Chapter 4. Thin airfoils
and finite wings



Nomenclature for airfoils and wings

Mean camber line

~ambe
)-—~'—-~ Chord ¢ al \ Trailing
edge
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Airfolls

NACA airfoils: developed by the National Advisory Committee
for Aeronautics (NACA) starting from the late 1920s.

Four-digit series:
First digit: maximum camber as % of chord.

Second digit: distance of maximum camber from the airfoll
leading edge In tenths of the chord.

Last two digits: maximum thickness of the airfoil as % of chord.
| NACAO0012

M (careful about the “American convention”
on airfoil thickness)
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Airfolls

NACA airfolls: after the four-digit series,

NACA developed the five-, six-, seven- and
eight-digit series, typically aiming to P
maximize the extent of laminar flow above RAED 105 e

and below the wing. :

(Gottingen 430)

DLR, ONERA, TSAGI ... and many more! s 100
Géttingen 387 1919 C T~

Wright 1908 _— ——

T 1009 o ——

An extensive database (almost 1600 e
entries!) of airfoll designs is available on the . s e
dedicated website of the Aerospace RARS 126

Engineering Department of the University of e w0 ===
lllinois at Urbana-Champaign: p——
https://m-selig.ae.illinois.edu/ads.html
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Wing configuration: monoplane

low wing mid wing shoulder wing

<J

Yy

=

[©F
o1

high wing parasol wing
(by the use of struts or pylon)
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Wing configuration: biplane

I I
YAV, | | MANS
—~ O | | N(©)zanN4
Y
two wing planes of similar unequal span biplane
size (ex. Wright Flyer ) (ex. Curtiss JN-4 Jenny)
O/ | — (O _
oY o
sesquiplane Inverted sesquiplane
(ex. Nieuport 17) (ex. Fiat C.R.1)
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Wing configuration: biplane

On May 5th, 1925, Mario de Bernardi, piloting a FIAT
C.R.1, achieved the world record speed over a 500 km
distance, flying at an average speed of 254 km/h.
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Wing configuration: multiplane

T PR
O | T NOF 1
o i
triplane guadriplane
(ex. Fokker DR.I) (ex. Armstrong Whitworth F.K.10)
——tas
e
multiplane
(ex. Caproni CA.60
Transaereo)
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Wing configuration: closed wing

Merging or joining structurally the two wing planes at or near
the tips stiffens the structure and can reduce induced drag

box wing annular box wing
(ex. Santos-Dumont’s 14-bis) (ex. Bleriot I11)
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Wing planform: aspect ratio AR

mean chord:

aspect ratio: AR = b?

Aerodynamics

C =

b
[257, c) dy

b
2

Ol

planformarea: S=bc¢
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Wing planform: aspect ratio AR

(D) —l[= =1
Al A~ A~

low AR moderate AR high AR
(structurally efficient  (general purpose, (aerodynamically
and high roll rate, ex. Lockheed P-80 efficient, ex.
ex. Lockheed F-104  Shooting Star) Bombardier Dash 8)

Star Fighter)
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Wing planform: chord variation along y

A e S

vX
| Al A~
constant chord tapered wing, compound tapered
or rectangular wing trapezoidal (ex. Westland
(low cost but not (c decreases Lysander army
efficient, ex. with y, ex. cooperation
Piper J-3 Cub) Grumman F4F aircraft)

Wildcat)
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Wing planform: chord variation along y

S = N | B N
A~ > >

constant chord elliptical wing semi-elliptical wing
w/ tapered outer (ex. Supermarine (only LE or TE have
section (ex. Spitfire) elliptical shape, ex.
many Cessna) Seversky P-35)
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Supermarine Spitfire

Probably the most famous
British fighter aircraft of
WWII, it continued in service
for many years after the war.
Designed by R.J. Mitchell,
the aircraft’s elliptical wing
had a thin cross-section to
permit achieving high
speeds.

According to John D. Anderson, Jr., the choice of the elliptic
shape had “nothing to do with aerodynamics” ...
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Wing planform: wing sweep

\/?

N

A~ AN AN

straight swept back forward swept

structurally efficient  high subsonic

low drag at transonic

wing for low speed  and early super- speeds, but aero-

designs, ex. sonic designs, elastic problems, ex.
Lockheed P-80 ex. Hawker Sukhoi Su-47
Shooting Star Hunter

Aerodynamics
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Wing planform: wing sweep

N

l AN

swing-wing crescent cranked arrow
ex. a few military  different sweep on prototypes
aircrafts, such as  outer and inner sections, by General
the General compromise between Dynamics
Dynamics F-111 shock delay and spanwise F16-XL
Aardvark flow control, ex. Handley
Page Victor
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Wing twist

Aerodynamic feature to adjust the lift distribution along wing
span.

same NACA sections : same NACA sections
used throughout “ used throughout

root section éoo \ ': p?vsnks":e \\“/
T 2 - - -
e NS werow | geometric twist

7
s / washin
Ng A root _/

- section

~ root section
NACA

63‘—221

@’ aerodynamic twist

\

\_tip section
NACA 0024
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Dihedral and anhedral

Angling the wings up or down spanwise from root to tip
can help to resolve various design issues, such as
stability and control in flight.

= —O= — _ ‘ j@&‘: ' -
dihedral anhedral

Improved lateral stability, Improved maneuverability

ex. Boeing 737 ex. Boeing B-52 Strato-

fortress
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Minor independent surfaces

Winglet

Moustache

Aerodynamics

Nose strake

Chine

Ventral strake

Winglet: a small vertical fin at the
wingtip, usually turned upwards.
Reduces the size of vortices shed
by the wingtip, and hence also tip
drag.

Strake: a small surface, typically
longer than it is wide and
mounted on the fuselage.

Strakes may be located at various
positions in order to improve
aerodynamic behavior. Leading
edge root extensions (LERX) are
also sometimes referred to as
wing strakes.
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Control surfaces

Winglet

Moustache

Aerodynamics

Nose strake

Chine

Ventral strake

Chine: long, narrow sideways
extension to the fuselage,
blending into the main wing. It
improves low speed (high angle of
attack) handling, provides extra lift
at supersonic speeds for minimal
increase in drag. Ex. Lockheed
SR-71 Blackbird191.

Moustache: small high-aspect-
ratio canard surface having no
movable control surface. Typically
IS retractable for high speed flight.
Deflects air downward onto the
wing root, to delay the stall. Ex.
Dassault Milan192 and Tupolev
Tu-144193.

Chapter 4: Thin airfoils and finite wings




Control surfaces: high lift devices

flap

Slat and slot: a leading edge slat is a small airfoil extending in front of the main
leading edge. The spanwise gap behind it forms a leading-edge slot. Air flowing up
through the slot is deflected backwards by the slat to flow over the wing, allowing
the aircraft to fly at lower air speeds without flow separation or stalling. A slat may
be fixed or retractable.

Flap: a hinged aerodynamic surface, usually on the trailing edge, which is rotated
downwards to generate extra lift and drag.

