Chapter 5: Boundary layers

External flows

Two-Dimensional: infinitely long in z and of constant cross-sectional size and shape.

Axisymmetric: formed by rotating their cross-sectional shape about the axis of symmetry.

Three-Dimensional: may or may not possess a line of symmetry.

The bodies can be classified as streamlined or blunt. The flow characteristics depend strongly on the amount of streamlining present. *Streamlined* object typically display a lower drag force

External flows

Streamlining a body reduces the adverse pressure gradient; if the angle of attack α is sufficiently small, drag is mostly due to wall shear stress. The potential flow approximation used so far must be supplemented, including near-wall viscous effects

The potential flow is forced to accelerate around the body. Thus $u (\partial u / \partial s) > 0$, along a streamline near the body from near the upstream stagnation point to section A – A'. The velocity profile along the line A – A' reflects this.

If the body is not moving, the region where the flow velocity drops to zero is called a **boundary layer**. We will find that boundary layer thickness depends on an appropriately defined **Reynolds number** of the flow, and as this number gets larger the boundary layer gets thinner

Here we are interested in the case of **large Reynolds numbers**.

For a thin boundary layer, the pressure within is equal to the pressure at the wall (*inviscid approximation*)

Let *x* denotes a boundary-attached streamwise coordinate, and *y* denote a boundary-attached normal coordinate, as noted below. Furthermore, let $\delta(x)$ be *some measure* of the **boundary layer thickness**, i.e. the thickness of the zone of retarded flow near the boundary (better definition later). Then the boundary layer is illustrated by the red line

The boundary layer is laminar near the leading edge. After a distance x_{cr} instability waves appear and laminar-to-turbulent transition occurs. The transition onset x_{cr} depends on

- Free-stream velocity
- Viscosity
- Pressure gradient
- Wall roughness
- Free-stream fluctuation level
- Wall rigidity

At x_{cr} the local Reynolds number is

$$Re_{x_{cr}} = \frac{\rho \, u_{ext} \, x_{cr}}{\mu}$$

and Re_{cr} can be as large as 10⁶, depending on *environmental* conditions, i.e. depending on the **receptivity** of the boundary layer

Turbulent spot in transitional flow

Similarity solutions

Lots of *self-similar* solutions exist for boundary layers and other flows like jets and wakes (cf. H. Schlichting, BOUNDARY LAYER THEORY, 1975) or even supersonic blast waves induced by strong explosions (Sedov, 1946): they are typically found by *appropriately scaling dependent and independent variables*.

In the problems of interest here we build a characteristic length (or time) scale using the kinematic viscosity v.

Transforming the equations using the new space/time variables permits to transform the PDE's into one (or more) ODE(s)

Let us start with the two-dimensional flow over a wedge (cf. chapter 3, slide 13, *flow in a sector*). The potential flow is $F(z) = cz^n$ and the velocity components at the wall $(\theta = \pi/n)$ are:

$$v_r = n c r^{n-1} \cos n\theta = -n c r^{n-1}$$
$$v_\theta = -n c r^{n-1} \sin n\theta = 0$$

Now, let's move to Cartesian coordinates (x, y), on the wall

$$u_{wall} = \mathcal{U} x^{n-1} = \mathcal{U} x^m$$
$$v_{wall} = 0$$

with
$$m = n - 1$$
, so that $\beta = \frac{2 m}{m+1}$

The irrotational streamwise velocity at the wall is taken as the external flow for a boundary layer solution (careful: \mathcal{U} has dimensions of velocity only when m = 0):

$$u_{ext} = \mathcal{U} x^m$$

so that the steady, 2D, laminar, incompressible, dimensional b.l. equations (after order of magnitude estimates) are

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0, \qquad \frac{\partial p}{\partial y} = 0$$
$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = u_{ext}\frac{du_{ext}}{dx} + v\frac{\partial^2 u}{\partial y^2} = m \mathcal{U}^2 x^{2m-1} + v\frac{\partial^2 u}{\partial y^2}$$
$$u = v = 0 \quad \text{for } y = 0, \qquad u = u_{ext} \quad \text{for } y \to \infty$$

Important note: in the boundary layer equations the dynamic pressure is constant along y in the boundary layer. This stems from the order of magnitude estimates!

