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Koch-like riblets that iteratively protrude toward the outside (the fluid region) or cave in at the wall are examined.

The near-wallmicroscopic fluid problem is addressedby solving for the Stokes flowwith a boundary elementmethod,

yielding slip lengths for all the surface shapes considered. Such lengths are thenused inNavier boundary conditions of

the macroscopic, turbulent problem, which is solved by direct numerical simulations. The results of the direct

simulations demonstrate that inward-contracting riblets enjoy an additional drag reduction when compared to the

base, triangular configuration, whereas outward-protruding riblets experience a skin-friction increase. The results

are in excellent agreement with a theoretical model.

Nomenclature

b = riblet periodicity
b� = riblet periodicity in wall units
Cf = friction coefficient
Cf0 = reference friction coefficient
Dα = fractal dimension
H = channel’s half-height
hk = longitudinal protrusion height
h⊥ = transverse protrusion height
Ub = bulk velocity
u = streamwise velocity component
uτ = friction velocity
v = wall-normal velocity component
w = spanwise velocity component
x = streamwise coordinate
y = wall-normal coordinate
z = spanwise coordinate
α = angle at the base of the riblets
τw = wall shear stress
ΔCf = difference between friction coefficients
Δh = difference between the protrusion heights
Δh� = difference between the protrusion heights in wall units
Δx� = streamwise grid spacing in wall units
Δy� = wall-normal grid spacing in wall units
Δz� = spanwise grid spacing in wall units
ν = fluid viscosity
ρ = fluid density

I. Introduction

R IBLETS are tiny grooves at the wall, aligned in the direction of
the mean flow and regularly spaced along the transverse

direction [1,2]. When properly designed, they are quite effective
(under turbulent flow conditions) in reducing the skin friction below
the value of a smooth surface by inhibiting the lateral movement of
the near-wall coherent structures [3,4]. Themain design parameter of
riblets is their spanwise periodicity b; because riblets, just like
surface roughness, scale with boundary-layer inner variables, the
dimensionless periodicity b� is typically used (i.e., b is normalized

with the kinematic viscosity ν and the friction velocity uτ �
�����������
τw∕ρ

p
,

with τw as the statistically averaged wall shear stress and ρ as the
density of the fluid). Skin-friction drag reduction by riblets is linear

with b� until b� ≈ 10, and it is maximal when b� ≈ 15. For b�
above a value that can go from 20 to 35 (as function of their shape),
riblets produce a drag increase because the near-wall vortices can
settlewithin the grooves, increasing the shear stress [3,4]. In the linear
regime (i.e., for sufficiently small b), the most effective way to
understand the mechanism by which riblets operate has been
proposed by Bechert et al. [5] and Luchini et al. [6,7], and it relies on
decoupling the mathematical system into an inner problem and an
outer problem. The equations describing the inner problem yield two
protrusion heights (alternatively called slip lengths) that define two
different virtual origins: one (hk) for the longitudinal flow and one

(h⊥) for the crossflow. Protrusion heights are defined, for example,
with respect to the tips of the riblets, which can be taken as the origin
of the y axis, but this origin has noparticular significance in relation to
the flow. The significant parameter, independent of the choice of the
origin, is Δh � hk − h⊥; it has been shown by Luchini [8] that the

reduction in the skin-friction coefficient ΔCf � Cf − Cf0 stems

from a rigid displacement in y of the logarithmic law of an amount
equal to Δh so that

ΔCf

Cf0

� −
Δh�

�2Cf0�−1∕2 � �2κ�−1 (1)

where Cf0 is the value of the coefficient for a smooth wall, κ is von
Kármán’s constant (which we can take equal to 0.41), and Δh� is
the protrusion height difference scaled in inner variables. The

aforementioned friction coefficient is defined as Cf � 2τw∕ρU2
b,

with Ub as the bulk velocity.
Casting or rolling techniques have been employed in the past to

manufacture plastic riblet sheets (see, for example, the patent by
Marentic and Morris [9]); an interesting recent alternative consists of
the embossing–curing method developed at Fraunhofer IFAM [10].
Other variants include multilayer processes patented by The Boeing
Company to fabricate elastomeric [11] and shape-memory riblets [12],
as well as a roller system to impress a microstructured pattern over a
paint layer [13]. In all instances, the surface finish of the riblets is not
the ideal, perfectly smooth one, and imperfections appear because of
the rough material or the paint; furthermore, during usage, other
contaminationsmay occur becauseof dirt or impactwith insects. Thus,
it becomes important to assess the effect of modifications in the riblet
shape from the ideal design by considering the presence of micro- or
nanoroughness elements upon the grooves.
Whether one considers randomroughnessor regular nanostructuring