Cuff: fixed aerodynamic device which introduces a sharp discontinuity at the LE,
typically to improve low-speed characteristics.
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Control surfaces: devices to delay stall

Vortex generator: small protrusion on the upper leading wing surface; usually,
several are spaced along the span of the wing. They increase drag at all speeds.

Vortilon: one or more flat plates attached to the underside of the wing near its
outer leading edge. At low speeds, it creates a vortex which energizes the
boundary layer over the wing.

Leading-edge root extension (LERX): placed forward of the leading edge. The
primary reason for adding a LERX is to improve the airflow at high angles of
attack and low airspeeds, to improve handling and delay stall.
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Control surfaces: drag reduction devices

Root fillet

Antishock body

Equipment pod fairi

Anti-shock body: a streamlined pod shape added to the leading or trailing edge
of an aerodynamic surface, to delay the onset of shock stall and reduce transonic

wave drag. Examples include the Kiichemann carrots on the wing trailing edge of
the Handley Page Victor B.2.

Fillet: a small curved infill at the junction of two surfaces, such as a wing and
fuselage, blending them smoothly together to reduce drag.

Fairings of various kinds, such as blisters, pylons and wingtip pods, whose only
aerodynamic purpose is to produce a smooth outline and reduce drag.
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Axis of control of an airplane

The three axes go through
the center of gravity
(balance point) of the
airplane.

Yaw axis
(vertical axis)

Aillerons control rotation
about the roll axis

Elevators control the pitch
of an airplane, and thus
the angle of attack of the
wing.

Roll axis
(longitudinal axis)

Pitch axis
(lateral axis)

The rudder controls yaw.
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Parts definition

Vertical Stabilizer
Control Yaw

Horizontal Stabilizer
Control Pitch

Rudder
Change Yaw

(Side-to-Side)

. Elevator
Wing Change Pitch
Generate Lif (Up-Down)

Flaps
. Change Lift and Dra
Jet Engine d _ J

Generate Thrust Aileron

Change Roll

{Rotate Body)

Spoiler
Change Lift and Drag

CocKkpit (Rotate Body)
Command and Control Fuselage (Body) Slats

Hold Things Together Change Lift
{Carry Payload - Fuel)
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Allerons
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Elevators
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Rudder
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One spoiler
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Both spoilers
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Flaps/slats
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Flaps/slats
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The vortex fillament

@{ Aerodynamic convention:

positive circulation is
X clockwise

(this is different from what we had

/ﬁ in ch. 3)
X\K/\‘
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The vortex sheet

Vortex sheet in
perspective

Edge view of sheet

Y = v(s) strength of the vortex sheet per unit length
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The vortex sheet

The infinitesimal portion ds of the
vortex sheet induces on point P

4@V In the flow a velocity of magnitude
|dT|

dV| = —
v 27T

P(x, z)

dI' =y ds circulation over infinitesimal segment ds
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The vortex sheet

For a vortex sheet there is a discontinuous change in the
tangential component of velocity across the sheet, while the
normal component is preserved across the sheet.

Iy

e
l______...___ _

S S

[=u;ds—v,dn —u,ds + v, dn
= (U, —uy)ds+ (v; —v,)dn= yds
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The vortex sheet

For dn —» 0 we have

Yy =U; — Uz
u
r____
m dn
l_____....___ _

S S

The local jJump In tangential velocity across the vortex sheet
IS equal to the local sheet strength
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How to use a vortex sheet?

An airfoil surface or the camber line can be replaced by a
vortex sheet of variable strength (L. Prandtl, 1912-1922)

Y(y)

(note the similarity
with the concept of
a boundary layer?!)

Airfoil of
arbitrary shape
and thickness

Vortex sheet on
camber line

Voo Voo
= ) — ﬁ‘é@*@*@@@ "
Thin airfoil \ §

Y(s)
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Kutta (yet again!)

Finite angle Cusp

\"". -
-
/’
—
-
g S b
v o -~/
/ ~ N
-

TR
>
<

At the trailing edge velocity and pressure (!) are unique,
hence:

y(TE) =0
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Thin airfoil theory

A thin airfoil can be modeled as a vortex sheet on the
camber line. Goal: find the distribution of y(s) that

renders the camber line a streamline of the flow and
such that the Kutta condition is satisfied.

Z A

Camber line, z = z(x) y — )/(S)

" ke T

Chord line c

Aerodynamics
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Thin airfoil theory

z
Camber line, z = z(x)
'I.\"'
B - X
V | " | |
Veo 0 Chord line c

(a) Vortex sheet on the camber line

Camber line, z = z(x)

Chord line

(b) Vortex sheet on the chord line
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Thin airfoil theory

Camber line, z = z(x) /

Camber line, z = z(x) y
p //“" tan (— 7;-)
A ; w'(.&') :
/ p ! .

o
v
oﬁv/ Ol wix) I_ = o //

Chord line e /

dx

Iz
Voon + w'(s) =0 Vaon = Voo sin {{x + tan™! (—{ )}

' | dz
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Thin airfoil theory

g "
85 o o ale o - wevy = — [ LEE
s Y T 2r(x = §)
t_ X 4 (— sign because in direction

opposite to that of z-axis)

2w Jo x —&

equation of thin

| [CyE)dE § ( dﬁ) Fundamental
— 0 V4
airfoil theory

y(c) =0

(a in radians!)
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Thin airfoil theory

Once y = y(x) is found, we can easily find the total
circulation, I' = focy(x) dx, and then from the KJ theorem

the lift on the airfoil: L' =p VT

(notice that now clockwise circulation is positive)

Chapter 4: Thin airfoils and finite wings

Aerodynamics



Thin airfoll theory: the symmetric airfoll

If the thin airfoil is symmetric z(x) = 0 and % =0

_ C | | C
Transformation: § = ;(1 —cosf) ., d& = 5 sin6 d

=0 (LE, &=0) )
0=n (TE, & =10)

O ) . .
X = ;(1 — cosfp) X IS a some point on the chord line
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Thin airfoll theory: the symmetric airfoll

The transformation variable
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Thin airfoll theory: the symmetric airfoll

] T y(f)sinb do

2w Jo cosB — cosby

= Vot

From the mathematical theory of integral equations a
solution can be found:

(1 4+ cosf)

sin @

y(0) = 2a VL

(verify the solution by yourselves, using Glauert’s first integral, and verify also
that Kutta condition is satisfied)
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Thin airfoil theory: Glauert’s integrals

T

cos(n@) T sin(nf,)

f do = :
cos O — cos 0, sin 8,

0

T

Jsin(n@) sin q

cos O — cos 0,

0 = —m cos(nf,)
0
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Thin airfoll theory: the symmetric airfoll

(I 4+ cosB)

}”('9::' = 2V .
sin @
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Thin airfoll theory: the symmetric airfoll

1+ cosf c

C T
[ = dé = 2a V., —sin @ dé
fo y(&) dé fo a g 7 sin

circulation)

T .
=acV, J (1+cosf8)df = macV, (clockwise
0

KJtheorem: L' = pVo,T=macpVi - c¢=2ma
(same result found already for the Joukowski airfoil!)

