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Goal: hydrodynamic stability-based approach to make progress towards
understanding the formation of secondary flows in turbulent ducts.
Proper prediction of secondary vortices crucial in many applications.



Problem being investigated since Nikuradse (Ph.D. Thesis, Gottingen, 1926)

Experiments: Brundett & Baines (1964), Gessner (1973)

Reynolds-averaged simulations: Launder & Ying (1973), Demuren & Rodi (1984)
Mompean (1998)

DNS/LES: Madabhushi & Vanka (1991), Gavrilakis (1992),
Huser & Biringen (1993)

. Secondary flows near corners induced by anisotropic turbulent fluctuations

. Second-order closure underpredicts secondary vortices, possibly because
of inadequate modeling of secondary shear stress components

. “A theory of the flow structures that give rise to the observed mean flow is
not yet available” O
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Qualitative picture of the
mean secondary flow: 04




TURBULENT FLOW: AVAILABLE DNS
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F1GURE 6. (a) Mean secondary velocity vectors and mean streamwise flow contours. The contour
increment is 4u, with the lowest value contour being nearest to the duct walls representing 4u,

units. (b) Vector field in (a) averaged over all octants. Only half the vectors in each direction are
shown.

S. Gavrilakis, JFM 1992



TURBULENT FLOW: AVAILABLE DNS
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FIGURE 4. Ensemble-averaged mean velocities, Run A: (a) #-contours, increment = 2;
(b) o, w velocity vectors.

A. Huser & S. Biringen, JFM 1993  “ ... the secondary flow
is produced by the secondary Reynolds stresses.”



TURBULENT FLOW: AVAILABLE LES

Re = 3873

FIG. 3. (a) Instantaneous streamwise velocity contours, and (b) instanta-
neous secondary velocity vectors in the Z = O plane

R.K. Madabhushi & S.P. Vanka, PoF 1991



[TURBULENT FLOW: AVAILABLE RANS}

Fiaure 6. Fully developed secondary flow streamlines in a rectangular duct obtained using the
nonlinear K-I model.

C.G. Speziale, JFM 1987 “... linear models of turbulence
can give rise to highly inaccurate predictions ...”




“TURBULENT” FLOW: ECS
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OPTIMAL COHERENT STATES

Triple decomposition of the variables:

(w,v,w,p) = [Uly, 2),0,0,P(x)] + [a(x,y, ), 0z, y, 2), w(z,y, 2), plx,y, 2)] + [0 0, pl(x,y, 2t
\ 1 2 T, z,y,z).plx,y, )] Pz,

with the coherent part = g(z,y, 2), o2, y. 2), (2, y. 2). pla,y,2)  “small”

Fa, +6,+d, =,

Ut + Uy + 06U, = =2 GF = 2p, + v(Uyy + U + gy + gy +10.2) = (W), = (0'07), = (w'0),
Ui, = —% Py + V(U + Ty +02) — (V) — (), — (V).

Ui, = —%133 (W + 1y + .. ) — (W), — (W), — (W),

Boussinesq hypothesis: % “large’
wrar; = s 4 gy Qi) O ), 7 “small’

p dx; dx;



P+P, U X
Mean 1D motion ,0U02 U—o Z 3

Leading order streamwise momentum equation:

1 dP* R o
D = _EE —|—.i'4"|:[ Yy -+ [ nn:] ':xj-"f{r-*"y)y -+ Exj-"lf[*:}:]}:

Further scales to be employed for the terms left at higher order are:

~

P

vV, W
el |e*pUU,

Coherent motion A ¥,z
y h
E

£ not yet specified, {J unspecified velocity scale for the coherent motion

T =2

scale of turbulent velocity fluctuations
U<<U,, U<<ur—




Equations for the coherent motion:

Uy + Uy +~w, =0,
N

O(eU/h)
Ut, +0U, + 00U, = —p./p + Ve FV(Uyy+Ue)+ (Ply)e + (Tity + 10Uy, + (Tet. + 14U ).,
- ~ J ——~ \'\fﬁ—/ [ — N — ~ ~ o
O(eUUa /h) O(e3UUs/h)  O(e?U/h?) O(vU/h2) O(e2Uu-/h) O(Uur/h)
Ui, = —py/p + e +v(0y,+0..)+ (Tu, +10Uy), + (20,0,), + [T(0, +wy)].,
\?,.-/ \_\’_,/ \.....\,:-/ - > v — > ~
O(e2UUo /) O(e2UUq/h)  O(e*vU/h?) O(evU /h?) O(eUur /h)
L'rﬁ'?‘{: = _;‘ﬁz /JO Ll Ud}x:x: Ll ?/(ﬁ’y-y — tIz;:J — (;‘71‘112 Ll I}t L'rz)v(: Ll [?71‘- ({E‘z Ll d}y)_y — (2;'7#1;1;:):: .
\.?/_-/ \.__\’_./ \_\,,__/ . " L . " L
O(e2UUu /' h) O(e2UUy/h)  O(e*vU/h?) O(evlU /h2) O(eUu /h)

By imposing that the Reynolds stresses are of the same order of the convective
terms (G. L. Mellor, Int. J. Eng. Sci. 1972) the small parameter &, that expresses
The ratio of cross-stream to streamwise length scales, is found to be:




Neglecting formally small terms:

(g 45y + 1B, =0,

-
A

Uty +vU, +wl, = vy, +u.. )+ (Viuy, + 05Uy ), + (Tru, + 01U, ).,

& [*'Tﬂ-::u = _]5:: _.f'If-?' + j-”::ﬂ:yy + 'LE'L;,;;) + “_"'fﬂz + f}t['r;;:'u: —+ :-i'-_ft tf; -+ .LE'LE-' )y + tZE_fflI-;:iﬁ

and the equations are closed by finding a suitable representation of the
turbulent viscosity, e.g.:

vy =0+ =co (U4 u)l,



Mixing length:

{ CZ = 22 A
lm  harmonic mean between the n

distances from two orthogonal walls DT R

Numerics

Collocation technique on Gauss-Lobatto grid points (y;, z;)

y; = cosm(i—1)/(N—1)withi=1,.... N
zj =cosm(j—1)/(N—1) with j = 1,..., N

N N
Uly,2) = Y > Ui;0i(y)¢;(2), @and @ Lagrangian interpolating polynomials

i=1 j=1
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Computed mean 1D flow and comparisons with the DNS data of Gavrilakis (1992)



Numerics (the coherent motion)

]T

The direct equation reads: | Qq., = Rq| with 4= p,u,v,w

and upon x-discretization a recursive system is found:

qo = [0,0,v(0),w(0)]", a1 = Giqo,

qn+1 = G2(4qn - qn—l)y n=1, ---;NL — 1

qdn = q(nAz), G; = (Q — RAz)7'Q, Gy = (3Q — 2RA2)!'Q, and L = N Az

solved with Singular Value Decomposition.

—1 —1
Constraint: 2 [ [ [5(0,.2)" + 0(0,5.2)ldy dz = By = 1
—1 J-1



Questions: What initial condition?
|s there some extremum principle?

In “classical”’ stability theory it is customary to focus on the transient growth
of disturbances, and to search for the initial condition that maximizes a
disturbance norm (such as a kinetic energy-like norm), that reads in the
present case:

/ / a(z,y, 2 & *o(z,y,2)* + w(z,y, 2)*]dy dz

In turbulent flows there are suggestions (Malkus 1956, Busse 1970,
Plasting & Kerswell 2005) that statistical extreme states are reached,
related to the degree of disorganization (entropy) of the motion.

It might thus be a sensible thing to maximize the rate of viscous dissipation ...

/ /
231‘3'3@;7'

with s}, = ( a:cj - 8% ) /2 the fluctuating rate of strain



In conditions of mechanical-energy equilibrium we can consider production

instead of dissipation:
—1 -1
—/ / u;u’Sijdy dz
-1 J-1

t@:cj ﬁxz t ox; 8% awj ¢ Ox; 0x;

Which at order € reads:

dy dz .

