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Nomenclature for airfoils and wings
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Airfoils

NACA airfoils: developed by the National Advisory Committee 

for Aeronautics (NACA) starting from the late 1920s.

Four-digit series:

First digit: maximum camber as % of chord.

Second digit: distance of maximum camber from the airfoil 

leading edge in tenths of the chord.

Last two digits: maximum thickness of the airfoil as % of chord.

NACA0012

NACA2412

(careful about the “American convention”     

on airfoil thickness)
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Airfoils

NACA airfoils: after the four-digit series, 

NACA developed the five-, six-, seven- and 

eight-digit series, typically aiming to 

maximize the extent of laminar flow above 

and below the wing.

DLR, ONERA, TsAGI …   and many more!

An extensive database (almost 1600 

entries!) of airfoil designs is available on the 

dedicated website of the Aerospace 

Engineering Department of the University of 

Illinois at Urbana-Champaign:           

https://m-selig.ae.illinois.edu/ads.html
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Wing configuration: monoplane

low wing                    mid wing               shoulder wing

high wing                        parasol wing 

(by the use of struts or pylon)      
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Wing configuration: biplane

two wing planes of similar       unequal span biplane                

size (ex. Wright Flyer I)           (ex. Curtiss JN-4 Jenny)

sesquiplane inverted sesquiplane

(ex. Nieuport 17)                       (ex. Fiat C.R.1)      
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Wing configuration: biplane

On May 5th, 1925, Mario de Bernardi, piloting a FIAT 

C.R.1, achieved the world record speed over a 500 km 

distance, flying at an average speed of 254 km/h.
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Wing configuration: multiplane

triplane                                quadriplane

(ex. Fokker DR.I)           (ex. Armstrong Whitworth F.K.10)

multiplane

(ex. Caproni CA.60

Transaereo)                
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Wing configuration: closed wing

box wing                                  annular box wing

(ex. Santos-Dumont’s 14-bis)                   (ex. Blériot III)

Merging or joining structurally the two wing planes at or near 

the tips stiffens the structure and can reduce induced drag
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Wing planform: aspect ratio 𝐴𝑅

y

b

c(y)

mean chord:   ҧ𝑐 =
𝑏/2−
𝑏/2

𝑐 𝑦 d𝑦

𝑏
planform area:   𝑆 = 𝑏 ҧ𝑐

aspect ratio:  𝐴𝑅 =
𝑏2

𝑆
=

𝑏

ҧ𝑐

x
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Wing planform: aspect ratio 𝐴𝑅

low 𝑨𝑹 moderate 𝑨𝑹 high 𝑨𝑹
(structurally efficient     (general purpose,       (aerodynamically

and high roll rate,         ex. Lockheed P-80     efficient, ex.

ex. Lockheed F-104     Shooting Star)            Bombardier Dash 8)

Star Fighter)                                                       



Chapter 4: Thin airfoils and finite wingsAerodynamics                                      12

Wing planform: chord variation along y

constant chord tapered wing,        compound tapered

or rectangular wing        trapezoidal                 (ex. Westland

(low cost but not             (c decreases Lysander army

efficient, ex.                    with y , ex.                   cooperation

Piper J-3 Cub)           Grumman F4F            aircraft)

Wildcat)

y
x
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Wing planform: chord variation along y

constant chord           elliptical wing           semi-elliptical wing

w/ tapered outer       (ex. Supermarine (only LE or TE have               

section (ex.           Spitfire)                       elliptical shape, ex.

many Cessna)                                           Seversky P-35)
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Supermarine Spitfire

Probably the most famous 

British fighter aircraft of 

WWII, it continued in service 

for many years after the war. 

Designed by R.J. Mitchell, 

the aircraft’s elliptical wing 

had a thin cross-section to 

permit achieving high 

speeds..

According to John D. Anderson, Jr., the choice of the elliptic 

shape had “nothing to do with aerodynamics” …
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Wing planform: wing sweep

straight                  swept back               forward swept  

structurally efficient     high subsonic        low drag at transonic

wing for low speed      and early super- speeds, but aero-

designs, ex.                 sonic designs,        elastic problems, ex.

Lockheed P-80      ex. Hawker             Sukhoi Su-47

Shooting Star           Hunter
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Wing planform: wing sweep

swing-wing                  crescent                   cranked arrow

ex. a few military      different sweep on                prototypes

aircrafts, such as     outer and inner sections,      by General

the General              compromise between Dynamics

Dynamics F-111       shock delay and spanwise F16-XL

Aardvark flow control, ex. Handley

Page Victor
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Wing twist

Aerodynamic feature to adjust the lift distribution along wing 

span.

geometric twist

aerodynamic twist
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Dihedral and anhedral

Angling the wings up or down spanwise from root to tip 

can help to resolve various design issues, such as 

stability and control in flight.

dihedral                                      anhedral

improved lateral stability,             improved maneuverability

ex. Boeing 737            Ilyushin ex. Boeing B-52 Strato-

fortress
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Minor independent surfaces

Winglet: a small vertical fin at the 

wingtip, usually turned upwards. 

Reduces the size of vortices shed 

by the wingtip, and hence also tip 

drag.

Strake: a small surface, typically 

longer than it is wide and 

mounted on the fuselage.

Strakes may be located at various 

positions in order to improve 

aerodynamic behavior. Leading 

edge root extensions (LERX) are 

also sometimes referred to as 

wing strakes.



Chapter 4: Thin airfoils and finite wingsAerodynamics                                      20

Control surfaces

Chine: long, narrow sideways 

extension to the fuselage, 

blending into the main wing. It 

improves low speed (high angle of 

attack) handling, provides extra lift 

at supersonic speeds for minimal 

increase in drag. Ex. Lockheed 

SR-71 Blackbird191.

Moustache: small high-aspect-

ratio canard surface having no 

movable control surface. Typically 

is retractable for high speed flight. 

Deflects air downward onto the 

wing root, to delay the stall. Ex. 

Dassault Milan192 and Tupolev

Tu-144193.
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Control surfaces: high lift devices

Slat and slot: a leading edge slat is a small airfoil extending in front of the main

leading edge. The spanwise gap behind it forms a leading-edge slot. Air flowing up 

through the slot is deflected backwards by the slat to flow over the wing, allowing 

the aircraft to fly at lower air speeds without flow separation or stalling. A slat may 

be fixed or retractable.

Flap: a hinged aerodynamic surface, usually on the trailing edge, which is rotated 

downwards to generate extra lift and drag. 

Cuff: fixed aerodynamic device which introduces a sharp discontinuity at the LE, 

typically to improve low-speed characteristics.
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Control surfaces: devices to delay stall

Vortex generator: small protrusion on the upper leading wing surface; usually, 

several are spaced along the span of the wing. They increase drag at all speeds.

Vortilon: one or more flat plates attached to the underside of the wing near its 

outer leading edge. At low speeds, it creates a vortex which energizes the 

boundary layer over the wing.

Leading-edge root extension (LERX): placed forward of the leading edge. The 

primary reason for adding a LERX is to improve the airflow at high angles of 

attack and low airspeeds, to improve handling and delay stall.
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Control surfaces: drag reduction devices

Anti-shock body: a streamlined pod shape added to the leading or trailing edge 

of an aerodynamic surface, to delay the onset of shock stall and reduce transonic 

wave drag. Examples include the Küchemann carrots on the wing trailing edge of 

the Handley Page Victor B.2.