lift slope: ay = % =27

2 mrad 1 =0.10966227 degree 1
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Thin airfoll theory: the symmetric airfoll

dr’
ch:ing edge dl’ = y(§) d¢ -
e M'=f_ dL’
\l'—dé*i uE :
. : - ’
I -7
C
= —pVo | § V@ == —gmaplE e
0
T Cq
— CmLE= T~ = T
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Thin airfoll theory: the symmetric airfoll

|
2.4 |
— ‘1 20 |
Cmc/a = CmLE_l'Z |
1.6
(see slide 20 of ch. 1!) i3
0.8
-
0 0
Cm c/4 = 0 0.4 0.
—0.8 | — —0.2
X = C/4 IS both 1.2 ) © Re=3.0X 10— 0.3
CP and AC for the 118 7%

thin symmetric airfoill
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Thin airfoll theory: the symmetric airfoll

We can now refine a bit the qualitative argument presented
In ch. 3, slide 29.

y(x) =u; —u,
Voo u1 pl
U, Dy dl' = p Ve, y(x) dx = dF,
= (p; —p1) dx

Bernoulli: p, — p, = = p(u? — u2) ~ p Vi, y(x)

T2
|4 4
> zI/OO‘I'_, zVOO__
Uuq > U, >

,c ,c
U = Vo + aVy, ;—1, Uy = Vo — a Vi, ;—1
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Thin airfoll theory: the symmetric airfoll

U = Vp|l+a |[-—1] #0 Vx fora =0

C X a?
Uy = Voo |1 — /;—1 =0 when ==——

When « is sufficiently small, the stagnation point on the
pressure side of the airfoll has coordinate: xs 44y, = a’c

Z

Voo

X
stagn X
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Thin airfoll theory: the cambered airfoll

Let us go back to the fundamental equation of thin airfoll
theory (slide 43) which, in Glauert’s coordinates, read:

1 [™ y(0)sinO do ( dz)
—_— — VOO
2w Jo €cOSH — cosby

together with Kutta condition: y(wr) = 0

To express the solution we must rely on a Fourier cosine

dz

series expansion of the even function Tx
X
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Fourier cosine series expansion

The Fourier cosine series expansion of a generic even
function f(x) is:

1 (0.0)
f(x) = 5 o + z a,, cos(nx)
n=1
with the coefficients given by

1" 2 (™
a0=gf_ f(x)dx=;f0f(x)dx

a, = %fjrf(x) cos(nx) dx = %fonf(x) cos(nx) dx
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dz

Fourier cosine series expansion of -

The function z = z(6,) is odd (practical camber lines go

to zero at LE and TE), so %%/,, is an even function. The

dz

Fourier cosine series expansion of Ix IS written as:
X

%—(cx Ag) + ZA cos(nf,)

ndz

with the coefficients given by (& —4y) == ["—

do,

and A, = —an cos(nb,) do,
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Thin airfoll theory: the cambered airfoll

Inserting a — % = Ay — Xo=14, cos(nf,) into the
fundamental equation we have:

1 T y(0)sind db -
= g = ) Ay cos(nd
21V, Jy cos@ —cosf, 0 LT cos(nbo)

The result of this equation, satisfying Kutta condition, is:

| | + cosé
y(0) =2V, (Aﬂ oy Z A, HII]HH)

n=I
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Thin airfoll theory: the cambered airfoll

Assignement:
Verify that the given expression of y(0) satisfies the
fundamental equation, using Glauert’s second integral
(slide 48). Verify also that Kutta condition is satisfied.

. . .. . fdz
Note: for the limit case of symmetric airfoil (E = O) we

have Ay,=a and A, =0, for n=1,2,3 ...In this case

the solution in slide 58 coincides with that of slide 47.
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Thin airfoll theory: the cambered airfoll

\_/ \/

>
0 C x, &

Generic form of the vortex sheet strength distribution, and
schematic description of the first four terms in the series
describing the circulation.
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Thin airfoll theory: the cambered airfoll

Note: from slide 58 it Is clear that at the LE, for 8 —» 0, itis

sinf — 0 and the strength of the vortex sheet is locally

singular (gin}) ly| = o). The only way for this not to happen is

that A, = 0. When this occurs the angle of attack is called
ideal (because the local load at the LE vanishes). Thus

1 ("dz

Qigeas = — | —— db
ideal T . dx 0

In this case the ideal lift coefficientis ¢; = m A; (check slide

63). This is also called the design lift coefficient.
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Thin airfoll theory: the cambered airfoll

Total circulation due to the vortex sheet:

C . i 8
r:[ y (§) dE :‘—[ v (6) sin 0 d6
Jo 2 Jo

I T o T
[ =cVa .4[;./ (1 + cos @) .fm+z.4”[ sinnf sin @ do
J) J0

n=I _

[' (1 +cos@)db = m
0

/-*r o w2 forn=]
S S ' — )
0 i o U for n _T'd |

with -

—
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Thin airfoil theory: the cambered airfoll

T
[' = Ii']'r”rx (H’;’-‘l(} -+ ?’:h)

K3 L'=pVeT =pVZc(mAo+34,)

C; = = 27 AO + —

1, 2
? VOOC
T

1 (dz
= 2T a+gJa(cosHO—1)dﬁo = 21 (a — a;=9)

0
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Thin airfoll theory: the cambered airfoll

Lift slope: ay = % = 27

The lift slope is the same as for a symmetric airfoil!

. . I symmetric
The zero lift angle is: cambetied/ /" airfl
T
L (22 056, — 1) do /
Q=g = — — | =—(cos By — :
=0 m) dx 0 0 z
0

For symmetric airfoil a;—og=0
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Thin airfoll theory: the cambered airfoll

dL’
Leading edge dl’ = y(§) d¢ -
%} \i_ij M]:E :f—f dLI
NP, . :
C
1 2 .2 Az
=P Ve | § YR AE == mgmple P Ag T A~
0

T A, c;, T
" CmLEZ_E A0+A1_7 =—Z+Z(A2_A1)
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Thin airfoll theory: the cambered airfoll

The moment coefficient for a cambered airfoil depends on
only three Fourier series coefficients (function of angle of
attack and camber).

C
Using the relation in slide 52 (cm c/a = CmLE T Zl)
we have:

T
Cmc/a4 = Z (A; — Aq)

Thus, the moment coefficient about quarter chord is
iIndependent of the angle of attack, which means that
x = c/4 Is the aerodynamic center.
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Thin airfoll theory

For thin symmetric arfoil x = c/4 is both AC and CP.

For thin cambered airfoil x = c¢/4 is AC (but not CP since
cm ¢/ # 0 because of the airfoil camber) To find the center

of pressure consider that the total

f—’.lu
moment about the CP vanishes, I.e.

