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Ideal-fluid flow

Ideal fluids are inviscid and incompressible

on solid boundaries,

i.e. the body surface is a streamline.

v

v

v
v

v

body
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Ideal-fluid flow

KCT: if the flow of an ideal fluid is initially 

irrotational (say, the flow upstream of a body 

is uniform) it will remain irrotational once the 

fluid particles are near the body, i.e.

z = 0    everywhere in the fluid.

Since                        for any scalar function    , 

the condition of irrotationality is satisfied by

v
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Velocity potential

: velocity potential

irrotational flows                  potential flows
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Two-dimensional potential flows

The function      satisfies the irrotationality constraint.  

In 2D the streamfunction can be introduced to satisfy 

automatically the equation of continuity.

In Cartesian coordinates:

and      is defined from:

(valid both for rotational and irrotational flows)
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Two-dimensional potential flows

Both        and        are thus harmonic functions, with

streamlines and equipotential lines orthogonal to one 

another.  Furthermore, we have:

Cauchy-Riemann

conditions for

Complex analysis: let us introduce the complex 

potential defined as:

with

aand
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Analytic functions

𝐹 𝑧 is analytic at 𝑧 = 𝑧0 ∈ ℂ if it admits a power series 

expansion which converges for all 𝑧 sufficiently close to 𝑧0.

analytic function                                  is a point function

which is independent of the 

direction along which it is 

calculated

analytic function                     C-R conditions satisfied

𝐹 𝑧 = 𝑎0 + 𝑎1 𝑧 − 𝑧0 + 𝑎2 𝑧 − 𝑧0
2 +⋯ = 

𝑛=0

∞

𝑎𝑛 𝑧 − 𝑧0
𝑛
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Analytic functions

:  complex velocity
∙v v

𝑊 𝑧 =

= −𝑖
𝜕𝜙

𝜕𝑦
+
𝜕𝜓

𝜕𝑦

𝑑𝐹

𝑑𝑧
=

𝜕𝐹

𝑖𝜕𝑦
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Analytic functions

v
vq

vr

Cylindrical coordinates

𝑢 = 𝑣𝑟 cos 𝜃 − 𝑣𝜃 sin 𝜃
𝑣 = 𝑣𝑟 sin 𝜃 + 𝑣𝜃 cos 𝜃

vr i vq

= 𝑣𝑟 − 𝑖 𝑣𝜃 𝑒−𝑖𝜃

These results are sufficient to establish flow fields 

represented by simple analytic functions.
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Uniform flow

U      V

(U, V, c and a real)
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Source, sink and vortex flows

𝜙 = 𝑐 log 𝑟 𝜓 = 𝑐𝜃

𝐹 𝑧 = 𝑐 𝑧 = 𝑐 𝑟𝑒𝑖𝜃 = 𝑐 𝑟 + 𝑖 𝑐 𝜃log loglog

k

log z multivalued function

(origin: singular point of  velocity)

r

𝑣𝑟 =
𝑐

𝑟
𝑣𝜃 = 0

Tapez une équation ici.

ൗሶ𝑉 𝐿 = න
0

2𝜋

𝑣𝑟 𝑟 d𝜃 = 2𝜋𝑐 𝐹 𝑧 =
ൗሶ𝑉 𝐿
2𝜋

log 𝑧

≤
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Source, sink and vortex flows

k

log z multivalued function

(origin: singular point of  velocity)

𝑣𝑟 = 0 𝑣𝜃 =
𝑐

𝑟

Tapez une équation ici.

= න
0

2𝜋

𝑣𝜃 𝑟 d𝜃 = 2𝜋𝑐

𝜙 = 𝑐𝜃 𝜓 = −𝑐 log 𝑟

𝑊 𝑧 = −𝑖
𝑐

𝑧
= −𝑖

𝑐

𝑟
𝑒−𝑖𝜃

v 𝐹 𝑧 = −𝑖
Γ

2𝜋
log 𝑧

𝐹 𝑧 = −𝑖𝑐 log 𝑧 = −𝑖𝑐 log 𝑟𝑒𝑖𝜃 = −𝑖𝑐 log 𝑟 + 𝑐 𝜃

≤
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Flow in a sector

𝐹 𝑧 = 𝑐 𝑧𝑛, 𝑛 ≥ 1

(F(z) is a harmonic function)

𝐹 𝑧 = 𝑐(𝑟𝑒𝑖𝜃)𝑛 = 𝑐𝑟𝑛 cos 𝑛𝜃 +
+𝑖𝑐𝑟𝑛 sin 𝑛𝜃 =
= 𝜙 + 𝑖𝜓 =

(                         for q = 0, p/ 𝑛 → 𝜓 = 0

𝑊 𝑧 = 𝑛𝑐𝑧𝑛−1 = (𝑛𝑐𝑟𝑛−1 cos 𝑛𝜃 + 𝑖𝑛𝑐𝑟𝑛−1 sin 𝑛𝜃)𝑒−𝑖𝜃

𝑣𝑟 = 𝑛𝑐𝑟𝑛−1 cos 𝑛𝜃

𝑣𝜃 = −𝑛𝑐𝑟𝑛−1 sin 𝑛𝜃
𝑛 = 1 uniform rectilinear flow

𝑛 = 2 right-angled corner corner



Chapter 3:  Potential flow theoryAerodynamics                                      14