Fillet: a small curved infill at the junction of two surfaces, such as a wing and 

fuselage, blending them smoothly together to reduce drag.

Fairings of various kinds, such as blisters, pylons and wingtip pods, whose only 

aerodynamic purpose is to produce a smooth outline and reduce drag.
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Axis of control of an airplane

The three axes go through 

the center of gravity 

(balance point) of the 

airplane.

Ailerons control rotation 

about the roll axis

Elevators control the pitch 

of an airplane, and thus 

the angle of attack of the 

wing.

The rudder controls yaw.
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Parts definition
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Ailerons

Ailerons
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Ailerons

Elevators
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Ailerons

Rudder
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Ailerons

One spoiler
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Ailerons

Both spoilers
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Ailerons

Flaps/slats
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Ailerons

Flaps/slats
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The vortex filament

Aerodynamic convention:

positive circulation is 

clockwise

(this is different from what we had 

in ch. 3)
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The vortex sheet

𝛾 = 𝛾(𝑠) strength of the vortex sheet per unit length



Chapter 4: Thin airfoils and finite wingsAerodynamics                                      35

The vortex sheet

The infinitesimal portion 𝑑𝑠 of the

vortex sheet induces on point P

in the flow a velocity of magnitude

dΓ = 𝛾 d𝑠 circulation over infinitesimal segment d𝑠

d𝑉 =
dΓ

2𝜋𝑟
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The vortex sheet

For a vortex sheet there is a discontinuous change in the 

tangential component of velocity across the sheet, while the 

normal component is preserved across the sheet.

Γ = 𝑢1 d𝑠 − 𝑣2 d𝑛 − 𝑢2 d𝑠 + 𝑣1 d𝑛
= 𝑢1 − 𝑢2 d𝑠 + 𝑣1 − 𝑣2 d𝑛 = 𝛾 d𝑠
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The vortex sheet

For d𝑛 → 0 we have

𝛾 = 𝑢1 − 𝑢2

The local jump in tangential velocity across the vortex sheet 

is equal to the local sheet strength
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How to use a vortex sheet?

An airfoil surface or the camber line can be replaced by a 

vortex sheet of variable strength (L. Prandtl, 1912-1922)

(note the similarity 

with the concept of 

a boundary layer!) 
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Kutta (yet again!)

At the trailing edge velocity and pressure (!) are unique, 

hence:

𝛾 𝑇𝐸 = 0
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Thin airfoil theory

A thin airfoil can be modeled as a vortex sheet on the 

camber line. Goal: find the distribution of 𝛾(𝑠) that 

renders the camber line a streamline of the flow and  

such that the Kutta condition is satisfied.   

𝛾 = 𝛾(𝑠)
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Thin airfoil theory

𝛾 = 𝛾(𝑥)
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Thin airfoil theory
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Thin airfoil theory

Fundamental 

equation of thin 

airfoil theory

(𝛼 in radians!)

(− sign because in direction   

opposite to that of 𝑧-axis)
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Thin airfoil theory

Once 𝛾 = 𝛾 𝑥 is found, we can easily find the total 

circulation, Γ = 0
𝑐
𝛾 𝑥 d𝑥, and then from the KJ theorem 

the lift on the airfoil:  𝐿′ = 𝜌 𝑉∞ Γ

(notice that now clockwise circulation is positive)
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Thin airfoil theory: the symmetric airfoil

If the thin airfoil is symmetric 𝑧 𝑥 = 0 and  
d𝑧

d𝑥
= 0

Transformation: 

𝜃 = 0 0((LE, 𝜉 = 0)
𝜃 = 𝜋 0 (TE, 𝜉 = 𝑐)

x is a some point on the chord line
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Thin airfoil theory: the symmetric airfoil

𝜃 𝜃0

The transformation variable
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Thin airfoil theory: the symmetric airfoil

From the mathematical theory of integral equations a 

solution can be found:

(verify the solution by yourselves, using Glauert’s first integral, and verify also 

that Kutta condition is satisfied)
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Thin airfoil theory: Glauert’s integrals

න

0

𝜋
cos(𝑛𝜃)

cos 𝜃 − cos 𝜃0
d𝜃 =

𝜋 sin(𝑛𝜃0)

sin 𝜃0

න

0

𝜋
sin 𝑛𝜃 sin 𝜃

cos 𝜃 − cos 𝜃0
d𝜃 = −𝜋 cos(𝑛𝜃0)
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Thin airfoil theory: the symmetric airfoil

Tapez une équation ici.

𝛾 𝜉 = 2α 𝑉∞
1 −

𝜉
𝑐

𝜉
𝑐
1 −

𝜉
𝑐

= 2α 𝑉∞
𝑐

𝜉
− 1

𝛾

𝜉Γ = න
0

𝑐

𝛾 𝜉 d𝜉

cos 𝜃 = 1 −
2𝜉

𝑐

sin 𝜃 = 2
𝜉

𝑐
1 −

𝜉

𝑐

𝑐



Chapter 4: Thin airfoils and finite wingsAerodynamics                                      50

Thin airfoil theory: the symmetric airfoil

Γ = න
0

𝑐

𝛾 𝜉 d𝜉 = න
0

𝜋

2𝛼 𝑉∞
1 + cos 𝜃

sin 𝜃

𝑐

2
sin 𝜃 d𝜃

= 𝛼 𝑐 𝑉∞න
0

𝜋

(1 + cos 𝜃) d𝜃 = 𝜋 𝛼 𝑐 𝑉∞
(clockwise 

circulation)

KJ theorem:  𝐿′ = 𝜌 𝑉∞ Γ = 𝜋 𝛼 𝑐 𝜌 𝑉∞
2 → 𝑐𝑙= 2 𝜋 𝛼

(same result found already for the Joukowski airfoil!)

lift slope: 𝑎0 =
d𝑐𝑙

d𝛼
= 2 𝜋

2 𝜋 rad -1 = 0.10966227 degree -1
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Thin airfoil theory: the symmetric airfoil

𝑀LE
′ = න

0

𝑐

− 𝜉 d𝐿′

d𝐿′

= −𝜌 𝑉∞න

0

𝑐

𝜉 γ ξ d𝜉 = ⋯ = −
1

4
𝜋 𝛼 𝜌 𝑉∞

2 𝑐2

𝑐𝑚 LE = −
𝜋 𝛼

2
= −

𝑐𝑙
4
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Thin airfoil theory: the symmetric airfoil

𝑐𝑚 𝑐/4 = 𝑐𝑚 LE +
𝑐𝑙
4

(see slide 20 of ch. 1!)