of the surface texture, it appears appropriate to start by examining the
properties of fractal surfaces. The application of fractals to characterize
rough surfaces dates back to the 1980s [14–17], upon the recognition
that many rough surfaces demonstrate self-similar properties to some
extent and over a certain range of scales. Today, etching techniques
(plasma, laser, electrochemical), lithography (photo, x ray, etc.),
deposition, and other approaches are routinely used to micro- and
nanotexture surfaces for applications ranging from micro-electro-
mechanical systems (MEMS) to magnetic storage devices.
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II. Microscopic Problem

Themicroscopic near-wall configuration that we have considered

consists of regular triangular grooves (see Fig. 1, left-side frames).

The sides of the triangle are taken of equal length, and the angle at the

base α is taken as equal to either 45, 60, 90 or 120 deg. The first

fractal iteration, which is the second column in the figure, is

achieved by dividing each side of the triangle into three segments

and inserting an isosceles triangle (of the same vertex angle α) in
place of the central segment so that each segment of the newly

created fluid–solid boundary has equal length. The newly created

rough boundary can either protrude toward the fluid (top row) or

contract at the wall (bottom row). Figure 1 shows the first three

iterations of the process, which yields what is known as the Koch

curve for the case of α � 60 deg. The angle α also defines the fractal
dimension of each curve, characterizing its magnification. In fact, at

each step of the iterative procedure, each line segment is replaced by

N � 4 segments of equal length, with each self-similar copy

which is

1

Sα
� 1

2�1� sin�α∕2��

logN∕ log Sα, irrespective of whether the wall sticks further out in
the course of the iterations or caves in. For the cases considered

here, it is D45 � 1.3629, D60 � 1.2619, D90 � 1.1290, and

D120 � 1.0526. The fractal dimension Dα cannot, alone, character-

ize the surface completely; however, we will see later that, for

inward-moving surfaces (bottom row of Fig. 1), the amount of drag

reduction increases with Dα.
For each one of the wall textures shown in Fig. 1, the Stokes

equation is solved in the fluid region, up to somewall units above the

surface, on account of the physics of the near-wall turbulent problem,

which is dominated by viscous forces. The inner problem decouples

into two set of equations (one for the longitudinal flow and one for the

crossflow), as described by Luchini et al. [6]. For the sake of brevity,

the equations and the boundary conditions are not reported here;

suffice it to say, the results of the two decoupled problems yield hk
and h⊥ given that, on a grooved surface, the asymptotic behavior

of the velocity vector far from the surface has the dimensionless

form [18]:

�u; v;w� � �y� hk; 0; y� h⊥� (2)

Fig. 1 Iterative process in the construction of fractal riblets for both outward- (top row) and inward-moving curves.

Fig. 2 Numerical solutions for the base configuration with α � 90 deg (left frame) and for the third inward-moving iterate.
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with u, v, and w, respectively, as the streamwise, wall-normal, and
spanwise velocity components; these are scaled with the inner
velocity scale, i.e.,

b
∂u
∂y

�
�
�
�
y→∞

and lengths are normalized with the microscopic length scale b. The
two protrusion heights are drawn (qualitatively) in the top, left frame
of Fig. 1 and are measured with reference to the (arbitrary) origin of
the y axis.
The numerical solution of the microscopic equations is carried out

in a domain of spanwise dimension equal to one and a vertical
dimension sufficiently large for the asymptotic solution to be
established (the upper boundary can safely be taken at y∞ � 4). It is
accomplished by a boundary element method [19,20], which is
extensively validated against results in the literature. The calculation
of the slip lengths takes advantage of the asymptotic relations
[Eq. (2)] for the velocity components, which are directlymeasured by
our numerical code at y � y∞. The dimensionless protrusion heights
are then simply

�hk; h⊥� � �u�y∞� − y∞; w�y∞� − y∞�

Examples of the numerical results are given in Fig. 2. The isocolors
in the figure define the streamwise velocity (which arises from the
solution of a Laplace equation for u [3]), whereas the streamlines
(with arrows) represent the secondary velocity vector (v, w)
stemming from the solution of a two-dimensional Stokes problem in
the (y, z) plane [6]. A larger secondary vortex appears in the image in
the right frame, which is a feature associated to larger values of both
protrusion heights.
The results in terms of protrusion heights for both inward-moving