Flow around a sharp edge

𝐹 𝑧 = 𝑐 𝑧1/2 𝑐 ∈ ℜ 0 < 𝜃 < 2𝜋

(F(z) is a harmonic function)

𝐹 𝑧 = 𝑐 (𝑟 𝑒𝑖𝜃) ൗ1 2 = 𝑐 𝑟 ൗ1 2 cos ൗ𝜃 2 +

+ 𝑖 𝑐 𝑟 ൗ1 2 sin ൗ𝜃 2 = 𝜙 + 𝑖𝜓

𝑊 𝑧 =
𝑑𝐹

𝑑𝑧
=

1

2
𝑐 𝑧− Τ1 2 =

1

2
𝑐 𝑟− Τ1 2𝑒 ൗ−𝑖𝜃

2 ==

𝑣𝑟 =
1

2
𝑐𝑟− ൗ1 2 cos

𝜃

2

=
1

2
𝑐 𝑟− Τ1 2 cos

𝜃

2
+ 𝑖 sin

𝜃

2
𝑒−𝑖𝜃

𝑣𝜃 = −
1

2
𝑐𝑟− ൗ1 2 sin

𝜃

2

The corner (r=0) is a singular point, and 

the velocity is singular as the square root 

of the distance from the edge (Kutta!). 

≤
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Superposition principle

Linearity of the equations allows superposition of 

elementary flows to create more complicated flow 

patterns:

https://youtu.be/4x2g676GgNQ
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Doublet

ൗሶ𝑉 𝐿 ൗ− ሶ𝑉
𝐿

ൗሶ𝑉 𝐿

ൗሶ𝑉 𝐿

ൗሶ𝑉 𝐿ൗሶ𝑉 𝐿

ൗሶ𝑉 𝐿

ൗሶ𝑉 𝐿



Chapter 3:  Potential flow theoryAerodynamics                                      17

Doublet

=

ሶ
𝜀 ൗሶ𝑉 𝐿 = 𝜋𝜇, with 𝜇 a finite constant

(F(z) is another harmonic function)

ൗሶ𝑉 𝐿
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Doublet

Streamlines:  = constant

Circle of radius              centered 

in x = 0, 

𝑊 𝑧 = −
𝜇

𝑧2
= −

𝜇

𝑟2
𝑒−2𝑖𝜃 = −

𝜇

𝑟2
cos 𝜃 − 𝑖 sin 𝜃 𝑒−𝑖𝜃

𝑣𝑟 = −
𝜇

𝑟2
cos 𝜃 𝑣𝜃 = −

𝜇

𝑟2
sin 𝜃
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Flow past a circular cylinder

Let us superpose a uniform rectilinear flow to a doublet in the origin

On a circle of radius 𝑟 = 𝑎 we have 𝑧 = 𝑎𝑒𝑖𝜃 and the complex

potential on this circle is

so that the streamfunction on the circle is 
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Flow past a circular cylinder

Let us choose the strength of the doublet

𝜓 𝑎 = 0

Fields are symmetric,         

no lift nor drag on cylinder!
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Flow past a circular cylinder

𝑣𝑟 =
1

𝑟

𝜕𝜓

𝜕𝜃
= 𝑈 1 −

𝑎2

𝑟2
cos 𝜃

𝑣𝜃 = −
𝜕𝜓

𝜕𝑟
= −𝑈 1 +

𝑎2

𝑟2
sin 𝜃

From Bernoulli’s equation, the 

surface pressure (in 𝑟 = 𝑎) is:

𝑝𝑠 = 𝑝∞ +
1

2
𝜌𝑈2 1 − 4sin2𝜃

cp
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Circular cylinder with circulation

Circulation implies lift: let us add a vortex, centered in the 

origin, to the previous solution:

so that 𝜓 𝑎 = 0, as before.

= 𝑈 1 −
𝑎2

𝑟2
𝑒−2𝑖𝜃 −

𝑖Γ

2𝜋𝑟
𝑒−𝑖𝜃

= 𝑈 𝑒𝑖𝜃 −
𝑎2

𝑟2
𝑒−𝑖𝜃 −

𝑖Γ

2𝜋𝑟
𝑒−𝑖𝜃

−-

−-



Chapter 3:  Potential flow theoryAerodynamics                                      23

Circular cylinder with circulation

… = 𝑈 1 −
𝑎2

𝑟2
cos 𝜃 + 𝑖 𝑈 1 +

𝑎2

𝑟2
sin 𝜃 −

Γ

2𝜋𝑟
𝑒−𝑖𝜃

𝑣𝑟 = 𝑈 1 −
𝑎2

𝑟2
cos 𝜃 𝑣𝑟 𝑎 = 0

𝑣𝜃 = −𝑈 1 +
𝑎2

𝑟2
sin 𝜃 +

Γ

2𝜋𝑟
𝑣𝜃 𝑎 = −2𝑈 sin 𝜃 +

Γ

2𝜋𝑎

stagnation points

on the cylinder: 



Chapter 3:  Potential flow theoryAerodynamics                                      24

Circular cylinder with circulation

Negative (clockwise) circulation of magnitude G

−1 <
Γ

4𝜋𝑎𝑈
< 0

Γ

4𝜋𝑎𝑈
= −1

Γ

4𝜋𝑎𝑈
< −1

https://youtu.be/wxdXB7N5pbQ
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Circular cylinder with circulation

In the last case the 

stagnation point has 

coordinates (check!):
rs

No drag (y symmetry!) but lift appears on the cylinder.