𝑐𝑚 𝑐/4 = 0

𝑥 = 𝑐/4 is both

CP and AC for the

thin symmetric airfoil
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Thin airfoil theory: the symmetric airfoil

𝑢2

𝑢1 𝑝1
𝑝2

Bernoulli: 𝑝2 − 𝑝1 =
1

2
𝜌(𝑢1

2 − 𝑢2
2) ≈ 𝜌 𝑉∞ 𝛾 𝑥

𝑉∞

We can now refine a bit the qualitative argument presented 

in ch. 3, slide 29.
𝛾 𝑥 = 𝑢1 − 𝑢2

d𝐿′ = 𝜌 𝑉∞ 𝛾 𝑥 d𝑥 ≈ d𝐹𝑝

= 𝑝2 − 𝑝1 d𝑥

𝑢1 ≈ 𝑉∞ +
𝛾

2
, 𝑢2≈ 𝑉∞ −

𝛾

2

𝑢1 ≈ 𝑉∞ + α 𝑉∞
𝑐

𝑥
− 1, 𝑢2≈ 𝑉∞ − α 𝑉∞

𝑐

𝑥
− 1
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Thin airfoil theory: the symmetric airfoil

𝑢1 ≈ 𝑉∞ 1 + α
𝑐

𝑥
− 1 ≠ 0 ∀𝑥 for 𝛼 ≥ 0

𝑢2 ≈ 𝑉∞ 1 − α
𝑐

𝑥
− 1 = 0 when

𝑥

𝑐
=

𝛼2

𝛼2+1

When α is sufficiently small, the stagnation point on the 

pressure side of the airfoil has coordinate: 𝑥𝑠𝑡𝑎𝑔𝑛 ≈ 𝛼2𝑐

𝑉∞

𝑧

𝑥𝑥𝑠𝑡𝑎𝑔𝑛
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Thin airfoil theory: the cambered airfoil

Let us go back to the fundamental equation of thin airfoil 

theory (slide 43) which, in Glauert’s coordinates, read:

together with Kutta condition:

To express the solution we must rely on a Fourier cosine 

series expansion of the even function  
𝑑𝑧

𝑑𝑥
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Fourier cosine series expansion

The Fourier cosine series expansion of a generic even 

function 𝑓(𝑥) is:

𝑓 𝑥 =
1

2
𝑎0 + 

𝑛=1

∞

𝑎𝑛 cos(𝑛𝑥)

with the coefficients given by

𝑎0 =
1

𝜋
න
−𝜋

𝜋

𝑓 𝑥 𝑑𝑥 =
2

𝜋
න
0

𝜋

𝑓 𝑥 𝑑𝑥

𝑎𝑛 =
1

𝜋
න
−𝜋

𝜋

𝑓 𝑥 cos 𝑛𝑥 𝑑𝑥 =
2

𝜋
න
0

𝜋

𝑓 𝑥 cos 𝑛𝑥 𝑑𝑥
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Fourier cosine series expansion of  
𝑑𝑧

𝑑𝑥

The function z = 𝑧(𝜃0) is odd (practical camber lines go

to zero at LE and TE), so  Τ𝑑𝑧
𝑑𝑥 is an even function. The 

Fourier cosine series expansion of  
𝑑𝑧

𝑑𝑥
is written as:

𝑑𝑧

𝑑𝑥
= (𝛼 − 𝐴0) + 

𝑛=1

∞

𝐴𝑛 cos(𝑛𝜃0)

with the coefficients given by   (𝛼 − 𝐴0) =
1

𝜋
0
𝜋 𝑑𝑧

𝑑𝑥
𝑑𝜃0

and 𝐴𝑛 =
2

𝜋
0
𝜋 𝑑𝑧

𝑑𝑥
cos 𝑛𝜃0 𝑑𝜃0
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Thin airfoil theory: the cambered airfoil

Inserting 𝛼 −
𝑑𝑧

𝑑𝑥
= 𝐴0 − σ𝑛=1

∞ 𝐴𝑛 cos 𝑛𝜃0 into the 

fundamental equation we have:

1

2𝜋𝑉∞
න
0

𝜋 𝛾 𝜃 sin 𝜃 𝑑𝜃

cos 𝜃 − cos 𝜃0
= 𝐴0 − 

𝑛=1

∞

𝐴𝑛 cos 𝑛𝜃0

The result of this equation, satisfying Kutta condition, is:
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Thin airfoil theory: the cambered airfoil

Assignement:

Verify that the given expression of 𝛾(𝜃) satisfies the    

fundamental equation, using Glauert’s second integral 

(slide 48).  Verify also that Kutta condition is satisfied.

Note:  for the limit case of symmetric airfoil 
𝑑𝑧

𝑑𝑥
= 0 we

have 𝐴0= 𝛼 and  𝐴𝑛 = 0,  for  𝑛 = 1, 2, 3 … in this case 

the solution in slide 58 coincides with that of slide 47.



Chapter 4: Thin airfoils and finite wingsAerodynamics                                      60

Thin airfoil theory: the cambered airfoil

Generic form of the vortex sheet strength distribution, and

schematic description of the first four terms in the series 

describing the circulation. 

, 𝜉

𝛾 𝜃 =
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Thin airfoil theory: the cambered airfoil

Note: from slide 58 it is clear that at the LE, for 𝜃 → 0, it is

sin 𝜃 → 0 and the strength of the vortex sheet is locally

singular (lim
𝜃→0

|𝛾| → ∞). The only way for this not to happen is

that 𝐴0 = 0. When this occurs the angle of attack is called 

ideal (because the local load at the LE vanishes).  Thus

𝛼𝑖𝑑𝑒𝑎𝑙 =
1

𝜋
න
0

𝜋 𝑑𝑧

𝑑𝑥
𝑑𝜃0

In this case the ideal lift coefficient is  𝑐𝑙 = 𝜋 𝐴1 (check slide 

63).  This is also called the design lift coefficient.
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Thin airfoil theory: the cambered airfoil

Total circulation due to the vortex sheet:

with
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Thin airfoil theory: the cambered airfoil

KJ: 𝐿′= 𝜌 𝑉∞ Γ = 𝜌 𝑉∞
2 𝑐 𝜋 𝐴0 +

𝜋

2
𝐴1

𝑐𝑙 =
𝐿′

1
2
𝜌 𝑉∞

2𝑐
= 2𝜋 𝐴0 +

𝐴1
2

= 2𝜋 𝛼 +
1

𝜋
න

0

𝜋
𝑑𝑧

𝑑𝑥
(cos 𝜃0 − 1) 𝑑𝜃0 = 2𝜋 𝛼 − 𝛼𝑙=0
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Thin airfoil theory: the cambered airfoil

Lift slope:  𝑎0 =
𝑑𝑐𝑙

𝑑𝛼
= 2𝜋

The lift slope is the same as for a symmetric airfoil!

The zero lift angle is:

𝛼𝑙=0 = −
1

𝜋
න

0

𝜋
𝑑𝑧

𝑑𝑥
(cos 𝜃0 − 1) 𝑑𝜃0

For symmetric airfoil  𝛼𝑙=0= 0
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Thin airfoil theory: the cambered airfoil

𝑀LE
′ = න

0

𝑐

− 𝜉 d𝐿′

d𝐿′

= −𝜌 𝑉∞න

0

𝑐

𝜉 γ ξ d𝜉 = ⋯ = −
1

4
𝜋 𝜌 𝑉∞

2 𝑐2 𝐴0 + 𝐴1 −
𝐴2
2

𝑐𝑚 LE = −
𝜋

2
𝐴0 + 𝐴1 −

𝐴2
2

= −
𝑐𝑙
4
+
𝜋

4
𝐴2 − 𝐴1
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Thin airfoil theory: the cambered airfoil

The moment coefficient for a cambered airfoil depends on 

only three Fourier series coefficients (function of angle of 

attack and camber).

Using the relation in slide 52 

we have:

Thus, the moment coefficient about quarter chord is 

independent of the angle of attack, which means that 

𝑥 = 𝑐/4 is the aerodynamic center.

𝑐𝑚 𝑐/4 = 𝑐𝑚 LE +
𝑐𝑙
4

𝑐𝑚 𝑐/4 =
𝜋

4
𝐴2 − 𝐴1
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Thin airfoil theory

AC                                            CP

For thin symmetric arfoil 𝑥 = 𝑐/4 is both AC and CP.