This means that the pressure in the boundary layer can be obtained from the outer, inviscid solution, i.e.

 $p = p_{inviscid}(x, 0).$

Thus the solution of any boundary layer problem also requires the inviscid (potential flow) solution. In the Falkner-Skan case the *x*-pressure gradient comes from application of Bernoulli's equation

Streamfunction ψ , such that: $u = \psi_y$, $v = -\psi_x$

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = m\mathcal{U}^2 x^{2m-1} + v\frac{\partial^2 u}{\partial y^2}$$
$$\psi_y \psi_{xy} - \psi_x \psi_{yy} = m\mathcal{U}^2 x^{2m-1} + v\psi_{yyy}$$

together with $\psi_y = \psi_x = 0$ for y = 0, $\psi_y = u_{ext}$ for $y \to \infty$

Now, we introduce the **similarity variable** $\eta = y/\delta(x)$ to transform the PDE above into an ODE. Basically, we *locally* normalize the vertical (physical) coordinate y by a quantity proportional to the local boundary layer thickness, in order for the b.l. to be **invariant along** x in the new coordinates (x, η)

A simple dimensional estimate suggests:

$$\delta(x) = \sqrt{\nu x / u_{ext}}$$

(diffusion thickness)

$$\eta = \frac{y}{\delta(x)} = \frac{y}{\sqrt{\frac{vx}{u_{ext}}}} = yx^{(m-1)/2} \left(\frac{\mathcal{U}}{v}\right)^{1/2}$$

Let us introduce also the dimensionless streamfunction f

$$f = \frac{\psi}{u_{ext}(x) \,\delta(x)} = \frac{\psi}{x^{(m+1)/2} (\mathcal{U}\nu)^{1/2}}$$

and plug into the *x*-momentum equation

Falkner-Skan equation:
$$f''' + \frac{m+1}{2} f f'' + m (1 - {f'}^2) = 0$$

with b.c.: $f(0) = f'(0) = 0, f'(\eta \to \infty) = 1$ $m = \frac{\beta}{2 - \beta}$

Chapter 5: Boundary layers

Special case: Blasius $f''' + \frac{1}{2} f f'' = 0$

with b.c.: f(0) = f'(0) = 0, $f'(\eta \to \infty) = 1$

Chapter 5: Boundary layers

Special cases:

 $m = \beta = 0$ Blasius solution, $u_{ext} = U_{\infty} = \text{constant}$

 $m, \beta > 0$ accelerated flows $m, \beta < 0$ retarded flows

 $-0.090429 \le m \le 2$ $-0.198838 \le \beta \le 4/3$

- $m = -0.090429, \ \beta = -0.198838$ incipient separation, below these values of m and β we cannot employ the b.l. (*parabolic*) equations
- $m = \beta = 1$ Hiemenz stagnation point flow

Hiemenz stagnation point flow (m = 1)

Hiemenz flow:
$$f''' + f f'' + 1 - f'^2 = 0$$
 (*m* = 1)

with b.c.: f(0) = f'(0) = 0, $f'(\eta \to \infty) = 1$

$$\eta = \frac{y}{\delta(x)} = \frac{y}{\sqrt{\frac{\nu x}{u_{ext}}}} = y \left(\frac{\mathcal{U}}{\nu}\right)^{1/2} \text{ independent of } x!$$

Outer potential flow:

$$u_{ext} = \mathcal{U} x$$
$$v_{ext} = -\mathcal{U} y$$

$$p_{ext} = p_0 - \frac{\rho}{2} (x^2 + y^2) \mathcal{U}^2$$

Hiemenz stagnation point flow (m = 1)

Parallel boundary layer flow, a solution of the Navier-Stokes equations, not just Prandtl's equations!