From Bernoulli it is easy to find the surface pressure:

𝑝𝑠 = 𝑝∞ +
1

2
𝜌𝑈2 1 − 2 sin 𝜃 −

Γ

2𝜋𝑈𝑎

2

cp

−
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Circular cylinder with circulation: lift force

Tapez une équation ici.

n = (cos q, sin q )

a

𝑭′ = ර−𝑝𝑠𝒏 d𝑙 = න
0

2𝜋

− 𝑝𝑠 𝒏 𝑎 d𝜃

𝐹𝑥 = 𝐷′ = 0 𝐹𝑦 = 𝐿′ = −𝜌 𝑈 Γ

D’Alembert Kutta-Joukowski

paradox               theorem 
theorem
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Real life

Magnus effect. Large lift, however the cylinder is not 

a satisfactory lifting device because of the large drag.
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Kutta-Joukowski theorem

The Kutta-Joukowski theorem,   𝐿′ = −𝜌 𝑈 Γ ,  with 𝐿′

acting always perpendicular to the direction of 𝑈, 

applies not just to a cylinder, but to 2D bodies of any 

shape, in unbounded domains. 

We can show that K-J theorem applies by using a 

simple heuristic argument or we can demonstrate it 

in a more rigorous way. For the latter we need to resort 

to complex variable theory and to the so-called Blasius 

formula … 
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K-J: the qualitative argument

U-dU

U+dU p-dp

p+dp

This airfoil (flat plate) of 

chord c at small angle  

of attack

G = (U – dU) c – (U + dU) c = – 2 dU c

Bernoulli: (p + dp) + r (U – dU)2/2 = (p - dp) + r (U + dU)2/2

2 dp = 2 r U dU + r (dU)2

force on airfoil per unit span:    Fp = c 2 dp  2 c r U dU = – r U G

(acting  to airfoil …)

U

smaller order, can neglect 
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A quick recap on complex analysis

Complex analytic functions have been defined in slide 7.

Also: a complex, single-valued function 𝐹 𝑧 which is

differentiable in 𝑧0 and in a neighborhood of 𝑧0 is said

to be analytic (or holomorphic) at 𝑧0. As already stated

a sufficient condition for differentiability is that C-R are 

satisfied. 

𝐹 𝑧

x

y

f



S

D

𝐹 𝑧 : 𝐷 → 𝑆
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A quick recap on complex analysis

If 𝐹(𝑧) is analytic inside and on a circle 𝐶 centered in      

𝑧 = 𝑧0, then 𝐹(𝑧) admits a Taylor series representation

for any point 𝑧 inside 𝐶:

𝐹 𝑧 = 𝐹 𝑧0 + 𝐹′ 𝑧0 𝑧 − 𝑧0 +
𝐹′′(𝑧0)

2!
𝑧 − 𝑧0

2 + …

→ all complex functions, analytic in a neighborhood of 𝑧0,    

are infinitely differentiable in a neighborhood of 𝑧0.
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A quick recap on complex analysis

Singularities

There are three possible types of singularities of the complex 

function 𝐹(𝑧): poles, branch points and essential singularities.  

We will mostly be concerned with the first type.

𝑷𝒐𝒍𝒆: a singular point 𝑧 = 𝑧0 is called a 𝑝𝑜𝑙𝑒 𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 𝑛
𝑛 > 0, 𝑛 ∈ ℤ if and only if

𝐹 𝑧 =
ℎ(𝑧)

𝑧 − 𝑧0
𝑛

where ℎ 𝑧 is analytic at 𝑧 = 𝑧0, ℎ 𝑧0 ≠ 0.

The simplest example of the case above is  𝐹 𝑧 =
𝑎

𝑧−𝑧0
𝑛

with 𝑎 ≠ 0 a complex constant.with 𝑎 ≠ 0 a complex constant.



Chapter 3:  Potential flow theoryAerodynamics                                      33

A quick recap on complex analysis

Cauchy theorem (or Cauchy-Goursat theorem)

If 𝐹(𝑧) is analytic inside and on a closed curve 𝐶, then

ර
𝐶

𝐹(𝑧) d𝑧 = 0

This implies that the contour can be deformed provided we 

do not cross singularities.