For thin cambered airfoil  𝑥 = 𝑐/4 is AC (but not CP since 

𝑐𝑚 𝑐/4 ≠ 0 because of the airfoil camber)  To find the center 

of pressure consider that the total 

moment about the CP vanishes, i.e.

𝑀CP
′ = 𝐿′ Δ𝑥 +𝑀𝑐/4

′ = 0

𝑀𝑐/4
′

Δ𝑥

𝑐
= −

𝑐𝑚𝑐/4

𝑐𝑙
=

𝜋

4

𝐴1−𝐴2

𝑐𝑙
→ 𝑥CP =

𝑐

4
+ Δ𝑥

(notice that 𝑥𝐶𝑃 changes with lift!)
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Thin airfoil theory: comparison w/ exp

Abbott &    

van Doenhoff

𝑧/𝑐

𝑧/𝑐
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Thin airfoil theory: comparison w/ exp

Abbott &         

van Doenhoff

𝑧/𝑐

𝑧/𝑐
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Thin (or thick?) airfoil: the AC

AC

Thin airfoil theory should, in principle, not be applied if the 

thickness of the airfoil is large.  For a thick 

airfoil the AC is not at c/4 (but close …)

𝑀AC
′ = 𝑀𝑐/4

′ + 𝑥AC −
𝑐

4
𝐿′+

𝑐𝑚AC = 𝑐𝑚 𝑐/4 +
𝑥AC
𝑐

−
1

4
𝑐𝑙

𝑑𝑐𝑚AC

𝑑𝛼
= 0 =

𝑑𝑐𝑚 𝑐/4

𝑑𝛼
+

𝑥AC
𝑐

−
1

4

𝑑𝑐𝑙
𝑑𝛼

= 𝑚0 +
𝑥AC
𝑐

−
1

4
𝑎0

𝑥AC
𝑐

=
1

4
−
𝑚0

𝑎0
(either larger or smaller than 1/4)
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Thin (or thick?) airfoil: the AC

𝑥AC
𝑐

𝑥AC
𝑐
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Thin airfoil theory: the effect of flaps

z

z

z

z
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Thin airfoil theory: the effect of flaps

Flaps are the main mechanism to generate control forces 

on airplanes (cf. slides 68 and 69) since they change the 

effective camber of the airfoil/wing.

Deploying flaps has a minor effect on lift slope 𝑎0, but:

• 𝛼𝑙=0 is substantially decreased   (+)

• max lift coefficient is increased   (+)

• the angle of stall is reduced (−) (but this reduction 

is not large enough to detract from the advantages of 

shifting the lift curve to the left)
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Thin airfoil theory: the effect of flaps

+ h

h
h

h

(for h ≠ 0 drag increases …)
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Other HLD: the leading edge slat

leading edge 

slat activated
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Other HLD

Airfoil with LE slat and TE multi-element flap
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Other HLD

𝛼 = 25°
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Thin airfoil theory

Exercises

1. Consider a thin airfoil, with mean camber line in the form of a circular arc, 

with mean camber given by  𝑧 = 4𝑓
𝑥

𝑐
−

𝑥

𝑐

2
, where 𝑓 is the maximum 

camber. Find 𝛼𝑙=0, 𝑐𝑙, 𝑐𝑚AC, 𝑐𝑚LE, 𝑥CP, 𝛼𝑖𝑑𝑒𝑎𝑙, and the design lift coefficient. 

2. For the thin airfoil of mean camber line given by 𝑧 = 𝑓 sin2𝜃0 (𝜃0 defined as 

in slide 45), with 𝑓 the maximum camber, answer the same question of the 

previous exercise.

3. Consider the airfoil with flap

shown in the figure, with the

chord c equal to the segment

AC and h, F < 1. Answer the 

same question of ex. 1.

z
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The numerical vortex panel method

The panel method, based on a distribution of potential 

sources (or doublets or vortices, and sometimes a 

combination of different singularities), is a common 

numerical technique to treat the flow over non-lifting or lifting 

bodies.

XFOIL (https://web.mit.edu/drela/Public/web/xfoil/) – and  

similar codes – are based on the vortex panel method.  This 

differs from the lumped vortex element method. Panels, i.e. 

straight-line segments, have a surface distribution 𝛾(𝑠) of 

vorticity. The strength of the 

vortex sheet on each panel of

the airfoil must be determined.
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The numerical vortex panel method

Simple implementation: each of the N straight panels carries 

a vortex distribution of linearly varying strength between the 

end points of each panel. End point values are the unknowns 

of the problem:   𝛾𝑗 𝑗 = 1, 2, …N + 1 , and are found by 

imposing that the body surface is a streamline of the flow, plus 

Kutta condition:  𝛾1 = −𝛾N+1.

x

z
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The numerical vortex panel method

Example of linear distribution of 𝛾 over neighboring

panels. The strength of the vortex sheet at the end 

point of panel 𝑗 − 1 is equal to the strength at the 

first point of panel 𝑗.  

𝛾𝑗

𝛾𝑗+1

𝛾𝑗−1

𝛾𝑗−2
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The numerical vortex panel method

A condition of no through-flow (𝑉𝑛,𝑖 = 0) must be applied at 

the center of the 𝑖𝑡ℎ panel, on the control point. This yields N
equations for N + 1 unknowns.  The extra equation needed

is Kutta condition.

x

z
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The numerical vortex panel method

x

z

panel N-2

dVn dV ( induced by panel N-2 on control point of panel i)
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The numerical vortex panel method

For the generic panel 𝑖 the equation to be enforced is:

where 𝐴𝑖,𝑗 represents the influence of the vorticity of panel 𝑗

on the control point of panel 𝑖, and 𝐵𝑖 represents the 

influence of the free-stream on panel 𝑖. Both 𝐴𝑖,𝑗 and 𝐵𝑖 are 

function of the geometry of the section, because of 

orientation and spacing of the panels. 

𝑉𝑛,𝑖 = 

𝑗=1

N+1

𝐴𝑖,𝑗 𝛾𝑗+ 𝐵𝑖 𝑉∞ = 0
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The numerical vortex panel method

The system of linear equations eventually reads:

𝐴1,1 𝐴1,2 …

𝐴2,1 𝐴2,2
…

…
𝐴N,1 𝐴N,2 …

1 0 0

… 𝐴1,N 𝐴1,N+1

… 𝐴N,N 𝐴N,N+1
0 0 1

𝛾1
𝛾2
…

…
𝛾N
𝛾N+1

= −𝑉∞

𝐵1
𝐵2
…

…
𝐵N
0

⋮

⋮

⋮ ⋮⋮⋮

…

…
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The numerical vortex panel method

Once the distribution strengths 𝛾𝑖 have been calculated, we 

can have surface tangential velocities at the center of each 

panel (𝑉𝑖), and surface pressure coefficients, 𝑐𝑝,𝑖 = 1 −
𝑉𝑖
2

𝑉∞
2

x

z
chord (c)
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The numerical vortex panel method

1

4

1

4

The lift coefficient can be calculated, e.g. assuming a small

angle of attack 𝛼 (so that cos 𝛼 is close to one), as the 

integration of surface pressure coefficient acting in the 𝑧-

direction, i.e. 