M¢)4
"

G &

AC CP
Ax

) — xCP:§+ Ax

M{p =L Ax+ M}, =0

= = cl

Ax Cmc/a _ T[A1—4A;
C Ci 4

(notice that x.p changes with lift!)
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Thin airfoll theory: comparison w/ exp

J. — 2
3.2 / 0\ 0%
= <0 r ] 6 8 0
ke
2 224
20 .020)
[
-
1.6 £,
§o :
¢ g \ 7
T2 E
g o7 5
& ] 4
§ o § ™
008
X S
[
o g 0Q ¥V
|
=/ ~/
3
o
.z/c

Abbott &
van Doenhoff

5l
-8 /6 24 Jé =5 -l2 -8 -4 g 4 R
Section ongle oﬁ attack, o, doq ° Section lft coefficient, ¢,

NACA 0008 Wing Secti
1a& Rection NACA 0006 Wing Section (Continued)

=22 -24 ~I§

-3
~
h
5
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Thin airfoll theory: comparison w/ exp

8] ¥y 034
|
.'-"'-h
] —
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Thin (or thick?) airfoll: the AC

Thin airfoll theory should, in principle, not be applied if the
thickness of the airfoil is large. For a thick L L

airfoil the AC is not at ¢/4 (but close ...)

!/ !/ C !/
Mic = M{j+ (xac—5)L
1 M‘r;ﬂ ( l / A.C

. XAC —
CmAC—Cmc/4+ c _Z €

dc dc X 1\dc X 1
m AC 0 = mc/4+(AC )_l_mo_l_(AC )
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Thin (or thick?) airfoll: the AC

0.26
XAC
0.24 - .
C = """'-..._‘_“
‘\‘\H‘
~
o
0.22
0 4 8 12 16 20 24
Airfoil thickness, percent of chord
(a) NACA 230XX Airfoil
0.28
/_,.--'.
XAC /__,..l—-"'
c 0.26 ./JF
0.24
0 4 8 12 16 20 24

Airfoil thickness, percent of chord
(b) NACA 64-2XX Airfoil
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Thin airfoll theory: the effect of flaps

ZA camber-line shape

J > > ,
X A

ZA flap deflection

U 1 n > — \?? —> X
——— N X &/
ZT incidence change
i
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Thin airfoll theory: the effect of flaps

Flaps are the main mechanism to generate control forces
on airplanes (cf. slides 68 and 69) since they change the
effective camber of the airfoil/wing.

Deploying flaps has a minor effect on lift slope a,, but:

* a;—p IS substantially decreased (+)

* max lift coefficient is increased (+)

 the angle of stall is reduced (=) (but this reduction
IS not large enough to detract from the advantages of
shifting the lift curve to the left)
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Thin airfoll theory: the effect of flaps

(for n # 0 drag increases ...)
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Other HLD: the leading edge slat

leading edge
slat activated

a=30%—)

Aerodynamics

30

\\\A \

_/’/_\\ = 7,7_\
" T
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Other HLD

VY- N

Cruise configuration

Airfoil with LE slat and TE multi-element flap
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Other HLD
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Thin airfoll theory

Exercises

1. Consider a thin airfoil, with mean camber line in the form of a circular arc,
2
with mean camber given by z = 4f E — (%) ],Where f is the maximum

camber. Find a;—¢, ¢, ¢m ac) Cm LE» XcP» Qigeqr, @Nd the design lift coefficient.

2. For the thin airfoil of mean camber line given by z = f sin?8, (8, defined as
In slide 45), with f the maximum camber, answer the same question of the
previous exercise.

ZA

3. Consider the airfoil with flap
shown in the figure, with the
chord Cc equal to the segment A

rL,I
B C .
‘—H”"“--..Qf_’f n » A
AC and h, F < 1. Answer the % “nn“& g Lhe
C’ o

same question of ex. 1.
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The numerical vortex panel method

The panel method, based on a distribution of potential
sources (or doublets or vortices, and sometimes a
combination of different singularities), is a common
numerical technique to treat the flow over non-lifting or lifting
bodies.

XFOIL (https://web.mit.edu/drela/Public/web/xfoil/) — and
similar codes — are based on the vortex panel method. This
differs from the lumped vortex element method. Panels, i.e.
straight-line segments, have a surface distribution y(s) of
vorticity. The strength of the

vortex sheet on each panel of e
the airfoil must be determined.
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The numerical vortex panel method

Simple implementation: each of the N straight panels carries
a vortex distribution of linearly varying strength between the
end points of each panel. End point values are the unknowns
of the problem: y; (j =1,2,..N+ 1), and are found by

Imposing that the body surface is a streamline of the flow, plus
Kutta condition: y; = —¥n41.
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The numerical vortex panel method

Vi+1

Control point Boundary points

Example of linear distribution of y over neighboring
panels. The strength of the vortex sheet at the end
point of panel j — 1 is equal to the strength at the
first point of panel j.
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The numerical vortex panel method

A condition of no through-flow (V,,; = 0) must be applied at

the center of the it" panel, on the control point. This yields N

equations for N + 1 unknowns. The extra equation needed
IS Kutta condition.

Vit
) Z T Vn.=0 1

/ VtN
Vtq +Vt, =0

Panell Panel 2

/ Panel 1
——ii-— H Pnt1 X
_‘__=a =
: —e— 3 N+1
4

N-1 N
Panel N

Aerodynamics
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The numerical vortex panel method

dV (induced by panel N-2 on control point of panel i)

—— 2
e Pnt1 X
_‘__==-0—:—
—8— N+1
N-1 N
Voo panel N-2
40'
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The numerical vortex panel method

For the generic panel i the equation to be enforced Is:
N+1

Vn,i = ZA,:J' )/]-I_Bl Voo =0
j=1

where A; ; represents the influence of the vorticity of panel j

on the control point of panel i, and B; represents the
influence of the free-stream on panel i. Both 4; ; and B; are

function of the geometry of the section, because of
orientation and spacing of the panels.
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The numerical vortex panel method

The system of linear equations eventually reads:

Al,l Al’z e LR ann Al}N A1,N+1 )/1 B1

Ay Ay V2 B>
= -V,

AN,l AN,Z AN,N AN,N+] )/N BN

1 0 0 = 0 O 1 VN+1 0
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The numerical vortex panel method

Once the distribution strengths y; have been calculated, we
can have surface tangential velocities at the center of each

. V2
panel (V;), and surface pressure coefficients, ¢, ; = ( — —l)

A chord (c)

Ve

Cpi

WL

Panel 2

p—

Panel 1

e H Pnt1 X

S

N-1 .