𝐶1ׯ
𝐹(𝑧) d𝑧 𝐶2ׯ=

𝐹(𝑧) d𝑧 = 0
𝐶1

𝐶2
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A quick recap on complex analysis

If 𝐹(𝑧) is analytic in an annulus centered around some 

point 𝑧 = 𝑧0 (and 𝑧 = 𝑧0 can be a singularity of 𝐹(𝑧)) a 

Laurent series is defined in the annulus as:

𝐹 𝑧 = 

𝑛=−∞

∞

𝑎𝑛 𝑧 − 𝑧0
𝑛

(if 𝑧 = 𝑧0 is not singular → 𝑎𝑛= 0 for 𝑛 = −1,−2,−3 …
→ the Laurent series coincides with the Taylor series!)

𝑧0 𝑧3

𝑧2

𝑧1 (keep an eye on 𝑛 = −1!)
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A quick recap on complex analysis

We deform the contour 

𝐶 until we get to the 

situation in the figure.

Then:

The residue theorem

Assume that 𝑧1 and 𝑧2 are two singularities, contained within

a closed contour 𝐶.

𝐶2
𝐶1

𝐶

ර
𝐶

𝐹(𝑧) d𝑧 = ර
𝐶1

𝐹 𝑧 d𝑧 + ර
𝐶2

𝐹 𝑧 d𝑧 = 2𝜋𝑖 𝑎−1
𝑧1 + 𝑎−1

𝑧2

a

is the 𝑛 = −1 coefficient of the Laurent series around each

singularity; 𝑎−1 is the residue of 𝐹 𝑧 at the singular point. 

𝑎−1
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A quick recap on complex analysis

Examples:

𝐶ׯ 𝑘 𝑧𝑛d𝑧 = ฬ
𝑘 𝑧𝑛+1

𝑛+1 𝑠𝑡𝑎𝑟𝑡

𝑒𝑛𝑑

= 0 𝑛 = 0, 1, 2 …:    (

ර
𝐶

𝑘

𝑧
d𝑧 = 2𝜋𝑖 𝑎−1 = 2𝜋𝑖𝑘

ර
𝐶

𝑘

𝑧
d𝑧 = ቚ𝑘 log(𝑧)

𝑠𝑡𝑎𝑟𝑡

𝑒𝑛𝑑
= ቚ𝑘 log(𝑟)

𝑠𝑡𝑎𝑟𝑡

𝑒𝑛𝑑
+ ቚ𝑖 𝑘 𝜃

𝑠𝑡𝑎𝑟𝑡

𝑒𝑛𝑑
= 2𝜋𝑖𝑘Check:

starting point and

end point coincide 

for closed curve!

from residue theorem
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A quick recap on complex analysis

At this point you should watch – in the given order - the short 

videos by Prof. Michael Barrus (URI), to review and better 

understand the basics of complex analysis (i.e. all that we 

really need to know, at least until now):

https://youtu.be/PNnpcTe0uAY

https://youtu.be/Xp1Q9SHe6NU

https://youtu.be/S-_bMON1mzQ

https://youtu.be/oMpWn90ETno

https://youtu.be/xZ0S8Ywwc9o

https://youtu.be/GPqVd30eHrg

https://youtu.be/eW0ArgJ3Isk
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A quick recap on complex analysis

Exercises (first set)

For the complex functions which follow find the singular 

points (poles) and calculate the residues in the poles.

𝑓 𝑧 =
1

𝑧−1
(first order pole in z = 1, residue: 𝑎−1 = 1)

𝑓 𝑧 =
cos 𝑧

𝑧
(first order pole in z = 0, residue: 𝑎−1 = 1)

𝑓 𝑧 =
2𝑧 + 3

𝑧2 − 4𝑧
(two first order poles … )

𝑓 𝑧 =
𝑧2

𝑧2+4 2 (two poles of order two … )
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Blasius formula

body

Cbody

x

y

𝐝𝒍 𝒏

a

𝒏 = cos 𝛼 , sin 𝛼
𝐝𝒍 = d𝑙 (−sin 𝛼, cos 𝛼) = (d𝑥, d𝑦)

𝒏 d𝑙 = d𝑙 cos 𝛼 , sin 𝛼 = (d𝑦,−d𝑥)

𝑭′ = ර
𝐶𝑏𝑜𝑑𝑦

−𝑝𝑠𝒏 d𝑙 = (𝐷′, 𝐿′)
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Blasius formula