𝑐𝑙 =

𝑖=1

N

𝑐𝑝,𝑖
𝑥𝑖 − 𝑥𝑖+1

𝑐

Pitching moment coefficient will similarly be the sum of the 

panel moments about the 1/4 chord point.

𝑐𝑚 𝑐/4 =

𝑖=1

N

𝑐𝑝,𝑖
𝑥𝑖 − 𝑥𝑖+1

𝑐

𝑥𝑖 + 𝑥𝑖+1
2𝑐

−
1

4
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The numerical vortex panel method
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The inverse problem

For design purposes it is desirable to specify the surface 

pressure (or velocity) distribution, for example to achieve 

enhanced airfoil performances such as:

• preserve a laminar boundary layer over a considerable chordwise

extent

• delay boundary-layer separation and hence reduce the form drag of 

the airfoil

• a relatively low suction peak on the upper surface of the airfoil would 

result in a higher critical Mach number for the airfoil, meaning that it 

could operate efficiently at a higher subsonic cruise speed than an 

airfoil with a conventional pressure distribution

• …

and calculate the shape of the airfoil that will produce the 

specified pressure (or velocity) distribution.
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The inverse problem

Adjoint optimization of an airfoil to match a specified 

pressure distribution (free-stream Mach number of 0.4,  

angle of attack of 2 deg., Reynolds number of 5 × 106)

𝑥/𝑐

𝑐𝑝 z/𝑐

𝑥/𝑐
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The inverse problem

Further shape optimization objectives are:

• optimize lift coefficient

• minimize skin friction or form drag (or other types of drag)

• maximize the lift-to-drag ratio (aerodynamic efficiency)

• limit system vibrations (aeroelasticity problem)

• reduce aerodynamic noise

• stabilize (or mitigate) a shock

• …

Several optimization strategies are covered in the course by 

Prof. J. Pralits



Chapter 4: Thin airfoils and finite wingsAerodynamics                                      92

3D wings
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Lift for 3D wings
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Wing-tip vortices
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Downwash and induced drag, 𝐷𝑖
′

Effect of downwash on a local airfoil section of a 3D wing

𝑉∞

𝐷𝑖
′

𝐿′
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Vortex line and Biot-Savart law

l dl

Γ

𝑽
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Vortex line and Biot-Savart law

l dl

Γ

If 1 → −∞ and 2 → +∞ then  𝑉 =
Γ

2𝜋ℎ

Γ

4𝜋
න
−∞

+∞ cos 𝜎

𝑟2
𝑑𝑙

=
Γ

4𝜋
න
−∞

+∞ cos3 𝜎

ℎ2
𝑑𝑙 =

Γ

4𝜋ℎ
න
−𝜋/2

+𝜋/2

cos 𝜎 𝑑𝜎 =
Γ

2𝜋ℎ

𝑙 = ℎ tan 𝜎 → 𝑑𝑙 = ℎ
1

cos2𝜎
𝑑𝜎

This result agree with the 

case of the 2D potential vortex!

𝑽
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Vortex line and Biot-Savart law

l dl

Γ

If  1  and  2  are two values characterized by the two 

angles 𝜎1 and 𝜎2, the velocity in P has magnitude

𝑉 =
Γ

4𝜋ℎ
න
𝜎1

𝜎2

cos 𝜎 𝑑𝜎 =
Γ

4𝜋ℎ
(sin 𝜎2 − sin 𝜎1)

If the end point 1 (or eventually 

both end points) of the segment 

1-2 lies to the left of the point of 

interest P, then 𝜎1 is a negative

angle.  If the filament is semi-

infinite, then
𝑉 =

Γ

4𝜋ℎ (half the value found for an infinite vortex filament!)
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The horseshoe vortex

Simple horseshoe vortex model representation of a wing

𝑥 → ∞
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The horseshoe vortex

Downwash distribution along y

for a single horseshoe vortex

(unphysical …)
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Prandtl’s lifting line theory

Superposition of many horseshoe vortices, each with a 

different length of the bound vortex, but with all bound 

vortices lying on the lifting line



Chapter 4: Thin airfoils and finite wingsAerodynamics                                      102

Prandtl’s lifting line theory

Infinite horseshoe vortices superimposed along the lifting line 

continuous vortex sheet

behind the lifting line

Goal of the analysis: find 𝚪 = 𝚪(𝒚)

lifting

line

𝑑𝑤
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Prandtl’s lifting line theory

On 𝑦0 the vertical velocity 

𝑑𝑤 induced by the 

infinitesimal segment 𝑑𝑥 of   

a vortex filament positioned  

in a generic 𝑦 is:

(notice that  
𝑑Γ

𝑑𝑦
< 0 at 𝑦0 in figure)

→ 𝑤(𝑦0) = න

−𝑏/2

𝑏/2
(𝑑Γ/𝑑𝑦)

4𝜋(𝑦 − 𝑦0)
𝑑𝑦

𝑑𝑤 =
𝑑Γ

4𝜋 𝑦 − 𝑦0
=

𝑑Γ
𝑑𝑦

𝑑𝑦

4𝜋(𝑦 − 𝑦0)

𝑑𝑤
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Prandtl’s lifting line theory

From slide 95 the induced angle of attack at the generic 

section 𝑦0 is

Tapez une équation ici.

𝛼𝑖 𝑦0 = tan−1
−𝑤(𝑦0)

𝑉∞
≈ −

𝑤(𝑦0)

𝑉∞

𝛼𝑖(𝑦0) =
1

4 𝜋 𝑉∞
න

−𝑏/2

𝑏/2
(𝑑Γ/𝑑𝑦)

(𝑦0 − 𝑦)
𝑑𝑦

Velocity components at the lifting line
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Prandtl’s lifting line theory

Tapez une équation ici.

𝑐𝑙 𝑦0 = 𝑎0 𝛼eff 𝑦0 − 𝛼𝑙=0 = 2𝜋 𝛼 − 𝛼𝑖 𝑦0 − 𝛼𝑙=0

Section lift coefficient:

geometric twist:  α = α(𝑦0)

aerodynamic twist: 𝛼𝑙=0 = 𝛼𝑙=0(𝑦0)

if thin profile

wash-out
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Fundamental equation of Prandtl’s LLT

𝐿′ 𝑦0 =
1

2
𝜌 𝑉∞

2 𝑐(𝑦0) 𝑐𝑙 𝑦0 ≈ 𝜌 𝑉∞ Γ 𝑦0

𝑐𝑙 𝑦0 =
2 Γ 𝑦0

𝑉∞ 𝑐 𝑦0
= 𝑎0 𝛼(𝑦0) − 𝛼𝑖(𝑦0) − 𝛼𝑙=0(𝑦0)

𝛼 𝑦0 =
2 Γ 𝑦0

𝑎0 𝑉∞ 𝑐 𝑦0
+ 𝛼𝑙=0(𝑦0) +

1

4 𝜋 𝑉∞
න

−𝑏/2

𝑏/2
(𝑑Γ/𝑑𝑦)

(𝑦0 − 𝑦)
𝑑𝑦

This is the monoplane equation
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Prandtl’s lifting line theory

The fundamental equation of Prandtl’s lifting line theory 

simply states that the geometric angle of attack is the sum   

of the effective angle plus the induced angle of attack. It is  

an integro-differential equation for Γ = Γ 𝑦0 , with 𝑦0 ranging 

along the span from −𝑏/2 to +𝑏/2. Not easy to solve … 

Consequences:

1. 𝐿′ 𝑦0 = 𝜌 𝑉∞ Γ 𝑦0 → 𝐿 = 𝜌 𝑉∞ 𝑏/2−
𝑏/2

Γ 𝑦0 𝑑𝑦0

2. 𝐷𝑖
′ = 𝐿′ sin 𝛼𝑖 ≈ 𝐿′ 𝛼𝑖 → 𝐷𝑖 ≈ 𝜌 𝑉∞ 

−
𝑏

2

𝑏

2 Γ 𝑦0 𝛼𝑖 𝑦0 𝑑𝑦0

3. 𝐶𝐿 and  𝐶𝐷,𝑖 readily available

1.
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Drag

The total drag of a subsonic finite wing includes the induced 

drag, the skin friction drag and the pressure drag

𝐷 = 𝐷𝑖+ 𝐷𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 + 𝐷𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 → 𝐶𝐷

also called profile drag, and 

related to viscous effects

At moderate angle of attack, the profile drag coefficient for a 

finite wing is essentially the same as for its airfoil sections.