N Panel N N+1

Aerodynamics
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The numerical vortex panel method

The lift coefficient can be calculated, e.g. assuming a small
angle of attack « (so that cos « Is close to one), as the
Integration of surface pressure coefficient acting in the z-

direction, I.e.
N
c _ZC i T Xi
[ D,l c

=1

Pitching moment coefficient will similarly be the sum of the

panel moments about the 1/4 chord point.
N

_ Xi — Xi+1
Cm c/4 — Cp,i

=1
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The numerical vortex panel method

NACA 0012 airfoil

! c a=9°
9°
- O Upper surface 1 2 order

panel
method

O Lower surface J
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The Inverse problem

For design purposes it is desirable to specify the surface
pressure (or velocity) distribution, for example to achieve
enhanced airfoil performances such as:

« preserve a laminar boundary layer over a considerable chordwise
extent

« delay boundary-layer separation and hence reduce the form drag of
the airfoll

« arelatively low suction peak on the upper surface of the airfoil would
result in a higher critical Mach number for the airfoil, meaning that it
could operate efficiently at a higher subsonic cruise speed than an
airfoil with a conventional pressure distribution

and calculate the shape of the airfoil that will produce the
specified pressure (or velocity) distribution.
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The inverse problem

-2.5 T 1 T ] L ] 0.10 L L
=2.0 — - T
-1.5 — 0.05
—-1.0 —]

cp ~0.5 4 z/co00

:]...5 I I I 1 I | _0.10
00 0.2 04 06 08 1.0 0.0 0.2 04 06 08 1.0
x/c x/c

Adjoint optimization of an airfoil to match a specified
pressure distribution (free-stream Mach number of 0.4,
angle of attack of 2 deg., Reynolds number of 5 x 10°)

Aerodynamics Chapter 4: Thin airfoils and finite wings




The Inverse problem

Further shape optimization objectives are:

« optimize lift coefficient

e minimize skin friction or form drag (or other types of drag)
 maximize the lift-to-drag ratio (aerodynamic efficiency)
 limit system vibrations (aeroelasticity problem)

* reduce aerodynamic noise

 stabilize (or mitigate) a shock

Several optimization strategies are covered in the course by
Prof. J. Pralits
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3D wings
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Lift for 3D wings

Lift on wing-body About the same as the lift on the
combination wing of planform area S, which
includes that part of the wing
masked by the fuselage

\\//
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Wing-tip vortices

o

R
o
Upward speed

Vauy
*
by

Aerodynamics

Rear view

Downward speed

Yy
Ty D s S P vt
Tryeyrrt? Trrsyerr?

Upward speed

auaE
n..

Streamline over
the top surface

Voo

|
o . :
p=— Streamline over the bottom surface

Top view

(planform) Wing area=S§

Wing tip

o —]

Wing root

Wing span b

e Low pressure
Front

view

High pressure
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Downwash and induced drag, D;

, a — Geometric angle of attack
L a; — Induced angle of attack
a.r — Effective angle of attack
a; Reff =@ — @;

Effect of downwash on a local airfoil section of a 3D wing
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Vortex line and Biot-Savart law
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Vortex line and Biot-Savart law

I' (t®coso
If 1 > —o0 and 2 - +o0 then V=E

r +°°cos30dl_ r +m/2
h? dmh J_ /),

——dl

cosodo =

21h

This result agree with the
case of the 2D potential vortex!

l=htano - dl=nh do

cos?o

Aerodynamics Chapter 4: Thin airfoils and finite wings




Vortex line and Biot-Savart law

If 1 and 2 are two values characterized by the two
angles o; and o,, the velocity in P has magnitude

I [92
V= yp— i cosogdo = o (sing, — sinagy)
If the end point 1 (or eventually 0 )
both end points) of the segment
1-2 lies to the left of the point of a

Interest P, then o, Is a negative
angle. If the filament is semi-

Infinite, then = I
~ 4qh (half the value found for an infinite vortex filament!)

P
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The horseshoe vortex

Starting vortex

‘“‘Bound vortex’’
I'(y)

Free ‘‘vortex wake’’

Simple horseshoe vortex model representation of a wing
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The horseshoe vortex

Downwash distribution along y 2 &
for a single horseshoe vortex '
(unphysical ...)

(v) = I I B [ b
W) == T 4w (b)2)? — 2

dm(b/2+y) dm(b/2—y)
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Prandtl’s lifting line theory

Superposition of many horseshoe vortices, each with a
different length of the bound vortex, but with all bound
vortices lying on the lifting line
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Prandtl’s lifting line theory

Infinite horseshoe vortices superimposed along the lifting line

lifting
line

continuous vortex sheet
behind the lifting line

Goal of the analysis: find I' =T (y)
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Prandtl’s lifting line theory

On y, the vertical velocity
dw induced by the
Infinitesimal segment dx of
a vortex filament positioned
In a generic y Is:

—dy
dw = ( al ) — dy ) (notice that Z—; < 0 at y, In figure)
dn(y —yo) 4m(y — Yo
b/2
. W) = f (dl'/dy) dy
’ 4 (y — ¥o)
—b/2
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Prandtl’s lifting line theory

From slide 95 the induced angle of attack at the generic
section y, IS

a;(yy) = tan™? _M‘}/iy()) ~ _WI(/ZO)
v aryd )
_ y
al(yO) 4 T Voo _bf/ (YO y)

Velocity components at the lifting line
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Prandtl’s lifting line theory

: : . if thin profile
Section lift coefficient: /

c1(Vo) = ag (aerr(Vo) — a1=¢) = 21 (@ — a;(y) — a;=0)

geometric twist: a = a(y,)

aerodynamic twist: a;—q = a;=¢ (Vo)
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Fundamental equation of Prandtl’s LLT

1
L'(yo) = 5P Vs c(¥o) c1(¥o) = p Vo T'(y0)

2T(yo)
c1(yo) = = agla(yo) — ai(¥o) — a1=0(¥o)!
Voo C(yO)
2 '(vo) 1 r/ay
Yo f y
04 - + a;— +
(o) 2 Vs G 1=0(Yo) AV a Vo — y)
b . .
F(ju = ::E) =0 This is the monoplane equation
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Prandtl’s lifting line theory

The fundamental equation of Prandtl’s lifting line theory
simply states that the geometric angle of attack is the sum
of the effective angle plus the induced angle of attack. It is
an integro-differential equation for I' = I'(y,), with y, ranging
along the span from —b/2 to +b/2. Not easy to solve ...

Consequences:
, b/2
L I'Go) =pVT(o) = L=pVe)_,T(o)dyo
b
2. Di=Lsinagg=La; - Di=ply f_zg ['(yo) @i (¥o) dyo
2

3. C, and Cp; readily available
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Drag

The total drag of a subsonic finite wing includes the induced
drag, the skin friction drag and the pressure drag

D = Di+\Dfriction + Dpressure} - (p

|
also called profile drag, and
related to viscous effects

At moderate angle of attack, the profile drag coefficient for a
finite wing Is essentially the same as for its airfoil sections.

Dfriction +Dpressure

The profile drag coefficient: c; = ap—— for a finite
5P Voo

wing Is available from airfoil data. Thus, the total drag

coefficient takes the form: Cp=cq +Cp;
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Elliptical lift distribution

Let us consider an elliptic circulation/lift distribution along y

) = 2y2
) =T 1‘(7)

A r l_'(]

I |
—2 + > =1
2 (b/2) / \
L yib2)

Aerodynamics Chapter 4: Thin airfoils and finite wings




Elliptical lift distribution

Let us consider an elliptic circulation/lift distribution along y

) = 2y2
) =T 1—(7)

\
dT 4T y ar
- — : : Yy = — — 0
dy b? (1 —4y?/b?)1/? dy y—tl
vortex sheet of infinite strength at the tips
. To [P y |
w(yg) = — dy  (slide 103)

wb? ) _ppn (1 —4v2/b2)12(yvg — y)
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Elliptical lift distribution

Change of variables:

b b
y=§c059 - dy=—§sm9 do

with the variable 8 going from m to O.