Velocity distribution of plane (----) and axisymmetric (- - -) stagnation point flows

Shear stress at the wall and drag

The shear stress at the wall is $\tau_w = \mu \frac{\partial u}{\partial y} \bigg|_{y=0} = \mu \frac{\partial^2 \psi}{\partial y^2} \bigg|_{y=0} = \dots$

$$\tau_w = \rho \, u_{ext} \sqrt{\frac{\nu \, u_{ext}}{x}} f''(0)$$

Local friction coef:
$$c_f = \frac{\tau_w}{\frac{1}{2}\rho u_{ext}^2} = 2\sqrt{\frac{\nu}{x u_{ext}}} f''(0) = \frac{2f''(0)}{Re_x^{1/2}}$$

For the Blasius case: $u_{ext} = U_{\infty} = \text{const} \rightarrow f''(0) = 0.332$

Shear stress at the wall and drag

Blasius solution

η	f	f'	$f^{\prime\prime}$	
0	0	0	0.33206	
0.1	0.00166	0.033206	0.332051	
0.2	0.006641	0.066408	0.331987	
0.3	0.014942	0.099599	0.331812	
0.4	0.02656	0.132765	0.331473	
0.5	0.041493	0.165887	0.330914	
0.6	0.059735	0.198939	0.330082	
0.7	0.081278	0.231892	0.328925	
0.8	0.106109	0.264711	0.327392	
0.9	0.134214	0.297356	0.325435	
1	0.165573	0.329783	0.32301	
1.1	0.200162	0.361941	0.320074	
1.2	0.237951	0.393779	0.316592	
1.3	0.278905	0.42524	0.312531	
1.4	0.322984	0.456265	0.307868	
1.5	0.370142	0.486793	0.302583	
1.6	0.420324	0.516761	0.296666	
1.7	0.473473	0.546105	0.290114	
1.8	0.529522	0.574763	0.282933	
1.9	0.5884	0.602671	0.275138	
2	0.65003	0.62977	0.266753	
2.1	0.714326	0.656003	0.257811	

Ex.
$$U_{\infty} = 0.04 \frac{m}{s}$$
, $L = 0.1 m$,
 $v_{air} = 1.5 \times 10^{-5} \frac{m^2}{s}$, $\rho_{air} = 1.2 \frac{kg}{m^3}$

Aerodynamics

Chapter 5: Boundary layers

Shear stress at the wall and drag

Taking a spanwise length equal to *b*, the **drag force due to friction** on a *single* side of a flat plate of length *L* is

$$\begin{split} D_f &= b \int_0^L \tau_w \, dx = 0.332 \, \rho \, b \, U_\infty \sqrt{\nu \, U_\infty} \int_0^L x^{-1/2} dx \\ \int_0^L x^{-1/2} \, dx &= 2 \, L^{1/2} \\ D_f &= 0.664 \, \rho \, b \, U_\infty \sqrt{\nu \, L \, U_\infty} \end{split}$$

Drag coefficient for the Blasius flow on one side of the plate:

$$C_{D_f} = \frac{2 D_f}{\rho U_{\infty}^2 L b} = \frac{1.328}{R e_L^{1/2}} \qquad \left(R e_L = \frac{L U_{\infty}}{\nu} \right)$$

Drag coefficient on a flat plate b.l.

Aerodynamics

Chapter 5: Boundary layers

B.I. thicknesses

Displacement thickness δ^* :

by how much must the wall be displaced for a potential (inviscid) flow to have the **same mass flux** of the boundary layer flow

C*

$$\int_{\delta^*}^{\infty} U \, dy = \int_0^{\infty} u \, dy \quad \longrightarrow \quad \int_0^{\infty} U \, dy - \int_0^{\delta^*} U \, dy = \int_0^{\infty} u \, dy$$
$$\int_0^{\infty} U \, dy - U \, \delta^* = \int_0^{\infty} u \, dy \quad \delta^* = \int_0^{\infty} \left(1 - \frac{u}{U}\right) dy$$

B.I. thicknesses

Momentum thickness ϑ :

by how much must the wall be displaced for a potential (inviscid) flow to have the **same momentum flux** of the boundary layer flow

Ex. laminar Blasius flow

$$\delta_{99}(x) = 4.91 \,\delta(x)$$

 $\delta^*(x) = 1.72 \,\delta(x)$
 $\vartheta(x) = 0.664 \,\delta(x)$

$$\vartheta = \int_0^\infty \frac{u}{U} \left(1 - \frac{u}{U} \right) dy$$

(a measure of the friction drag!)

B.I. thicknesses

Shape factor:
$$H = \frac{\delta^*}{\vartheta}$$

Laminar Blasius flow: H = 2.59. Turb. flow: H decreases. If H reaches a value close to 2.7 flow separation is incipient

Flat plate b.l. measurements for different FST intensities: *H* is a reliable measure of transition onset

Transition on flat plate b.l.