The profile drag coefficient:  𝑐𝑑 =
𝐷𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛+𝐷𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒

1

2
𝜌 𝑉∞

2 𝑆
for a finite 

wing is available from airfoil data. Thus, the total drag 

coefficient takes the form: 𝐶𝐷= 𝑐𝑑 +𝐶𝐷,𝑖
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Elliptical lift distribution

Γ(𝑦) = Γ0 1 −
2 𝑦

𝑏

2

Let us consider an elliptic circulation/lift distribution along y
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Elliptical lift distribution

Γ(𝑦) = Γ0 1 −
2 𝑦

𝑏

2

Let us consider an elliptic circulation/lift distribution along y

𝛾 = ቤ
𝑑Γ

𝑑𝑦
𝑦→±

𝑏
2

→ ∞

vortex sheet of infinite strength at the tips

(slide 103)
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Elliptical lift distribution

𝑦 =
𝑏

2
cos 𝜃 → 𝑑𝑦 = −

𝑏

2
sin 𝜃 𝑑𝜃

Change of variables:

with the variable 𝜃 going from 𝜋 to 0.
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Elliptical lift distribution

𝑦 =
𝑏

2
cos 𝜃 → 𝑑𝑦 = −

𝑏

2
sin 𝜃 𝑑𝜃

Change of variables:

with the variable 𝜃 going from 𝜋 to 0.  Then  Γ 𝜃 = Γ0 sin 𝜃
and 

(from Glauert’s first integral with n  = 1, slide 48)
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Elliptical lift distribution

For an elliptical lift distribution both the downwash and the 

induced angle of attack are constant along the span 𝑦
(and both tend to zero as the span becomes infinite)

𝜌 𝑉∞ Γ0
𝑏

4
𝜋

𝜌

𝜌

Induced angle of attack:

Constant downwash: 𝑤(𝑦) = −
Γ0
2𝑏
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Elliptical lift distribution

Γ0 =
4𝐿

𝜌 𝑉∞𝑏 𝜋
=
4

1
2𝜌 𝑉∞

2 𝑆 𝐶𝐿

𝜌 𝑉∞𝑏 𝜋
=
2 𝑉∞𝑆 𝐶𝐿

𝑏 𝜋

𝛼𝑖 =
𝑆 𝐶𝐿
𝜋 𝑏2

=
𝐶𝐿
𝜋 𝐴𝑅

with   𝐴𝑅 = 𝑏2/𝑆

𝐷𝑖≈ 𝐿 𝛼𝑖 = 𝜌 𝑉∞ 𝛼𝑖 Γ0
𝑏

4
𝜋 → 𝐶𝐷,𝑖 =

𝐷𝑖
1
2
𝜌 𝑉∞

2 𝑆
=

𝐶𝐿
2

𝜋 𝐴𝑅

Since 𝛼𝑖 is constant, we have (cf. slide 107):

“Lift-induced drag” coefficient!
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Elliptical lift distribution

At zero lift 𝐶𝐷,𝑖 is zero (and same 

for 𝛼𝑖)

As 𝐴𝑅 increases (to infinity for 

two-dimensional flow) 𝐶𝐷,𝑖
decreases (to zero); same for 𝛼𝑖

At low speed (take-off or landing) 

𝐿 is large and 𝐷𝑖 makes up a large 

part of the total drag (of the order 

of 60%). Even at relatively high 

cruising speeds, induced drag is 

typically 25% of the total drag

𝐶𝐷,𝑖 =
𝐶𝐿
2

𝜋 𝐴𝑅

𝐶𝐷,𝑖

𝐶𝐿
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Elliptical lift distribution

𝐶𝐷= 𝑐𝑑+𝐶𝐷,𝑖= 𝑐𝑑 +
𝐶𝐿
2

𝜋 𝐴𝑅

Drag polar for an elliptic untwisted 

wing of aspect ratio 𝐴𝑅 = 5

𝐶𝐷,𝑖
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Lift slope for elliptical lift distribution

Ex.  Untwisted wing, elliptical lift 

distribution

𝛼𝑖 constant along 𝑦
𝛼eff = 𝛼 − 𝛼𝑖 constant along 𝑦

Observations show that 𝑎 < 𝑎0, i.e.

the finite wing has a reduced lift  

slope compared to an airfoil.  

By how much?

Also, 𝛼𝑖 = 0 when 𝐶𝐿 = 0, which

means that at zero-lift 𝛼eff = 𝛼, and 
thus 𝛼𝐿=0 = 𝛼𝑙=0 (wing & airfoil)
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Lift slope for elliptical lift distribution

𝑑𝐶𝐿
𝑑(𝛼 − 𝛼𝑖)

= 𝑎0

𝐶𝐿 = 𝑎0 𝛼 − 𝛼𝑖 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝐶𝐿 = 𝑎0 𝛼 −
𝐶𝐿
𝜋 𝐴𝑅

+ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝐶𝐿 1 +
𝑎0
𝜋 𝐴𝑅

= 𝑎0𝛼 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑎 =
𝑑𝐶𝐿
𝑑𝛼

=
𝑎0

1 +
𝑎0
𝜋 𝐴𝑅

=
2𝜋

1 +
2
𝐴𝑅

for thin profile
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Elliptical lift distribution: effect of 𝐴𝑅 on 𝐶𝐿

𝑎 =
2𝜋

1 +
2
𝐴𝑅

=
2𝜋 𝐴𝑅

2 + 𝐴𝑅
=

𝐶𝐿
𝛼 − 𝛼𝐿=0

Thin profiles:

𝑎

2𝜋
=

𝐶𝐿
2𝜋 𝛼 − 𝛼𝐿=0

𝐴𝑅
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Elliptical lift distribution: effect of 𝐴𝑅 on 𝐶𝐷,𝑖

𝐴𝑅

2 + 𝐴𝑅
=

𝐶𝐿
2𝜋 𝛼 − 𝛼𝐿=0

𝐶𝐷,𝑖
4𝜋 𝛼 − 𝛼𝐿=0

2

𝐴𝑅

𝐶𝐷,𝑖 =
𝐶𝐿
2

𝜋𝐴𝑅
=

𝐴𝑅

2 + 𝐴𝑅 2
4𝜋 𝛼 − 𝛼𝐿=0

2

Prize exacted by  

the work needed    

to create the wake
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Elliptical wing planform

Untwisted wing:

no aero twist:   𝛼𝑙=0 constant

no geom twist: 𝛼 constant

Tapez une équation ici.