However, an appropriate (quadratic) functional might be:

f f : —u ) dy dz

provided we can consider the turbulent viscosity a property of
small-scale incoherent processes and can thus rule it out ...




The optimization and the discrete adjoint system

The cost function is written in a generic way as

L
T =aI(L)+ 22 / (x) dz
L 0

to either target the functional at the final position (a, = 0) or as an integral
over x (a, =0).

In discrete form:

Ny,
Tn = 50y, A, + o7 231 q} Ag, Az
with the initial constraint: —qp Bao = Ey

2



The Lagrangian functional

The constrained optimization is transformed to an unconstrained one by
introducing:

Np—1
1 a2
L, = 5051(1%LA(1NL + rOT(ql — Gi1qo) + Z {rg[qw—l — Gz2(4qn — qu-1)] + ﬁqZAanx} +
n=1

a9 1
+ EQ%LAQNLAx + )\0(§qu3(10 — L),

so that an optimum is obtained when stationarity is enforced with respect
to all independent variables, leading to the following discrete adjoint
system to be integrated backward in space:

ry, =[0,0,0,0/1, ry,_1=—(ay+Az%2)Alqy,

r,_ 1 =Gl4r, —r, 1) - Az®2Alq,, n=Np—1,..,1



together with the optimality condition:

qo = (AB”") (G311 — G{ro)

that permits to iteratively update the inflow solution of the direct problem.

Direct problem

A

Q@ = (AB") (Gl - Gl ry) Convergence test on 7,

A

Adjoint problem



Accuracy study for the direct problem
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Figure 3. Grid resolution study. To obtain the figure on the left the streamwise step has been fixed at Az = 2.2
with L = 220; for the figure on the right all calculations have been performed with N = 23 and L = 396.



Gain

The direct-adjoint iterative procedure can be very long, pointing
to the weak selectivity of the final “optimal” states (Luchini 2000).
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Gain
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Examples of the presence of plateaux in the course of iterations

500 iterations are needed to reach convergence in short ducts (left),
whereas 300 are sufficient in long ducts (right)
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-like norm
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Functional: integral over x of the kinetic energy
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Integral “production”
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Discussion

Streamwise vorticity equation (linearized in the coherent field):

U, = viwy, + o)+ Uv, — Uy, + (00 — w'w')y,

P, Py

+ (H;: b H.','.T)UIFU.]; +{}{[(H;1H): i (”IUJJ).‘,']

F.’_q F.'4
Nonlinear, fully developed flow: U@y + W, = v(dyy + ;) + P2 + Ps

A classical Boussinesq closure with a constant eddy viscosity for P, and P,

would decouple this equation from the streamwise momentum equation, and
yield U =% =0, \which is the reason why traditionally a nonlinear relation
for the Reynolds stress tensor has been considered necessary.

@ _ U coupling)

However, here P, (mean shear skewing) and P, (
are also present, and can trigger secondary coherent vortices through

spatially transient effects.




Outlook and conclusions

Turbulent square duct: triple decomposition of the flow variables, very simple closure,
coherent state of small amplitude

Technique borrowed from optimal control, of common use in stability theory: direct-
adjoint optimization to search for cross-stream (coherent) vortices capable of
maximizing certain functionals

One-dimensional turbulent-like mean flow U(y,z) can sustain the growth of secondary
motion of a cross-stream scale comparable to that found in experiments

Nonlinearities (not considered here) are responsible for maintaining the coherent states

Variety of structures present and weak selectivity of the “optimal” states; the functional
is the largest in the limit of very small duct lengths, suggestive pictures are found for
ducts sufficiently long

No need for anisotropic turbulent viscosity when a streamwise inhomogeneous
approach is taken (i.e. when vortices are considered to arise out of transients)

No clear indications on the existence of extremum principles in turbulent flow



FIGURE 10. Primary Reynolds stress contours in the lower left quadrant of the transverse plane from
every fifth grid-line is dashed: (@) #’2-contours, increment = 1.0; (b) «'v’-contours, increment

Run B;

=0.1.