(“i”) and outward-moving (“o”) surfaces are reported in Table 1 for
the base configuration (indicated by “it � 0”) and up to the third
iteration. The outward protruding results for the cases of α � 45 deg
andα � 60 deg are not present in the table (nor in Fig. 3) because the
vertices of the triangles added in the first iteration touch one another,
creating two disconnected fluid regions.
The distances hk and h⊥ define virtual walls for, respectively, the

longitudinal and transverse velocity profiles. The significant length
scale, independent of the choice of the origin, is (however)Δh, which

is displayed in Fig. 3; Fig. 3a shows that Δh increases as the wall
moves inward (triangular symbols) for allα. By the third iteration, the
results are essentially converged and further iterations on the fractal
curve produce negligible modifications ofΔh for both the i and the o
cases. The variation in Δh between the initial configuration (it � 0)
and the last iteration (it � 3) quantifies, for each opening angle α, the
additional drag reduction which we might expect when using fractal
riblets [as in Eq. (1)]. Such a variation is equal to 4% when
α � 45 deg, 7% when α � 60 deg, 17% when α � 90 deg, and
almost 31% when α � 120 deg. Thus, the least efficient riblets
tested (the triangular ones, with vertex angles of α � 120 deg) are
those that have the most to gain by hierarchical micro- and
nanostructuring. When α is equal to 45 deg, we have the best results
among all cases considered (in terms of drag reduction), butwemight
expect even better results by further reducing α or, equivalently,
increasingDα, as Fig. 3b suggests (the values ofΔh reported refer to
it � 3). The close correlation betweenΔh andΔCf will be examined
in the next section. It is important to stress, however, that the best
results found here are not the absolute best results that could be found;
it is possible, for example, that (hierarchically) nanostructured blade
riblets yield even larger values ofΔh. The search for the optimal riblet
shape is left for future work.

III. Macroscopic Problem

The pressure-driven turbulent flow in a channel is now considered,
and Navier boundary conditions are applied over smooth, fictitious
walls. The channel considered is shown in Fig. 4; it is 2πH long along
x and πH along the span z, with H as the half-distance between the
two walls. The boundary conditions are periodic along x and z,
whereas the Navier slip conditions are imposed on the upper and
lower surfaces, which are imagined to be micro-/nanostructured in
the same manner. If y � 0 is the position of the lower wall, and H is
the macroscale employed to normalize distances, the dimensionless
conditions at y � 0 and 2 read as follows:

u�x; 1� 1; z� � ∓hk
b

H

∂u
∂y

�
�
�
�
y�1�1

(3)

v�x; 1� 1; 0� � 0 (4)

Table 1 Protrusions heights scaled by the spanwise periodicity b of the grooves

hk h⊥

Angle α, deg it � 0 it � 1 it � 2 it � 3 it � 0 it � 1 it � 2 it � 3

45 i 0.1842 0.1851 0.1872 0.1885 0.0815 0.0816 0.0818 0.0819
60 i 0.1706 0.1733 0.1762 0.1775 0.0803 0.0806 0.0807 0.0808
90 i 0.1396 0.1464 0.1495 0.1506 0.0778 0.0779 0.0782 0.0783

o 0.1396 0.1117 0.0989 0.0949 0.0788 0.0744 0.068 0.0659
120 i 0.1026 0.1112 0.1138 0.1146 0.0704 0.0715 0.0723 0.0725

o 0.1026 0.0819 0.0755 0.0737 0.0704 0.0604 0.0554 0.0541

0 0.5 1 1.5 2 2.5 1 1.1 1.2 1.3 1.4 1.53
it

0

0.02

0.04

0.06

0.08

0.1

=120o

=90o

=60o

=45o

a) D

0.015

0.04

0.065

0.09

0.11

inward
outward

b)
Fig. 3 Protrusion height difference for all the cases considered as a function of the a) fractal iteration and b) fractal dimension.
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w�x; 1� 1; z� � ∓h⊥
b

H

∂w
∂y

�
�
�
�
y�1�1

(5)