𝐷′ = ර
𝐶𝑏𝑜𝑑𝑦

−𝑝𝑠 d𝑦 𝐿′ = ර
𝐶𝑏𝑜𝑑𝑦

𝑝𝑠 d𝑥

𝐷′ − 𝑖𝐿′ = −ර
𝐶𝑏𝑜𝑑𝑦

𝑝𝑠 d𝑦 + 𝑖 d𝑥 = −𝑖 ර
𝐶𝑏𝑜𝑑𝑦

𝑝𝑠 d𝑧

In steady flow:          𝑝 +
1

2
𝜌𝑊 ഥ𝑊 = constant 

𝐷′ − 𝑖𝐿′ = 𝑖
𝜌

2
ර
𝐶𝑏𝑜𝑑𝑦

𝑊 ഥ𝑊 d𝑧
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Blasius formula

𝐷′ − 𝑖𝐿′ = 𝑖
𝜌

2
ර
𝐶𝑏𝑜𝑑𝑦

𝑊 ഥ𝑊 d𝑧

ഥ𝑊 d𝑧 = d𝐹 = d𝜙 − 𝑖 d𝜓

𝑊d𝑧 = d𝐹 = d𝜙 + 𝑖 d𝜓 since 𝜓 = constant is a         

streamline on the body

On the body:   d𝐹 = d𝐹 = ഥ𝑊 d𝑧 = 𝑊d𝑧

𝐷′ − 𝑖𝐿′ = 𝑖
𝜌

2
ර
𝐶𝑏𝑜𝑑𝑦

𝑊2 d𝑧 Blasius 

formula
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𝐿′

𝐷′

Blasius formula: application

𝐶∞

The integration path can 

be deformed, provided 

that we do not cross 

singularities.

Blasius integral formula 

can thus be used, 

integrating 𝑊2 on the 

complex plane around the 

closed path 𝐶∞, very far 

away from the airfoil On 

this path we have 
1

𝑧
→ 0.0.
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Blasius formula: application

𝐹 𝑧 = 𝑈𝑧 +
Γ

2𝜋𝑖
log 𝑧 + 𝑂

1

𝑧
) 𝑊 =

𝑑𝐹

𝑑𝑧
= 𝑈 +

Γ

2𝜋𝑖

1

𝑧
+ 𝑂

1

𝑧2

𝐶𝑏𝑜𝑑𝑦ׯ
𝑊2 d𝑧 ∞𝐶ׯ=

𝑊2 d𝑧 = 2𝜋𝑖 𝑎−1 = 2 Γ 𝑈

2

𝑊2 = 𝑈2 +
Γ𝑈

𝜋𝑖

1

𝑧
+ 𝑂

1

𝑧2
residuee

𝐷′ − 𝑖𝐿′ = 𝑖
𝜌

2
2 Γ 𝑈 = 𝑖 𝜌 𝑈 ΓFrom Blasius formula:

𝑫′ = 𝟎

D’Alembert paradox                     and for G < 0 (clockwise                                   

circulation) we have upward lift 

𝑳′ = −𝝆 𝑼 𝚪
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Blasius formula: application

Exercises (second set)

1. Consider a 2D body which moves in a motionless fluid. The fluid remains at 

rest far from the body. Show that the circulation around the body is                      

Γ = 𝐶𝑏𝑜𝑑𝑦ׯ
𝒗 ∙ d𝒍 = Real 𝐶ׯ d𝐹, 

with 𝐹 the complex potential, and 𝐶 a contour, to be followed

counterclockwise, taken at a large distance from the body (provided - of 

course! - that singularities are not crossed as the contour is deformed).  

Then, show that the volumetric flow rate (per unit depth) computed around

a contour fixed on the body is

ൗሖ𝑉 𝐿 = ර
𝐶𝑏𝑜𝑑𝑦

𝒗 ∙ 𝒏 d𝑙 = Imagර
𝐶

d𝐹 .

Under which conditions the integral above does not vanish? 

2. Use Blasius formula and the residue theorem to compute the components 

𝐷′ and 𝐿′ of the aerodynamic force on the Rankine body (uniform flow + 

source in 𝑧 = 0 + sink in 𝑧 = 𝑒).
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Complex variable theory is a powerful tool for the solution    

of 2D incompressible potential flow problems through its 

mapping properties.  A conformal mapping creates a 

geometrical correspondence between two planes, by the   

use of the analytic function 𝑓(𝜁).

inverse function

Conformal mapping

𝑧 = 𝑓 𝜁
𝜁 = 𝑔 𝑧

𝑔 = 𝑓−1

z = f(z=

𝒟′ 𝒟

𝜁

𝑧 = 𝑓 𝜁

𝜁 = 𝑔 𝑧
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Conformal mapping

𝑦 𝜂

𝑥 𝜉

𝑟 𝜌r

𝜃 𝜈

𝑧 = 𝑟 𝑒𝑖𝜃 𝜁 = 𝜌 𝑒𝑖𝜈

P’

P

𝒟′ 𝒟
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Conformal mapping

Theorem

The analytic, single-valued function 𝑓(𝜁) in the domain 𝒟
admits an inverse analytic function in 𝒟′ whose derivative

is
1

𝑓′(𝜁)
, i.e.

in 𝑧 = 𝑓(𝜁)

provided it is 𝑓′(𝜁) ≠ 0 at every 𝜁 point, so that the inverse 

function is differentiable.  The points where 𝑓′ 𝜁 = 0 are 

called critical points.  Thus, the analytic inverse function

𝑔 𝑧 = 𝑓−1 𝑧 exists away from critical points in 𝒟. 

On critical points the transformation is non-conformal. 

d

d𝑧
𝑓−1(𝑧) =

1

𝑓′(𝜁)
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Conformal mapping

𝑧 = 𝑓 𝜁 = 𝑥 + 𝑖𝑦

𝜁 = 𝑓−1 𝑧 = 𝑔 𝑧 = 𝜉(𝑥, 𝑦) + 𝑖𝜂(𝑥, 𝑦)

If the function 𝑔 𝑧 is analytic, it must satisfy C-R, i.e.