__________
-
-
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Elliptical lift distribution

Change of variables:

b b
y=§c059 - dy=—§sm9 do

with the variable 6 going from mto 0. Then [T'(8) =T}, sin @

and
(60) [y [D cos @ 10
1w == — (
’ 2mhb J, cosBy —cosfH
(60) — [y [” cos 6 0 — [y
W)= 2t h Jo 1;:059—12059{.{ 2

(from Glauert’s first integral with n = 1, slide 48)
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Elliptical lift distribution

Constant downwash: w(y) = — =

Induced angle of attack:  @; = ——

For an elliptical lift distribution both the downwash and the
Induced angle of attack are constant along the span y
(and both tend to zero as the span becomes infinite)

b2 42 1/2
L= pVuls - 22 ) ay
J—b/2 b=

b T 9 b
= p Vo Io— [ sin“edt = pV, Iy —m
2 Jo 4

Aerodynamics Chapter 4: Thin airfoils and finite wings




Elliptical lift distribution

L 2
4L 4(7PV005CL) 2 VoS Cy

F p— pu—
0 pVobm pVobm bm

_SC0 _ G with AR =1b?/S
mb? mwAR

04}

Since q; Is constant, we have (cf. slide 107):

D; Ct
Di=Lay=pVoa;lg-m - Cp; = =
2 P Ve

“Lift-induced drag” coefficient!
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Elliptical lift distribution

C2 At zero lift Cp ; Is zero (and same

— T AR for C(i)

As AR increases (to infinity for
Cp i A two-dimensional flow) Cp, ;
decreases (to zero); same for a;

At low speed (take-off or landing)
L is large and D; makes up a large
part of the total drag (of the order
of 60%). Even at relatively high
»  Cruising speeds, induced drag is
¢t typically 25% of the total drag
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Elliptical lift distribution

—Theoretical induced drag C 2
o Re, = 2.7 X 108, data of Schlichting L

and Truckenbrodt (1969) CD —_ Cd _I_CD’l o Cd _I_

0.4 — -
NACA 2412 section
0.0 — . . .
| Drag polar for an elliptic untwisted
! | wing of aspect ratio AR =5
b0 oo 016 o2
Cp
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Lift slope for elliptical lift distribution

2 Ex. Untwisted wing, elliptical lift
distribution

a; constant along y

/,l/ — Qerr = @ — a;  constant along y

Also, a; = 0 when C; = 0, which
means that at zero-lift a.¢ = a, and
thus a;—o = a;-¢ (wing & airfoil)

/ Observations show that a < a,, i.e.
the finite wing has a reduced lift

slope compared to an airfoll.

By how much?

Aerodynamics Chapter 4: Thin airfoils and finite wings




Lift slope for elliptical lift distribution

G dCL _
/ dl—ay ™

7 C; = ap(a — a;) + constant
/T Oy = O — @& CL
C, = — —— | + constant

: . = Qg (cx nAR) constan

I

P Ao

i : Cr (1 + nAR) = agpa + constant
| / dcC; a, 21

[ qQ = — = —

l/ da ag 2
(1+747) [ (1 + m)

for thin profile
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Elliptical lift distribution: effect of AR on C;

Th i 21T 21 AR C
IN Profiies. = = —
p ¢ (1 + l) 2+ AR (a — aszo)
AR
a _ CL 10 I —_—
2 2m(a — Ap=o) :
0 5 10 :R 20 25 30
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Elliptical lift distribution: effect of AR on Cp ;

AR B Cp
2+ AR B 2T (a — aL=O)
. 2
| CL AR 2
o Coi = AR~ (27 AR)E 1@~ @i=o)

Prize exacted by
the work needed
to create the wake
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Elliptical wing planform

Untwisted wing:

z|  elliptical I=I'(y) no aero twist: a;—, constant
, N0 geom twist: a constant

elliptical planform l

C; = ao(aeff - alzo): the
section lift coefficient Is
constant along the span y

Qerr = a — ; constant

Local lift: L'(y) =-p V2 c(¥) ¢, » the chord ¢(y) is ellipticall
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Elliptical wing planform

Y Y Y Y ;I ¥ Y!Y Y Y Y Y Y

\

T
Downwash velocity w = _2_b0 (a constant)

Aerodynamics

British Spitfire: the wing is formed
from two ellipses of different minor
axis. This shifts the major axis
and the AC forward
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Other untwisted wings

Minimum induced drag but
expensive to manufacture

Elliptic wing

Lift distribution far from
optimum

Rectangular wing

Tapered planform (with
taper ratio A = %) can be

==

designed such that the lift
distribution approximates
the elliptic case

lapered wing
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Other untwisted wings

The rectangular wing
+ L (9) has thg highest loading
Tapered at the tlp

Elliptical

b
- .
-

The linearly tapered
wing “unloads” the tip,
reducing the flexural
moment there, and

~ looses only a fraction of
Root Tip Y the lift compared to the
elliptic wing. Reduced
construction costs

Rectangular
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Effect of geometrical wing twist

a larger at ip (wash-in)

e

A a larger at
' \ wing root (wash-out)

ontwisted elliptic
loading

=Y

Spanwise loading of twisted elliptic wings
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General circulation distribution

F=2bVwZAnsin(n9) A sino Symmetl‘iC |Oading

For an elliptic wing, using y = 2cos 0, the circulation is
I' =T,sinf. Itis thus natural to express a general circulation

distribution as a sine series:
'=2bV, Z A, sin(nf)
n=1
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General circulation distribution

The monoplane equation (slide 106) becomes:

u(a — a;—p) sin 0y = z A, (un + sin 8,) sin(né,)

n=1

ca
where u = 4—bo (do the steps for yourselves and verify the equation above,
using Glauert’s first integral, slide 48)

This equation must be evaluated at N spanwise stations
(l.e. at N values of 6,) and solved for the N coefficients
A1, A,, A, ... Ay. For symmetric loading only the odd

coefficients are needed,; typically, the first 4 or 5 coefficients
are sufficient
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General circulation distribution

Once the coefficients A,, are available:

A +b/2

= Vs d-b)2 ['(y)dy =2ARY>X_, A, fon sin(nf) sin@ dO = A, AR

C; depends only on the amplitude of the first harmonic!