We stress the fact that the positions of y � 0 and y � 2, where
these boundary conditions are applied, are arbitrary and the Navier

slip condition is but a first-order approximation of the true boundary

condition to be enforced at the fictitious upper and lower walls. As

such, an error, which depends on the aspect ratio of the surface

irregularities [21], is committed when using Eqs. (3–5). Furthermore,

as already stated earlier, the results are only valid in the linear limit of

the riblets, i.e., when the periodicity of riblets scaled in wall units b�
is around 10 at most.
The flow rate through the channel is maintained constant via a

streamwise forcing term in theNavier–Stokes equations; the Reynolds

number for all cases treated isRe � UbH∕ν ≈ 2800, which translates
to Reτ � uτH∕ν ≈ 180. These conditions correspond exactly to

those employed by Kim et al. [22] in their study of turbulence in a

plane channel, aswell as byMin andKim [23] in their laterwork on the

effect of superhydrophobic surfaces upon turbulence. The numerical

technique used here is similar to that byMin andKim and is based on a

finite volume semi-implicit fractional stepmethod that is second-order

accurate in both space and time, which has been amply validated [24].

Our resolution is better than that employed by Min and Kim: our first

grid point is at y� � 0.025 (against their value of 0.3), and the grid is
stretched along y by the use of a hyperbolic tangent distribution; the

uniformvalues ofΔx� andΔz� in our case are, respectively, 7 and 4.4,

which are smaller than the values used by Min and Kim (equal,

respectively, to 10 and 5). The accuracy of the grid used here

guarantees, in particular, accurate predictions of the velocity gradients

at thewall. Like in the case ofMin andKim, examination of the spectra

at different wall-normal positions reveals the expected decay and is

reassuring in terms of the resolution employed.

Anexample of numerical solutions, for bothno-slip and slipwalls, is

displayed in Fig. 5. The ribleted case focused upon is that for which

Δh� � 1.Whereas the statistics (Fig. 5b) showonly a small difference

between the two configurations, the mean streamwise velocity

(Fig. 5a) displays the expected trend,with the logarithmic region of the

flow shifted upward by the presence of the riblets, at each given y� bya

quantity equal to ΔU� ≈ Δh�. Corresponding shifts occur when

different protrusion heights are simulated (not shown).

The computed smooth-wall skin-friction coefficient is equal to

Cf0 � 0.0081, which is very close to the value of Kim et al. [22]. As

far as the values of Δh� are concerned [because, from Fig. 3, we

observe that Δh is at the most around 0.1 (in units of b)], it is
Δh� < 0.1b�. Given that the linear regime of riblets exists until b� is

on the order of 10, we must limit the study to Δh� up to about one.

This sets the limits of validity of the current study. The computed

ratios jΔCfj∕Cf0 are plotted in Fig. 6 for all the cases considered,

together with the correlation given by Eq. (1) and the results by Min

and Kim [23]. The results demonstrate a drag reduction in excess of

10% when Δh� reaches one; the agreement of the results with both

the previous numerical solutions and the analytical expression by

Luchini [8] is very good, confirming both the linear dependence of

the skin-friction drag reduction with Δh and the interest, when skin-

friction reduction is aimed at, in using the inward fractal

configuration (which yields larger values of Δh�) rather than the

Fig. 4 Image of the configuration studied, with dimensions and
boundary conditions. The colored images drawn within the two gray
surfaces represent the coherent flow structures visualized via the Q
criterion.

a)

0 50 100 150

y +
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b)
Fig. 5 Comparison between the a) mean velocity profiles and b) turbulent statistics between the standard no-slip walls (solid lines) and ribleted walls for
Δh� � 1 (dashed lines).
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Fig. 6 Linear correlation between the percentage drag reduction and
the protrusion height difference.
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outward one. Among the possible fractal configurations, it is
advisable (on the basis of the results reported here) to employ those
with the largest fractal dimension Dα.

IV. Conclusions

Fractal riblets have been studied as a first step to model either the
presence of random roughness or the hierarchical micro- and
nanostructuring of a basic triangular groove shape. The key result
here is the solution found in terms of a protrusion height difference: a
parameter that describes the relative virtual origin of the longitudinal
near-wall motion when compared to the crossflow one. The results
demonstrate that the presence of micro- and nanoindentations can
either improve things, in terms of skin-friction drag reduction, or
deteriorate them, depending, respectively, onwhether the basic shape
is successively indented toward the inside or protrudes toward the
outside. In the inward case, when larger viscous secondary vortices
can be accommodated within the grooves, the larger values of Δh
(and thus the skin-friction reduction ΔCf) correlate well with the
fractal dimension of the surface, thus suggesting a possible way to
structure walls in order to reduce drag.
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