geometry of the porous
edium (expressed via 𝜃) and the inclination angle of the pressure gra-
ient, 𝛼. This appears to represent an obstacle to the development of
implified models of the flow of shear-thinning fluids in porous media.
owever, the deviation of the mean flow with respect to the macro-

copic pressure gradient is consistently limited to a few degrees for a
ide range of parameters, so that approximating it to zero should con-

titute an acceptable approximation. 
Finally, when a large representative volume element is considered, with

rains positioned randomly within the available space, differences of the
rder of about 10% in the values of the apparent permeability compo-
ents occur primarily when the porosity is very large, when comparing
o the corresponding single-cell values. For intermediate and low poros-
ty values the disordered arrangement of the solid inclusions seems to
ield a negligible effect. This issue deserves to be investigated further,
articularly for three-dimensional configurations. 
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Table A1 

Convergence analysis for a Newtonian fluid in a medium of poros- 
ity 𝜃 = 0 . 9 . Left: first component of the tensor  

𝐶 for the three dif- 
ferent grids tested. Right: grid convergence metrics ( ̂𝑝 ≈ 3 . 215 ). 

mesh mesh 100 × 

𝐶 
𝑥𝑥 

metric value 
index identifier 

3 fine 4.02728 GCI 23 0.040% 

2 medium 4.02777 GCI 12 0.060% 

1 coarse 4.02857 𝐴𝐶 − 1 2 . 4 × 10 −4 
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ppendix A. Numerical convergence 

The grid convergence analysis has been performed with the GCI ap-
roach introduced by Roache (1998) , also employed in our previous
ecent study Luminari, N., Airiau, C., Bottaro, A. (2018) . The method is
ased upon a grid refinement error estimator derived from the theory of
eneralized Richardson extrapolation. It measures the ratio between the
omputed value of a quantity over the asymptotic numerical value, thus
ndicating how far the solution is from the asymptotic ( “exact ”) value.
he procedure is simple and provides a method to estimate the order of
he spatial convergence, based on two or three different grid sizes. Four
teps must be followed, outlined below. 

1. Estimate the order of convergence of the procedure, defined as

𝑝̂ = 

ln 
𝑓 3 − 𝑓 2 
𝑓 2 − 𝑓 1 
ln 𝑟 , where r is the grid refinement ratio between each

grid (it is computed as the ratio between the number of elements
of two consecutive grids; the approach imposes that r should re-
main quasi-constant between any couple of consecutive grids and
be larger than 1.1). For the present study the quantity f i is given
by the  

𝐶 
𝑥𝑥 component; the subscripts are: 𝑖 = 1 for the coarse

grid, 𝑖 = 2 for the medium grid, and 𝑖 = 3 for the fine grid. The
number of elements of each one of these grids is given in section
4. 

2. Compute the relative error between grid i and j : |𝜖|𝑖𝑗 = 

𝑓 𝑗 − 𝑓 𝑖 

𝑓 𝑖 
,

for ( i, j ) ∈ {(1, 2), (2, 3)}. 

3. Compute 𝐺𝐶𝐼 𝑖𝑗 = 

𝐹 𝑠 |𝜖|𝑖𝑗 
𝑟 ̂𝑝 − 1 

, with F s a factor which can be taken

equal to 1.25 when three grids are used, according to Roache’s
prescription Roache (1998) . 

4. Check whether each grid level yields a solution that is in the
asymptotic range of convergence; this means that the coefficient

𝐴𝐶 = 

𝐺𝐶𝐼 23 
𝐺𝐶𝐼 12 

1 
𝑟 ̂𝑝 

should be as close as possible to one. 

The results for the case of a Newtonian fluid are reported in Table A1 .
t is clear that the coarser mesh, employed throughout this paper for
he unit cell case, is more than adequate for our purposes. The same
onvergence analysis conducted for the case of Carreau fluids, varying
he model parameters, yields the same conclusion on the adequacy of
he grid employed. 

upplementary material 

Supplementary material associated with this article can be found, in
he online version, at doi: 10.1016/j.advwatres.2020.103658 . 
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