_ 2 w2(May) g sin(n6,)
%00) = 4T Voo f—b/z Yo~ dy = == 21 ndn =g B0
2 +b /2 5 . A 2
CD,i:@ b2 Fry) a;(y)dy = - = m AR A? [1+ Y n A_l)
C? A 2 C2
- n,iR 1+ le\ln (A_Z) = an [1 + 5] (Glauert’s integrals again!)
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General circulation distribution

CZ

— L . .
Cp —r 11+ 6] d is the induced drag factor
6 €0,0.2]
e=(1+6)"1<1 span efficiency factor
Ct
Cpi = me AR

For the elliptical lift distribution itis 6 = 0 and e = 1, which
corresponds to minimum induced drag — the elliptical lift
distribution characterizes the optimal planar wing planform
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General circulation distribution: moments

dM =Yy dL

dM,q,, = —y dD
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General circulation distribution: moments

Pitching moment is available from 2D wing profile analysis
(slide 65; careful, coefficients A; are not the same!!)

b/2
Roll moment: M, .= p Vooj yI'(y)dy = ..
~b/2
V2 b3 ™ Ay p V2 b3
_P Z Anf sin(n@) sin(20) db = 2P
4 £ 0 8

Ctroll = %AZ AR

Cy o depends only on the amplitude of the second harmonic!
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General circulation distribution: moments

Yaw moment (accounting only for induced drag):

b/2 b/2
Myawz_f yle:_j y[aipVoo F()’)dY]:
b/2 b/2
V2 b3
__°F z z nA, A, J sin(n@) sin (m#) cos(8) do =
n= 1m
mp V2 b3

= Z(Zn + 1) A, Apyq

— —%AR z(zn 4+ 1) An An+1 CMya_W depends on the

C
M yaw amplitude of all harmonics!

n=1
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Generic wing

The span efficiency factor e for a
_ nonplanar wing can be larger than
me AR one, i.e. the induced drag can be

less than the ideal value

Another “efficiency factor”, called the Oswald efficiency factor,
eo, takes into account the variation with C; of the total drag,

Including the viscous profile drag. It is defined in practice by
curve fitting a known total drag polar

CD — CDmin +

T ey AR

Aerodynamics
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Generic wing

I — CDO 1t kclz; —_—ele ACD;u-a-
C Do =~ C D ¢ Friction *Non- e Elliptic |® Wave
min 0 ¢ Pressure elliptic load ¢ Shock
. ¢ Interference load vortex separ-
CD . ZeI‘O-llft d I’ag ~ ¢ Roughness vo_rte.x ation
0 e Friction
coefficient
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Rectangular wing: effect of AR

Data from Prandtl (1921)

Cpi p: 1 2 3 4 5 6 7
7 T !
¥ "5, 12
p =5 29
10 f/ 0
()
C .8 /ga- 0.8
L
6 £
Cr
Y !0‘1 oal- B4
.3 E’ﬁ -L::.
‘ ; 00 '-"-.
Yl 7]]c, 2 '
2 N
_F‘gd
-0.4

0.00 0.08 0.16 0.24
Cp

Measured drag polar for a rectangular wing with p = 5 (left)
and for rectangular wings of varying aspect ratio (right)
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Rectangular wing: effect of AR

AR varies typically from 6 to 22 for
standard subsonic airplanes and gliders; '
it has a strong influence on Cp ;

0.8

Let us consider two finite wings with

same profile but different aspect ratio: L De.ffv ]
C?
CDl = Cq4 +7‘[€AR1 bt i
Ct B
Cpz2=cat me AR, T e "

T

Drag polar converted to AR = 5 (2)
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Rectangular wing: effect of AR

Assume that the two wings operate at
the same (;; also, since the airfoll
section is the same for both wings, c,4 | '
IS the same. The variation of § (and e)
between the two wings is small

1.2

0.8

Hence o

Cp,i=C +CL2 - -
PL==bz " re\AR, AR,

o
04 g

00 F "o

i.e. the data of a wing with AR, can 91|
be scaled to the case of wings of ’
any other aspect ratio Drag polar converted to AR = 5 (g)
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Lift slope for a wing of general planform

T ) 7 IS the induced lift factor
T € ]0,0.25]

Prandtl’'s (1921) rectangular wing data
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Lift slope for a wing of general planform

Downwash — effective angle of attack of finite wing\ and lift \

If a section at y = y, of a finite wing were to have the same lift
as the same profile of an infinite wing at angle of attack a,p,

its angle of attack would have to be increased by

A, sin(nb C
@;(y0) = —L 1+ X n 22 IR0 = L 4 g(y,)].

A{ sin 6,

Neglecting the correction factor g(y,), two wings (with different
AR’s) have the same lift C; of an infinite wing if their angles of

attack are
C q N Cr
an ~
7 AR, “2 % @b T AR

aq zC(2D‘|'
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Lift slope for a wing of general planform

Data from Prandtl (1921) Data from Prandtl (1921)

p: vl ©2 a3 e4 o5 o6 v7 P: ol ©2 a3 e4 o5 o6 w7
T T i T I I I T I f I I I I
12 |- — 12 1
DV
of
v
A
[}
N _ o4
0.8 0.8 |- o¥C N
=]
o
o
Cr C @
AY
04 - 1 04 |~ Agom -
70
27
Yo
P
Za
00 - . B % B
0.0 5
o ¥
>
A
.
04 | | | 1 1 ] | —04 | | | | | | |
-1z -8 —4 0 4 8 12 16 20 -12 -8 —4 0 4 8 12 16 20
deg , deg

| | Cof 1 1
Lift data converted to p =5 using @ = @z +— (AR1 - AR2>
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When can Prandt’s LLT be applied?

Prandtl’s classical lifting line theory yields reasonable results
for straight wings at moderate to high aspect ratio. However,
It Is inappropriate for

- low-aspect-ratio straight wings (AR < 4, as a rule of thumb)

- swept wings

- delta wings
Low 1| ct ratio Swept wing Delta wing

straight wing
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Empirical corrections

Low-aspect-ratio straight wings

Ao
\/1 t (ncfé(l)R)z T ncfé(l)R

H.B. Helmbold (1942)

a =

Aerodynamics

©Experiment

Prandtl & Betz (1920)
and others
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Empirical corrections

Swept wings

g Cos A

T AR T AR

2
1+ (ao cosA) 4+ %o cos A
\

D. Kuchemann (1978) N
dY\ﬂC;,f_i\}l_::::; T

!
e
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Numerical methods

For low-aspect-ratio wings, swept wings, and delta wings,
lifting-surface theory must be used. In modern aerodynamics,
such lifting-surface theory is implemented by the vortex panel
or the vortex lattice techniques.

Another approach is aerodynamic strip theory, which treats
each section of the wing as 2D. It takes information from a
3D panel code or from LLT, and uses the effective angle of
attack; thus, in some way, it includes the effect of the three-

dimensionality of the wing.
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Numerical methods: vortex panel
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Numerical methods: vortex lattice
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Vortex lattice method (Thomas, 1976)

Representative paneling for three-dimensional wing vortex lattice

Theoretical

value Data

O Upper surface
[] Lowersurface

Aerodynamics

Theoretical
value Data

O Upper surface
SR © (SR [] Lower surface

4
I3 | | | | | l ]
x/c
O  Experiment
Present method M=0.5 Yl
.0080 —
Cp,
0040 —
0 | | | I | | |
0 .04 .08 12 .16 20 24 28 32

(o
Induced drag for Lockheed ATT-95 aircraft
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Far field calculations

The same analytical results already obtained for lift and
iInduced drag can be recovered by applylng the integral
form of the momentum
equation over a large y
control volume (assuming ~
Inviscid, steady flow, with
no body forces)

f pV V- -n)dS +f pndS =F
S S
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Far field calculations

Trefftz -
Plane -
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Far field calculations

For the simplest case (elliptic lift distribution), the Trefftz’s
plane approach yields the same lift and drag already found,

le. T b -
L:TpVOOFO D;=— pTI?

