

Università degli Studi di Genova Facoltà di Ingegneria

Compitino di Meccanica dei Fluidi 8 Novembre 2005, ore 9:00 Un foglio "aiuti" formato A4 ammesso Rispondete dettagliatamente e giustificate tutte le vostre risposte COMPITINO B

Esercizio 1: Unità di misura

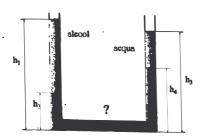
(~4 punti)

Si scriva l'espressione e si diano le unità di misura del momento centrifugo di inerzia I_{xy} di una superficie S rispetto all'asse y. Si spieghi perchè la coordinata x_F del centro di spinta F risulta uguale a $x_F = I_{xy}/(y_C S)$, con y_C la coordinata del baricentro di S.

Esercizio 2: Matrice degli sforzi

(~7 punti)

Una matrice degli sforzi in un punto A di un fluido è data da:


$$\begin{pmatrix} T_{xx} & T_{xy} \\ T_{yx} & T_{yy} \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$
 [KPa]

- 1. Si esprima T_n , vettore di sforzo nel piano di normale $n = (n_1, n_2)$ nel punto A.
- 2. Si mostri che un versore \underline{t} tangente al piano definito dal versore \underline{n} può essere dato da $\underline{t} = (-n_2, n_1)$. Si esprima il versore antiparallelo a \underline{t} .
- Si scriva la proiezione T_{nt} di T_n su t e si dimostri che tale proiezione è massima quando n = (1, 0). Quanto vale T_{nt} in tal caso?
- 4. Si calcolino direzioni e tensioni principali della matrice degli sforzi data sopra (e si verifichi l'invariante I₁)

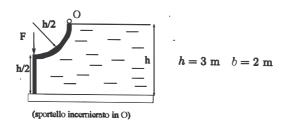
Esercizio 3: "Manometri"

(~4 punti)

Dato il dispositivo in figura, calcolare la densità del fluido incognito. Come cambierebbero i livelli se tale dispositivo fosse trasportato su Marte?

$$h_1 = 50 \text{ cm}$$
 $h_2 = 13 \text{ cm}$ $h_3 = 32 \text{ cm}$ $h_4 = 20 \text{ cm}$ $\rho_{\text{acqua}} = 1000 \text{ Kg/m}^3$ $\rho_{\text{alcool}} = 780 \text{ Kg/m}^3$

Esercizio 4: Spinta su superfici parzialmente immerse

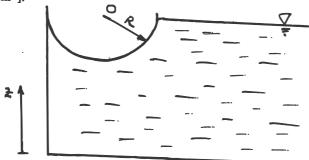

(~4 punti)

Un iceberg cubico di ghiaccio ($\rho_{ghiaccio} = 998.15 \text{ [kg m}^3\text{]}$) è immerso in acqua salata ($\rho_{acqua} = 1025 \text{ [kg m}^3\text{]}$). Si calcoli l'altezza della parte emersa; $\rho_{acqua} = 1025 \text{ [kg m}^3\text{]}$.

Esercizio 5: Forze e momenti su una paratia

(~8 punti)

La paratia di figura è incernierata in \mathbf{O} . Determinare l'ampiezza minima della forza \mathbf{E} per impedire che lo sportello si apra sotto la spinta dell'acqua. (Si trascuri il peso proprio della paratia e l'attrito della cerniera; la dimensione b è ortogonale al foglio.)



Suggerimento: si consideri la distribuzione trapezoidale di pressione sulla parte verticale della paratia come la somma di due contribuzioni distinte, una contribuzione uniforme ed una contribuzione triangolare, e si calcoli il momento di ciascuna delle due distribuzioni.

Esercizio 6: Spinta su una superficie gobba

(~6 punti)

Data la superficie gobba di figura di forma semi-sferica si calcolino le componenti orizzontale e verticale della spinta risultante, nonchè le linee di azione delle componenti. Siano R=50 [cm] e $\rho=1.2$ [g cm⁻³].

$$\boxed{1.} \qquad T_{xy} = \int_{S} xy \, dS \qquad \left[m^{4} \right]$$

La coordinate x_F del centro di spirite si ottime impuendo che il nomente sispitto ad y della simblente e uspale al momente delle force distribute, vice $f \cdot x_F = \int_S p \times dS$ simblente

Nyc $x_F = \int_S (yy) \times dS + x_F = \frac{I_{xy}}{y_c S}$

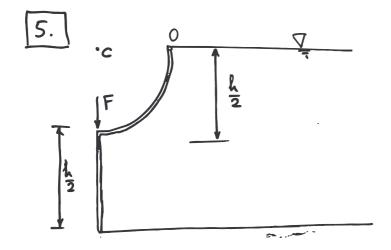
2.2. $\underline{t} = (-m_2, m_1)$ e⁻ ortogenale and \underline{m} in quanto $\underline{m} \cdot \underline{t} = 0$. Inabline, it various anti-parallele a \underline{t} e⁻ data de $(m_2, -m_1)$.