𝜕𝜉

𝜕𝑥
=
𝜕𝜂

𝜕𝑦
𝛻2𝜉 = 𝛻2𝜂 = 0

𝜕𝜉

𝜕𝑦
= −

𝜕𝜂

𝜕𝑥
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Conformal mapping

First question: what is the effect of the transformation         

𝑧 = 𝑓(𝜁) on the potential function and on the streamfunction?

If 𝜙 𝑥, 𝑦 is harmonic on 𝒟’ it can be shown that the     

transformed potential ෨𝜙(𝜉, 𝜂) is also harmonic (in 𝒟), i.e.        

the transformed motion is also a potential motion.

Same applies to 𝜓 𝑥, 𝑦 and ෨𝜓 𝜉, 𝜂 .

(shown, for example, in the book by Currie, 3rd edition, pages 105-108)
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Conformal mapping

First question: what is the effect of the transformation         

𝑧 = 𝑓(𝜁) on the potential function and on the streamfunction?

and viceversa if starting from ෨𝐹 𝜁

If the solution for a simple body is known, e.g. in 𝒟, then

the solution for the more complex body in 𝒟’ is found by 

substituting 𝜁 = 𝑔(𝑧) in the complex potential ෨𝐹 𝜁 .

𝐹 = 𝐹 𝑧 = 𝜙 𝑥, 𝑦 + 𝑖𝜓 𝑥, 𝑦

𝐹 = 𝐹 𝑓 𝜁 = ෨𝐹 𝜁 = ෨𝜙 𝜉, 𝜂 + 𝑖 ෨𝜓 𝜉, 𝜂
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Conformal mapping

y                                                                         h

x x

Second question: what is the effect of the transformation         

𝑧 = 𝑓(𝜁) on infinitesimal linear elements?

d𝑧 = d𝑧 exp 𝑖𝛼 d𝜁 = d𝜁 exp 𝑖𝛽

d𝑧

d𝜁
= 𝑓′ 𝜁 =

d𝑧

d𝜁
exp[𝑖(𝛼 − 𝛽)]



Chapter 3:  Potential flow theoryAerodynamics                                      52

Conformal mapping

y                                                                         h

x x

Second question: what is the effect of the transformation         

𝑧 = 𝑓(𝜁) on infinitesimal linear elements?

Since 𝑓(𝜁) is analytic on 𝒟, the derivative 𝑓′(𝜁) does not 

depend on the direction d𝜁; all lines through a point are 

stretched and rotated by the same amount.

d𝑧 = d𝜁 𝑓′(𝜁) exp[𝑖(𝛼 − 𝛽)]

d𝑧 = d𝜁 𝑓′(𝜁) stretching factor: 𝑓′(𝜁)

arg d𝑧 = arg d𝜁 + 𝛼 − 𝛽 rotation by 𝛼 − 𝛽

arg(𝑓′)
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Conformal mapping

y                                                                         h

x x

Second question: what is the effect of the transformation         

𝑧 = 𝑓(𝜁) on infinitesimal linear elements?

For points where |𝑓′ 𝜁 | ≠ 0
the transformation 

preserves angles 

between pairs of

corresponding

infinitesimal

elements.

arg d𝑧2) − arg(d𝑧1 = arg d𝜁2) − arg(d𝜁1
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Conformal mapping

y                                                                         h

x x

Third question: what is the effect of the transformation         

𝑧 = 𝑓(𝜁) on the complex velocity?

෩𝑊 𝜁 =
d ෨𝐹

d𝜁
=
d𝐹

d𝑧

d𝑧

d𝜁
= 𝑓′

d𝐹

d𝑧
= 𝑓′ 𝑊(𝑧)

i.e. complex velocities are proportional to one another, and 

the proportionality constant is the derivative of the 

transformation.

෩𝑊 𝜁 =
d𝑓

d𝜁
𝑊(𝑧)

Critical points (|𝑓′|=0) are stagnation points on the 𝜁-plane, 

i.e. stagnation points in 𝒟 are not necessarily stagn. pts in 𝒟′.
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Conformal mapping

y                                                                         h

x x

Fourth question: what do sources, sinks and vortices in one 

plane become on the other plane upon transforming?

Let us integrate the complex velocity around a closed contour 

c in the z-plane.

d𝒍 = d𝑥, d𝑦

𝒏 ⊥ d𝒍

𝒏 =
d𝑦,−d𝑥

d𝑙
(𝒏 ⋅ d𝒍 = 0)

d𝒍
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Conformal mapping

y                                                                         h

x x

Fourth question: what do sources, sinks and vortices in one 

plane become on the other plane upon transforming?