How does transition take place? What factors affect it?

Receptivity

Turbulence (empirical correlations)

Empirical laws for turbulent flow over a flat plate (with turbulence assumed to be present *right from the start* of the boundary layer!), valid for $5 \times 10^5 \le Re_L \le 10^7$:

Chapter 5: Boundary layers

Before giving a qualitative description of some aspects of the transition phenomenon, plus some elements on turbulent boundary layers, let us go back to laminar flows and examine a significant 3D *self-similar* boundary layer solution

Often wings are swept with respect to the outer flow u_{ext} . A model of the flow over an *infinite* swept wing is the Falkner-Skan-Cooke flow

Let the wall-normal direction be y = y'.

x' and *z*' are wing-fixed coordinates

The steady, 3D boundary layer equations (in the wing-fixed coordinate system) are

$$\int \frac{\partial u'}{\partial x'} + \frac{\partial v'}{\partial y'} + \frac{\partial w'}{\partial z'} = 0$$

$$u' \frac{\partial u'}{\partial x'} + v' \frac{\partial u'}{\partial y'} + w' \frac{\partial u'}{\partial z'} = -\frac{1}{\rho} \frac{\partial p}{\partial x'} + v \frac{\partial^2 u'}{\partial y'^2}$$

$$u' \frac{\partial w'}{\partial x'} + v' \frac{\partial w'}{\partial y'} + w' \frac{\partial w'}{\partial z'} = -\frac{1}{\rho} \frac{\partial p}{\partial z'} + v \frac{\partial^2 w'}{\partial y'^2}$$

$$\frac{\partial p}{\partial y'} = 0 \qquad \text{with} \quad u' = v' = w' = 0 \quad \text{at} \quad y' = 0$$

$$u' = U', \quad w' = W' \quad \text{at} \quad y' \to \infty$$

Assume: $U' = \mathcal{U} x'^m$, $W' = W_{\infty} = \text{const}$, plus the fields are invariant along z'

$$\begin{bmatrix} \frac{\partial u'}{\partial x'} + \frac{\partial v'}{\partial y'} + \frac{\partial w'}{\partial z'} = 0 \\ u'\frac{\partial u'}{\partial x'} + v'\frac{\partial u'}{\partial y'} + w'\frac{\partial u'}{\partial z'} = -\frac{1}{\rho}\frac{\partial p}{\partial x'} + v\frac{\partial^2 u'}{\partial y'^2} \\ u'\frac{\partial w'}{\partial x'} + v'\frac{\partial w'}{\partial y'} + w'\frac{\partial w'}{\partial z'} = -\frac{1}{\rho}\frac{\partial p}{\partial z'} + v\frac{\partial^2 w'}{\partial y'^2} \\ \frac{\partial p}{\partial y'} = 0 \qquad \text{with} \quad u' = v' = w' = 0 \quad \text{at} \quad y' = 0 \\ u' = \mathcal{U}x'^m, \; w' = W_{\infty} \; \text{at} \; y' \to \infty \end{cases}$$

Falkner-Skan system plus an independent equation for w'

$$\int \frac{\partial u'}{\partial x'} + \frac{\partial v'}{\partial y'} = 0 \qquad \text{with} \qquad u' = v' = 0 \quad \text{at} \quad y' = 0 \\ u' = \mathcal{U} \quad x'^m \quad \text{at} \quad y' \to \infty \\ u' \frac{\partial u'}{\partial x'} + v' \frac{\partial u'}{\partial y'} = m \mathcal{U}^2 x^{2m-1} + v \frac{\partial^2 u'}{\partial y'^2} \qquad \text{F-S system} \\ \frac{u' \frac{\partial w'}{\partial x'} + v' \frac{\partial w'}{\partial y'} = v \frac{\partial^2 w'}{\partial y'^2}}{Cooke \text{ equation (linear)}} \qquad \text{with} \quad w' = 0 \quad \text{at} \quad y' = 0 \\ w' = W_{\infty} \quad \text{at} \quad y' \to \infty \\ \text{Similarity variable:} \quad \eta = y' \sqrt{\frac{U'(x')}{v \; x'}} \qquad \text{assume:} \quad w' = W_{\infty} \quad g(\eta) \\ \end{array}$$

Cooke's equation is: $\frac{m+1}{2}f g' + g'' = 0$

subject to g(0) = 0, $g(\eta \rightarrow \infty) = 1$

Chapter 5: Boundary layers

The manner through which different boundary layers become unstable (and progressively become turbulent) is very much dependent on the type/shape of boundary layer itself (*the basic flow state*) and on the *environmental conditions*.