2.3.
$$T_{mt} = T_{m} \cdot \underline{t} = M_{2}^{2} - M_{1}M_{2} + M_{1}M_{2} - M_{1}^{2} = M_{2}^{2} - M_{1}^{2} = (1 - 2M_{1}^{2}) -$$

$$\frac{\partial T_{Nt}}{\partial N_1} = -4N_1 = 0 \quad \text{se} \quad N_1 = 0 \quad \uparrow \quad N_2 = (0, \pm 1)$$

2 me rule anche che Tut = m2-m2 = $= m_2^2 - (1 - m_2^2) = 2m_2^2 - 1$ quind: OTAL = 4 M2 =0 per M2 =0 + M = (+1,0)

In entranti : con: The vale +1 (IN MODULO)


(in realter Tut =1, volore monimo solo pr $M = (0, \pm 1)$;

il volone e - minimo ($T_{u_1} = -1$) quando $\underline{m} = (\pm 1, 0)$)

2.4. Director e tensioni principale: banda: $\begin{bmatrix} \lambda_1 = 0 \rightarrow \underline{m} = (\frac{1}{12}, \frac{1}{12}) \\ \lambda_2 = 2 \rightarrow \underline{m} = (\sqrt{12}, -\sqrt{12}) \end{bmatrix}$ $4 + \int_{alcool} (h_1 - h_2) q + \int_{?} q h_2 = b + \int_{u_20} q (h_3 - h_4) + \int_{?} q h_4$ $\int_{?} = \frac{\int_{alcool} (h_1 - h_2) - \int_{H_{20}} (h_3 - h_4)}{h_{11} - h_{2}} = 240 8.5 + \left[\frac{k_2}{m_3}\right]$

> biccome po si semplifice, e q anche, otterneumo la steno nisultato (e gi steni livelli) anche mell'atmosfue e con la gravito moreiana

Farchimede = Pero iceberg \rightarrow 8 V canno Sarpus = 8 Viceberg Squares $L^{2}L_{1} \cdot 1025 = L^{3} 998.15 \qquad f : L_{1} = 9.744 \quad [m]$ Poste emesso = L-L_1 = 0.2621 [m]

E C

Illa parte curvo si la:

$$\frac{F_0}{F_0} = \int_0^1 \frac{h}{4} \left(\frac{h}{2} b \right) \left(-\frac{1}{2} \right) = \\
= -22072.5 [N] = \\$$

$$\bar{f}_{v} = \int_{0}^{\infty} \frac{\pi (h/2)^{2}}{4} b \quad \underline{k} = 34671.4[N] \underline{k}$$

 $|f_{tot}| = \sqrt{F_0^2 + F_v^2}| = 41101.1$ [N] e passo per C focendo un anjolo n'spetto all' ori exontale $\theta = tan^{\frac{1}{2}} F_v = 57.5^{\circ}$ | Remember (onerio) di tale from n'sultante

n'spetto ad 0 e^- : $M_{constant} = (f_{tot} \sin \theta) \cdot \frac{h}{2} = 52007,1$ [Nm]

Il momento delle due componenti

del trapeio reispetto ad
$$0 e^{-\frac{h}{2}}$$
:

$$\frac{\text{and}}{2} \frac{\text{braceio}}{\left(\frac{h}{2}b\right)\left(\frac{h}{2} + \frac{h}{4}\right)} + \left(\frac{h}{2}b\right)\left(\frac{h}{3} + \frac{h}{2}\right)$$

=
$$(9b)^{3}(\frac{14}{48}) = 15450+.5[Nm]$$

in sun onoxio.

le momento totale «- 52007.1 + 154507.5 [Nm] ed e bilanciato se la forsa F (che genere in momento antionerio nispetto ad o) ealmens pai a: Mtoble

($foiche - M_{bold} = F \frac{h}{2}$ all'equelibric)

6.) Solla supeticie gable de figure son c'e-forte ouzzonbele (peche-tutte le spirte mi piono orizontale some compensate) ed 3 una forse verticale la cui lemes di azione pomo per il cantro di currotino delle semisfere: $\bar{f}_{V} = \frac{\kappa}{2} \zeta g(\frac{2}{3}\pi R^{3}) = 3081.9$ [N]