𝑐𝑙 = 𝑎0 𝛼𝑒𝑓𝑓 − 𝛼𝑙=0 : the 

section lift coefficient is 

constant along the span 𝑦

𝐿′ 𝑦 =
1

2
𝜌 𝑉∞

2 𝑐 𝑦 𝑐𝑙 → the chord 𝒄 𝒚 is elliptical!Local lift::

𝛼𝑒𝑓𝑓 = 𝛼 − 𝛼𝑖 constant
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Elliptical wing planform

Γ 𝑦 = Γ0 1 −
2𝑦

𝑏

2

𝑤

British Spitfire: the wing is formed 

from two ellipses of different minor 

axis. This shifts the major axis 

and the AC forward
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Other untwisted wings

Minimum induced drag but 

expensive to manufacture

Lift distribution far from 

optimum

Tapered planform (with 

taper ratio λ ≡
𝑐𝑡

𝑐𝑟
)  can be

designed such that the lift 

distribution approximates

the elliptic case
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Other untwisted wings

𝑦

𝐿′(𝑦)

The rectangular wing 

has the highest loading 

at the tip

The linearly tapered 

wing “unloads” the tip, 

reducing the flexural 

moment there, and 

looses only a fraction of 

the lift compared to the 

elliptic wing. Reduced 

construction costs
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Effect of geometrical wing twist

Spanwise loading of twisted elliptic wings

(wash-in)

(wash-out)
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General circulation distribution

Γ

For an elliptic wing, using 𝑦 =
𝑏

2
cos 𝜃 , the circulation is

Γ = Γ0 sin 𝜃. It is thus natural to express a general circulation 

distribution as a sine series:
Γ = 2 𝑏 𝑉∞ 

𝑛=1

∞

𝐴𝑛 sin 𝑛𝜃

𝜃

Γ = 2 𝑏 𝑉∞ 

𝑛=1

5

𝐴𝑛 sin 𝑛𝜃
Symmetric loading
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General circulation distribution

The monoplane equation (slide 106) becomes:

𝜇 𝛼 − 𝛼𝑙=0 sin 𝜃0 = 

𝑛=1

∞

𝐴𝑛 𝜇𝑛 + sin 𝜃0 sin 𝑛𝜃0

where 𝜇 =
𝑐 𝑎0

4𝑏
(do the steps for yourselves and verify the equation above,                             

u                                                                    using Glauert’s first integral, slide 48) 

This equation must be evaluated at 𝑵 spanwise stations

(i.e. at 𝑁 values of 𝜃0) and solved for the 𝑁 coefficients 

𝐴1, 𝐴2, 𝐴3, … 𝐴𝑁.  For symmetric loading only the odd

coefficients are needed; typically, the first 4 or 5 coefficients 

are sufficient
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General circulation distribution

Once the coefficients 𝐴𝑛 are available:

𝐶𝐿 =
2

𝑉∞𝑆
𝑏/2−
+𝑏/2

Γ 𝑦 𝑑𝑦 = 2 𝐴𝑅σ𝑛=1
∞ 𝐴𝑛 0

𝜋
𝑠𝑖𝑛 𝑛𝜃 sin 𝜃 𝑑𝜃 = 𝐴1𝜋 𝐴𝑅

𝛼𝑖(𝑦0) =
1

4 𝜋 𝑉∞
𝑏/2−
+𝑏/2 ൗ𝑑Γ

𝑑𝑦

𝑦0−𝑦
𝑑𝑦 = ⋯ = σ1

𝑁 𝑛𝐴𝑛
sin(𝑛𝜃0)

sin 𝜃0

𝐶𝐷,𝑖=
2

𝑉∞𝑆
𝑏/2−
+𝑏/2

Γ 𝑦 𝛼𝑖 𝑦 𝑑𝑦 = ⋯ = 𝜋 𝐴𝑅 𝐴1
2 1 + σ2

𝑁 𝑛
𝐴𝑛

𝐴1

2

=
𝐶𝐿
2

𝜋 𝐴𝑅
1 + σ2

𝑁 𝑛
𝐴𝑛

𝐴1

2

=
𝐶𝐿
2

𝜋 𝐴𝑅
1 + 𝛿 (Glauert’s integrals again!)

𝑪𝑳 depends only on the amplitude of the first harmonic!
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General circulation distribution

𝐶𝐷,𝑖 =
𝐶𝐿
2

𝜋 𝐴𝑅
1 + 𝛿 𝛿 is the induced drag factor 

𝑒 = 1 + 𝛿 −1 ≤ 1 span efficiency factor

𝐶𝐷,𝑖 =
𝐶𝐿
2

𝜋 𝑒 𝐴𝑅

For the elliptical lift distribution it is 𝛿 = 0 and 𝑒 = 1, which

corresponds to minimum induced drag  → the elliptical lift 

distribution characterizes the optimal planar wing planform

𝛿 ∈ 0, 0.2
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General circulation distribution: moments

𝑥

𝑧

𝑦

𝑀𝑦𝑎𝑤

𝑀𝑝𝑖𝑡𝑐ℎ

𝑀𝑟𝑜𝑙𝑙

𝑑𝑀𝑟𝑜𝑙𝑙 = 𝑦 𝑑𝐿

𝑑𝑀𝑦𝑎𝑤 = −𝑦 𝑑𝐷
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General circulation distribution: moments

Pitching moment is available from 2D wing profile analysis

(slide 65; careful, coefficients 𝐴𝑖 are not the same!!)

Roll moment: 𝑀𝑟𝑜𝑙𝑙= 𝜌 𝑉∞න
−𝑏/2

𝑏/2

𝑦 Γ(𝑦) 𝑑𝑦 = …

=
𝜌 𝑉∞

2 𝑏3

4


𝑛=1

∞

𝐴𝑛න
0

𝜋

sin 𝑛𝜃 sin(2𝜃) 𝑑𝜃 =
𝜋 𝐴2 𝜌 𝑉∞

2 𝑏3

8

𝐶𝑀 𝑟𝑜𝑙𝑙 =
𝜋

4
𝐴2 𝐴𝑅

𝑪𝑴𝒓𝒐𝒍𝒍 depends only on the amplitude of the second harmonic!
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General circulation distribution: moments

𝑀𝑦𝑎𝑤= −න
−𝑏/2

𝑏/2

𝑦 𝑑𝐷𝑖 = −න
−𝑏/2

𝑏/2

𝑦 𝛼𝑖 𝜌 𝑉∞ Γ 𝑦 𝑑𝑦 = ⋯

= −
𝜌 𝑉∞

2 𝑏3

2


𝑛=1

∞



𝑚=1

∞

𝑛 𝐴𝑛 𝐴𝑚න
0

𝜋

sin 𝑛𝜃 sin 𝑚𝜃 cos(𝜃) 𝑑𝜃 =

𝐶𝑀 𝑦𝑎𝑤 = −
𝜋

4
𝐴𝑅 

𝑛=1

∞

(2𝑛 + 1) 𝐴𝑛 𝐴𝑛+1
𝑪𝑴𝒚𝒂𝒘 depends on the 

amplitude of all harmonics!