However, the \l/
approach allows B ——— el
consideration of o e )
more complex [ R
configurations e

Lifting Surface Model =
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Vortex filaments and lifting line theory

Exercises

1. The rectangular vortex filament in
the figure has strength T = 200 m?/s.
The rectangle is in the plane A-B-C-D.
Find the magnitude of the velocity in P.

2. Revise all the worked-out examples in the book by Anderson at the end of
section 5.3.

3. Revise the completely solved problem proposed in the slides which follow.
Then repeat the exercise using the excel worksheet provided by Dr. Joel

Guerrero.

Chapter 4: Thin airfoils and finite wings

Aerodynamics




Solved exercise

Use the mooplane equation to compute the
aerodynamic coefficients for a wing

The monoplane equation (slide 127; 68, = ¢) will be used to compute the
aerodynamic coefficients of a wing for which aerodynamic data are avail-
able. The geometry of the wing to be studied is illustrated in Fig. 7.13. The
wing, which is unswept at the quarter chord, is composed of NACA 65-210
airfoil sections. Referring to the data of Abbott and von Doenhoff (1949), the
zero-lift angle of attack (eag) is approximately —1.2° across the span. Since
the wing is untwisted, the geometric angle of attack is the same at all spanwise
positions. The aspect ratio (AR) is 9.00. The taper ratio A (i.e., ¢;/c,) 1s 0.40.
Since the wing planform is trapezoidal,

S =05(c, + ¢)b = 0.5¢(1 + A)b

| 7 App=272
09531t - . e T . B ST
(0.290 m) 7 line 2381 ft
Y —— 0,726 m)
I j_\_\\_\_‘_\--_\_‘_'_‘_‘—-—-—.__________ [
ATE = 8.13° -_‘---‘_—_—_“——-—_.__‘__‘___ |
—J -
< — 7.500 ft (2.286 m) {
Figure 7.13 Planform for an unswept wing, AR = 9.00.

A = 0.40, airfoil section NACA 65-210.

Aerodynamics
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Solved exercise

and
AR=
Thus, the parameter u in slide 127 becomes
cay cay

P74 T 2(AR) o (1 + A)
Solution: Since the terms are to be evaluated at spanwise stations for which
s=b/2 0=¢ = w/2lie,—s = y = 0 (which corresponds to the port wing or left
side of the wing)],
ay

= m[l + (A = 1)cosd¢]

= 0.24933(1 — 0.6 cos p) (7.30)

where the equivalent lift-curve slope (i.e., that for a two-dimensional flow
over the airfoil section ag) has been assumed to be equal to 27. It might be
noted that numenical solutions for lift and the vortex-drag coefficients were
essentially the same for this geometry whether the series representing the
spanwise circulation distribution included four terms or ten terms. Therefore,
so that the reader can perform the required calculations with a pocket cal-

culator, a four-term series will be used to represent the spanwise loading.
Equation (7.26) is
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Solved exercise

uwla — ayg)sing = A;sind(pu + singd) + A;sin3¢(3p + sing)
+ Assin S¢p(Sp + sing) + A;sin7¢(7p + sing) (7.31)

Since there are four coefficients (i.e., A, A3, As, and A,) to be evaluated,
equation (7.31) must be evaluated at four spanwise locations. The resultant
values for the factors are summarized in Table 7.1. Note that, since we are
considering the left side of the wing, the y coordinate is negative.

For a geometric angle of attack of 4°, equation (7.31) becomes

0.00386 = 0.18897A, + 0.66154A; + 0.86686 A5 + 0.44411A,

TABLE 7.1 Values of the Factor for Equation (7.31)

y

s
Station ¢ (= cos¢) sin ¢ sin 3¢ sin 5¢ sin7¢ n

22.5" 0.92388  0.38268 0.92388 0.92388 0.38268 0.11112
45.0° 0.70711 0.7071 0.70711  -0.70711  —-0.7071 0.14355

67.5° 0.38268 0.92388 —0.38268 —0.38268 0.92388 0.19208
90.0° 0.00000 1.00000 -—1.00000 1.00000 —1.00000 0.24933

H W N -
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Solved exercise

for ¢ = 22.5° (i.e.,y = —0.92388s). For the other stations, the equation becomes

0.00921 = 0.60150A4, + 0.80451A4; — 1.00752A45 — 1.21053A,
0.01611 = 1.031014, — 0.57407A4; — 0.72109A5 + 2.09577A,
0.02263 = 1.24933A; — 1.74799A; + 2.24665A5 — 2.74531A,

The solution of this system of linear equations yields
A; = 1.6459 x 1072
Ay = 73218 X 1075
As = 8.5787 x 107*
A7 = —9.6964 x 107
Using equation (7.27), the lift coefficient for an angle of attack of 4° is
C; = A+ AR = 0.4654

The theoretically determined lift coefficients are compared in Fig. 7.14
with data for this wing. In addition to the geometric characteristics already
described, the wing had a dihedral angle of 3°. The measurements reported by
Sivells (1947) were -obtained at a Reynolds number of approximately
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Solved exercise

—— Theory

©  Data of Sivells (1947)

l'—1 T T l T r

1.0 |-

Cp 06 -

Q 1

> S B . |
—4 0 4 8 12

a, deg

Figure 7.14 Comparison of the theoretical and the experimental
lift coefficients for an unswept wing in a subsonic stream. (Wing
is that of Fig. 7.13.)
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Solved exercise

T

02 L

UrD ] | = L l L J L ' 1
0.0 02 04 0.6 0.8 1.0

Y

¥

Figure 7.15 Spanwise distribution of the local lift coefficient,
AR = 9,A = 0.4, untwisted wing composed of NACA 65-210
airfoil sections.
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Solved exercise

4.4 X 10° and a Mach number of approximately 0.17. The agreement between
the theoretical values and the experimental values is very good.

The spanwise distribution for the local lift coefficient of this wing 1s
presented in Fig, 7.15. As noted by Sivells (1947), the variation of the section
lift coefficient can be used to determine the spanwise position of initial stall.
The local lift coefficient is given by

__ Poclecl’
L 0.5p0U%c

which for the trapezoidal wing under consideration is
Cr=2(AR)(1 + A)"S Ay, ysin(2n — 1)¢ (1.32)
c

The theoretical value of the induced drag coefficient for an angle of
attack of 4°, as determined using equation (7.29), is

C? 343 54 743

Cpi=———|1+=2+ = +—

’ m* AR Aj Aj Al
= 0.00766(1.0136) = 0.00776
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Solved exercise

=—— Theory

o Data of Sivells (1947)

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

-0.2 . | : | . | \
0.00 0.02 0.04 0.06 0.08

Cp

Figure 7.16 Comparison of the theoretical induced drag coeffi-
cients and the measured drag coefficients for an unswept wing in
a subsonic stream. (Wing is that of Fig.7.13.)

The theoretically determined induced drag coefficients are compared in Fig.7.16
with the measured drag coefficients for this wing. As has been noted earlier, the
theoretical relations developed in this chapter do not include the effects of skin
friction. The relatively constant difference between the measured values and the
theoretical values is due to the influence of skin friction.
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