For example, the first instability of the Blasius boundary layer may consist of the onset and amplification of 2D streamwise travelling waves (Tollmien-Schlichting waves); instability in the F-S-C flow may appear in the form of steady or travelling cross-flow vortices ...

Flat plate

Fig. 15.5. Sketch of laminar– turbulent transition in the boundary layer on a flat plate at zero incidence, after F.M. White (1974)

- (1) stable laminar flow
- (2) unstable Tollmien–Schlichting waves
- (3) three-dimensional waves and vortex formation
 (A-structures)
- (4) vortex decay
- (5) formation of turbulent spots
- (6) fully turbulent flow

((after H. Schlichting, 1975)

Infinite plate with a sweep angle

Steady, co-rotating cross-flow vortices, induced by inflectional velocity profile; wavelength determined by spanwise roughness spacing

Curved plate, concave curvature

Steady, counter-rotating Görtler vortices, induced by an imbalance between the wall-normal pressure gradient and the centrifugal force

Receptivity

https://www.youtube.com/wat ch?v=wXsl4eyupUY

Aerodynamics

43

Chapter 5: Boundary layers

Turbulence

After breakdown, fully turbulent conditions are encountered, with flows characterized by large unsteady fluctuations (u', etc.)

https://www.youtube.com/watch?v=DX_wPZJYfAQ&feature=e mb_logo&ab_channel=oanamovies

The turbulent boundary layer over a flat plate is often modelled with empirical laws, such as the 1/7 power law

$$\frac{\overline{u}}{\overline{U}} \approx \left(\frac{y}{\delta_{99}}\right)^{1/7} \text{ for } y \le \delta_{99} \qquad \qquad \frac{\overline{u}}{\overline{U}} \approx 1 \text{ for } y > \delta_{99}$$

with \overline{u} and \overline{U} time-averaged (or ensemble-averaged) velocities.

However, such empirical laws are **inaccurate** near the wall

-			(a)	(b)	-
F	Property	Laminar	Turbulent	Turbulent	_
Boundary layer thickness Displacement thickness		$\frac{\delta_{99}}{\chi} = \frac{4.91}{\sqrt{\text{Re}_{\chi}}}$	$\frac{\delta_{99}}{\chi} \cong \frac{0.16}{(\text{Re}_{\chi})^{1/7}}$	$\frac{\delta_{99}}{\chi} \cong \frac{0.38}{(\text{Re}_{\chi})^{1/5}}$	/5
		$\frac{\delta^*}{x} = \frac{1.72}{\sqrt{\text{Re}_x}}$	$\frac{\delta^*}{x} \cong \frac{0.020}{(\text{Re}_x)^{1/7}}$	$\frac{\delta^*}{x} \cong \frac{0.048}{(\text{Re}_x)^{1/5}}$	
٢	Nomentum thickness	$\frac{\theta}{x} = \frac{0.664}{\sqrt{\text{Re}_x}}$	$\frac{\theta}{x} \cong \frac{0.016}{(\text{Re}_x)^{1/7}}$	$\frac{\theta}{x} \cong \frac{0.037}{(\text{Re}_x)^{1/5}}$	
Local skin friction coefficient c _f		$c_f = \frac{0.664}{\sqrt{\text{Re}_x}}$	$c_f \cong \frac{0.027}{(\mathrm{Re}_x)^{1/7}}$	$c_f \cong \frac{0.059}{(\mathrm{Re}_x)^{1/5}}$	
δ ₉₉ [mn	\mathfrak{l}] $\begin{array}{c}40\\30\\-\\20\\-\\10\end{array}$	Turbule	ent (b) Turbulent Laminar	Flow over	of air at 10 $[m/s]$ a smooth flat
		<i>x</i> [<i>m</i>]	1	$\frac{1.5}{L} = 1.5$	1.5 [<i>m</i>]