We already know that:
ሶ𝑉

𝐿
= ර

𝑐

𝒗 ⋅ 𝒏 d𝑙 = ර
𝑐

𝑢 d𝑦 − 𝑣 d𝑥

𝑑𝒍

and

Γ = ර
𝑐

𝒗 ⋅ d𝒍 = ර
𝑐

𝑢 d𝑥 + 𝑣 d𝑦



Chapter 3:  Potential flow theoryAerodynamics                                      57

Conformal mapping

y                                                                         h

x x

Fourth question: what do sources, sinks and vortices in one 

plane become on the other plane upon transforming?

ර
𝑐

𝑊 𝑧 𝑑𝑧 = ර
𝑐

(𝑢 − 𝑖𝑣) (d𝑥 + 𝑖 d𝑦)

𝑑𝒍

= ර
𝑐

𝑢 d𝑥 + 𝑣 d𝑦 + 𝑖 ර
𝑐

𝑢 d𝑦 − 𝑣 d𝑥

= Γ + 𝑖
ሶ𝑉

𝐿

(assuming a single source or 

sink and a single vortex within 

the contour)
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Conformal mapping

y                                                                         h

x x

Fourth question: what do sources, sinks and vortices in one 

plane become on the other plane upon transforming?

We thus have: Γ + 𝑖
ሶ𝑉

𝐿
= ර

𝑐

𝑊 𝑧 𝑑𝑧 = ර
𝑐

෩𝑊 𝜁
𝑑𝜁

𝑑𝑧
𝑑𝑧 =

= ර
ǁ𝑐

෩𝑊 𝜁 𝑑𝜁 = ෨Γ + 𝑖
ሶ෨𝑉

෨𝐿

A conformal mapping transforms sources, sinks and 

vortices in one plane (ex. the 𝜁-plane) into sources, sinks 

and vortices of equal strength in the other plane (ex. the 

z-plane).
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Some elementary mappings 𝑧 = 𝑓(𝜁)

Translation: 𝑧 = 𝜁 + 𝜁0 = 𝜉 + 𝑎 + 𝑖(𝜂 + 𝑏)

𝜂

𝜉

𝑦

𝑥

−𝑎

−𝑏

circle centered in −𝜁0 circle of same radius                       

centered in the origin
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Some elementary mappings 𝑧 = 𝑓(𝜁)

Scaling: 𝑧 = 𝑎 𝜁 = 𝑎 𝜉 + 𝑖 𝑎 𝜂 𝑎 ≠ 0, 𝑎 ∈ ℛ

𝜂

𝜉

𝑦

𝑥

1/𝑎

circle of radius 1/𝑎 circle of unit radius                       

centered on the origi

𝜈 𝜃 = 𝜈
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Some elementary mappings 𝑧 = 𝑓(𝜁)

Rotation: 𝑧 = 𝑒𝑖𝜙 𝜁 → 𝑟𝑒𝑖𝜃 = 𝜌𝑒𝑖(𝜈+𝜙)

𝜂

𝜉

𝑦

𝑥

the circle is mapped onto itself, with the complex z plane 

rotating clockwise around the origin by the (real) angle 𝜙

𝜙
𝜈
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Some elementary mappings 𝑧 = 𝑓(𝜁)

Inversion: 𝑧 = 𝑓 𝜁 =
1

𝜁

This is a one-to-one analytic mapping everywhere except at   

the origin of the 𝒟 plane (𝜁 = 0).

𝜁 = 𝑓−1 𝑧 = 𝑔 𝑧 =
1

𝑧

d

d𝑧
𝑓−1(𝑧) = −

1

𝑧2
=

1

𝑓′ 𝜁
= − 𝜁 2

Critical points: 𝑓′ 𝜁 = 0. Since 𝑓′ 𝜁 = −𝑧2, the critical

point is 𝑧 = 0. On 𝑧 = 0 the transformation is non-conformal. 

𝑟 = 𝑧 =
1

𝜁
=

1

𝜌
and    𝜃 = arg 𝑧 = −𝜈 = −arg(𝜁)
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Some elementary mappings 𝑧 = 𝑓(𝜁)

Inversion: 𝑧 = 𝑓 𝜁 =
1

𝜁

𝜂

𝜉

𝑦

𝑥

𝒟 is the exterior of the circle of radius 𝑎; it is mapped

onto the punctured disk 𝒟′ = 0 < 𝑧 < 1/𝑎

𝒟𝒟𝒟 = 𝑅𝑒𝑎𝑙(𝜁) > 𝑎Assume:

𝑎
1/𝑎

𝒟

𝒟′
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Some elementary mappings 𝑧 = 𝑓(𝜁)

The exponential mapping: 𝑧 = 𝑓 𝜁 = 𝑒𝜁 (single-valued ??                             