Yaw moment (accounting only for induced drag):

= −
𝜋 𝜌 𝑉∞

2 𝑏3

8


𝑛=1

∞

(2𝑛 + 1) 𝐴𝑛 𝐴𝑛+1
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Generic wing

The span efficiency factor 𝑒 for a 

nonplanar wing can be larger than  

one, i.e. the induced drag can be       

less than the ideal value

𝐶𝐷,𝑖 =
𝐶𝐿
2

𝜋 𝑒 𝐴𝑅

Another “efficiency factor”, called the Oswald efficiency factor, 

𝑒0, takes into account the variation with 𝐶𝐿 of the total drag, 

including the viscous profile drag. It is defined in practice by 

curve fitting a known total drag polar

𝐶𝐷 = 𝐶𝐷𝑚𝑖𝑛
+

𝐶𝐿
2

𝜋 𝑒0 𝐴𝑅



Chapter 4: Thin airfoils and finite wingsAerodynamics                                      134

Generic wing

𝐶𝐿
C

𝐶𝐷𝑚𝑖𝑛
≈ 𝐶𝐷0

𝐶𝐷0: zero-lift drag 

coefficient

𝐶𝐷
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Rectangular wing: effect of 𝐴𝑅

Measured drag polar for a rectangular wing with 𝑝 = 5 (left) 

and for rectangular wings of varying aspect ratio (right)

𝑝 = 5

𝐶𝐷,𝑖 𝑝:

𝑝 =
2

𝜋
𝐴𝑅
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Rectangular wing: effect of 𝐴𝑅

Drag polar converted to 𝐴𝑅 = 5
𝜋

2

𝐴𝑅 varies typically from 6 to 22 for 

standard subsonic airplanes and gliders; 

it has a strong influence on 𝐶𝐷,𝑖

Let us consider two finite wings with 

same profile but different aspect ratio:

𝐶𝐷,𝑖

𝐶𝐷 1 = 𝑐𝑑 +
𝐶𝐿
2

𝜋 𝑒 𝐴𝑅1

𝐶𝐷 2 = 𝑐𝑑 +
𝐶𝐿
2

𝜋 𝑒 𝐴𝑅2

𝑝:
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Rectangular wing: effect of 𝐴𝑅

Drag polar converted to 𝐴𝑅 = 5
𝜋

2

Assume that the two wings operate at 

the same 𝐶𝐿; also, since the airfoil

section is the same for both wings, 𝑐𝑑
is the same.  The variation of 𝛿 (and 𝑒) 

between the two wings is small

Hence

i.e. the data of a wing with 𝐴𝑅2 can 

be scaled to the case of wings of 

any other aspect ratio

𝐶𝐷,𝑖

𝐶𝐷 1 = 𝐶𝐷 2 +
𝐶𝐿
2

𝜋 𝑒

1

𝐴𝑅1
−

1

𝐴𝑅2

P:

𝑝:



Chapter 4: Thin airfoils and finite wingsAerodynamics                                      138

Lift slope for a wing of general planform

𝑎 =
𝑎0

1 +
𝑎0
𝜋 𝐴𝑅

(1 + 𝜏)
𝜏 is the induced lift factor

Prandtl’s (1921) rectangular wing data

𝜏 ∈ 0, 0.25

𝑝:
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Lift slope for a wing of general planform

Downwash → effective angle of attack of finite wing     and lift

If a section at 𝑦 = 𝑦0 of a finite wing were to have the same lift 

as the same profile of an infinite wing at angle of attack 𝛼2𝐷, 

its angle of attack would have to be increased by  

𝛼𝑖(𝑦0) =
𝐶𝐿

𝜋𝐴𝑅
1 + σ2

𝑁 𝑛
𝐴𝑛

𝐴1

sin(𝑛𝜃0)

sin 𝜃0
=

𝐶𝐿

𝜋𝐴𝑅
1 + 𝑔(𝑦0) . 

Neglecting the correction factor 𝑔(𝑦0), two wings (with different 

𝐴𝑅’s) have the same lift 𝐶𝐿 of an infinite wing if their angles of 

attack are

𝛼1 ≈ 𝛼2𝐷 +
𝐶𝐿

𝜋 𝐴𝑅1
and 𝛼2 ≈ 𝛼2𝐷 +

𝐶𝐿
𝜋 𝐴𝑅2
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Lift slope for a wing of general planform

Lift data converted to  𝑝 = 5 using 𝛼1 = 𝛼2 +
𝐶𝐿
𝜋

1

𝐴𝑅1
−

1

𝐴𝑅2

𝑝: 𝑝:
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When can Prandt’s LLT be applied?

Prandtl’s classical lifting line theory yields reasonable results 

for straight wings at moderate to high aspect ratio. However, 

it is inappropriate for

- low-aspect-ratio straight wings (𝐴𝑅 < 4, as a rule of thumb)

- swept wings

- delta wings 
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Empirical corrections

Low-aspect-ratio straight wings

H.B. Helmbold (1942)

𝑎 =
𝑎0

1 +
𝑎0
𝜋 𝐴𝑅

2
+

𝑎0
𝜋 𝐴𝑅

𝑎

𝐴𝑅
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Empirical corrections

Swept wings

D. Kuchemann (1978)

𝑎 =
𝑎0 cos Λ

1 +
𝑎0 cos Λ
𝜋 𝐴𝑅

2

+
𝑎0 cos Λ
𝜋 𝐴𝑅
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Numerical methods

For low-aspect-ratio wings, swept wings, and delta wings, 

lifting-surface theory must be used. In modern aerodynamics, 

such lifting-surface theory is implemented by the vortex panel 

or the vortex lattice techniques.

Another approach is aerodynamic strip theory, which treats 

each section of the wing as 2D. It takes information from a 

3D panel code or from LLT, and uses the effective angle of 

attack; thus, in some way, it includes the effect of the three-

dimensionality of the wing.
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Numerical methods: vortex panel
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Numerical methods: vortex lattice
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Vortex lattice method (Thomas, 1976)

𝑥/𝑐

𝑥/𝑐
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Far field calculations

The same analytical results already obtained for lift and 

induced drag can be recovered by applying the integral 

form of the momentum 

equation over a large 

control volume (assuming 

inviscid, steady flow, with 

no body forces)

Tapez une équation ici.

න
𝑆

𝜌 𝑽 (𝑽 ∙ 𝒏) 𝑑𝑆 + න
𝑆

𝑝 𝒏 𝑑𝑆 = 𝑭

𝑉∞
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Far field calculations



Chapter 4: Thin airfoils and finite wingsAerodynamics                                      150

Far field calculations

For the simplest case (elliptic lift distribution), the Trefftz’s

plane approach yields the same lift and drag already found, 

i.e.
𝐿 =

𝜋 𝑏

4
𝜌 𝑉∞ Γ0 𝐷𝑖 =

𝜋

8
𝜌 Γ0

2

However, the 

approach allows 

consideration of 

more complex 

configurations 
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Vortex filaments and lifting line theory

Exercises

1. The rectangular vortex filament in 

the figure has strength G = 200 m2/s.

The rectangle is in the plane A-B-C-D.

Find the magnitude of the velocity in P.

2. Revise all the worked-out examples in the book by Anderson at the end of 

section 5.3.

3. Revise the completely solved problem proposed in the slides which follow.  

Then repeat the exercise using the excel worksheet provided by Dr. Joel 

Guerrero. 
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Solved exercise

(slide 127; 𝜃0 = 𝜙)
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Solved exercise

𝑠 = 𝑏/2

slide 127
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Solved exercise
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Solved exercise
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Solved exercise
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Solved exercise
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Solved exercise

𝐶𝐷,𝑖
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Solved exercise