A better semi-empirical approximation of the near-wall boundary layer flow starts from the definition of the *friction velocity*:

$$u_{\tau} = \sqrt{\frac{\tau_w}{\rho}}$$

Why u_{τ} ? The streamwise *Reynolds-averaged* momentum equation in the near-wall region of a fully developed turbulent boundary layer can be approximated as:

$$\mu \frac{\partial^2 \bar{u}}{\partial y^2} - \rho \frac{\partial}{\partial y} (\overline{u'v'}) = 0$$

once over y:
$$\tau_w = \mu \frac{\partial \bar{u}}{\partial y} - \rho \, \overline{u'v'}$$

and integrating

Normalize by an as-yet unknown velocity scale u^* and viscous length scale v/u^* , so that the equation reduces to:

$$\frac{\tau_w}{\rho u^{*2}} = \frac{\partial(\bar{u}/u^*)}{\partial(yu^*/\nu)} - \frac{\overline{u'\nu'}}{u^{*2}}$$

Now, let us choose $u^* = u_{\tau}$ for the left-hand-side of the equation to become equal to one. The terms on the right-hand-side must also be of order 1. We thus have:

$$1 = \frac{\partial u^+}{\partial y^+} - \frac{\overline{u'v'}}{u_\tau^2}$$

Near the wall the proper velocity scale (for both mean flow and fluctuations) is u_{τ} and the proper scale of length is v/u_{τ} . These are the so-called + (or viscous) variables.

In the log-law (*inertial*) region the mean velocity has the form:

$$u^+ = \frac{1}{\kappa} \ln y^+ + A$$

Wall roughness shifts the logarithmic law, without changing the logarithmic behavior

$$u^+ = \frac{1}{\kappa} \ln y^+ + A - \Delta u^+$$

 Δu^+ : Clauser roughness function

The log-law is also affected by pressure gradient, curvature, etc. It should not be used "blindly" in a CFD code!

How can a boundary layer be *controlled*? What objective(s) are we trying to pursue? How do we want to achieve it/them?

(M. Gad-el-Hak 1996)

Aerodynamics

Chapter 5: Boundary layers

Ex. Suction-type laminar flow control for transition delay

Leading-edge arrangement for 1983–1987 flight tests conducted on a JetStar aircraft at NASA's Dryden Flight Research Center. Important features: (1) suction on upper surface only; (2) suction through electron-beam-perforated skin; (3) leading-edge shield extended for insect protection; (4) de-icer insert on shield for ice protection; (5) supplementary spray nozzles for protection from insects and ice

Reactive, feedforward

Ex. Open loop control of flow separation

Laboratoire de Mécanique de Lille

Important features: (1) an array of 22 round jet air blowers, parallel to the flap's edge, is used as actuators to reduce/eliminate the separation region; (2) hot film sensors along the flap are used to measure the gain in skin friction

Another example of flow control problem

Exercises

- Ex. 1 Do all the steps which lead to the Falkner-Skan ODE equation (slide 18)
- Ex. 2 For the model boundary layer flow

$$\begin{bmatrix} \frac{u}{U_{\infty}} = 2\eta - 2\eta^3 + \eta^4 & \text{for} & 0 \le \eta = \frac{y}{\delta_{99}} \le 1 \\ \frac{u}{U_{\infty}} = 1 & \text{for} & \eta > 1 \end{bmatrix}$$

compute δ^* , ϑ , c_f and C_{D_f} , and compare to the Blasius solution

- Ex. 3 Resolve the problem of the "asymptotic" suction boundary layer: a flat plate is placed parallel to a constant stream at U_{∞} and suction is applied through the wall so that a constant (negative) velocity V_w is present at y = 0
- Ex. 4 Revise problems 4.8 to 4.11 of the book by Anderson (6th ed.) from p. 382
- Ex. 5 Using the results on slide 27, evaluate the roughness amplitude ε of a flat plate of length L = 1 m, with a turbulent boundary layer of speed $U_{\infty} = 150 m/s$, $C_{D_f} = 0.0048$. The fluid is air, $\nu = 1.5 \times 10^{-5} m^2/s$