…  𝑒𝜁 = 𝑒𝜁+2𝜋𝑖)

𝜂

𝜉

𝑦

𝑥

The horizontal strip  𝒟 is mapped onto the wedge-

shaped domain 𝒟′ = 𝑎 < 𝜃 = arg(𝑧) < 𝑏

𝒟𝒟𝒟 = 𝑎 < 𝐼𝑚𝑎𝑔 𝜁 < 𝑏Assume:

𝒟

𝒟′𝑏

𝑎

𝑎 − 𝑏 < 2𝜋 <

𝑎𝑏

𝑟𝑒𝑖𝜃 = 𝑒𝜉+𝑖𝜂
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The Joukowski mapping

The most well-known mapping to go from the flow past a 

circle (in the 𝜁 −plane) to the flow around airfoils (in the 

physical or 𝑧 −plane).  The J transformation must be used 

together with a condition (Kutta condition) which loosely 

states that the flow must exit from the trailing edge of the 

airfoil smoothly, or the rear stagnation point on the circle in 

the 𝜁-plane must map on the TE (which is a cusp for the   

J airfoil) in the 𝑧 −plane. The Kutta condition permits to set 

the circulation Γ around the circle (and around the airfoil).

𝑧 = 𝜁 +
𝜆2

𝜁
𝜆2 ∈ ℛ
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The Joukowski mapping

𝑧 = 𝜁 +
𝜆2

𝜁
Observations:

• 𝜁 = 0 is a singularity of the function 𝑓 𝜁

• when 𝜁 → ∞ we have that 𝑧 → 𝜁, i.e. far from the origin

we have the identity mapping, so that 𝐹 𝑧 = ෨𝐹(𝜁) and 

𝑊 𝑧 = ෩𝑊(𝜁). In other words, the complex velocity in the 

two planes is the same far away from the axes’ origins

•
d𝑧

d𝜁
= 1 −

𝜆2

𝜁2
= 0 for  𝜁 = ±𝜆. These are the critical points 

of the J transformation. They are stagnation points on the 

𝜁 −plane ( cf. slide 54) and for these pts angles between

corresponding elements are not conserved (cf. slide 53)
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The Joukowski mapping

𝑧 = 𝜁 +
𝜆2

𝜁

The last observation amounts to stating that the J mapping is 

non-conformal on the critical points 𝜁 = ±𝜆 (which map onto 

𝑧 = ±2𝜆 in the 𝑧 −plane).

Let us write the J mapping as:                                       so that   

𝑧 − 2𝜆

𝑧 + 2𝜆
=

𝜁 − 𝜆

𝜁 + 𝜆

2

𝑧 ± 2𝜆 =
(𝜁 ± 𝜆)2

𝜁
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The Joukowski mapping

𝑟2

𝑟1 𝜌2
𝜌1

−2𝜆 2𝜆 − 𝜆 𝜆

𝑧 − 2𝜆

𝑧 + 2𝜆
=

𝜁 − 𝜆

𝜁 + 𝜆

2

𝑟1𝑒
𝑖𝜃11

𝑟2𝑒
𝑖𝜃2

=
𝜌1𝑒

𝑖𝜈11

𝜌2𝑒
𝑖𝜈2

2

𝑟1
𝑟2
=

𝜌1
𝜌2

2

, 𝜃1 − 𝜃2 = 2 𝜈1 − 𝜈2
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The Joukowski mapping

Let us now consider the smooth curve about 𝜁 = 𝜆, with two 

points very close to one another, 𝜁1 and 𝜁2. The corresponding

curve in the 𝑧–plane forms a knife-edge or cusp. 

Angles variations as we move along the curve from 𝜁1 to 𝜁2:

𝜈1 goes from 3𝜋/2 to 𝜋/2, 𝜈2 goes from 2𝜋 to 0
𝜃1 = 𝜋 both before and after, 𝜃2 goes from 2𝜋 to 0
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The Joukowski mapping

𝜈1 − 𝜈2 varies from −𝜋/2 to 𝜋/2 and 𝜃1 − 𝜃2 from −𝜋 to 𝜋

(i.e. letting a line cross the critical point in 𝜻 = 𝝀 a cusp is

created in 𝒛 = 𝟐𝝀; on this pt we have 𝑊(𝑧) → ∞, cf. slide 14)

Remember: a smooth curve through either one of the critical   

points in 𝜁 = ±𝜆 forms a cusp in the 𝑧 −plane in 𝑧 = ±2𝜆
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The Joukowski mapping

Case 1: circle of radius 𝜆 centered on the origin

𝜂"

𝜉

𝜆

𝜈
A                      B                             A’                                                  B’ 𝑥

Tapez une équation ici.

𝑦

The critical points A and B are mapped onto A’ and B’ (cusps). 

The circle of radius 𝜆 maps onto a segment in the real plane 

(a flat plate airfoil) of length (or chord) 𝑐 = 4𝜆

𝜁 = 𝜆 𝑒𝑖𝜈 𝑧 = 𝜆 𝑒𝑖𝜈 + 𝜆 𝑒−𝑖𝜈 = 2 𝜆 cos(𝜈)
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The Joukowski mapping

Case 2: circle of radius 𝑎 > 𝜆 centered on the real axis

𝜂"

𝜉

𝜆

𝜈

The critical point B is mapped onto a cusp in B’ (cusps). If 

𝜀 = 𝑎 − 𝜆 ≪ 𝜆 the symmetric airfoil which is generated has   

max thickness equal to approximately 3 3 𝜀 and this max 

thickness occurs at a position distant about Τ𝑐 4 ≈ 𝜆 from A’.

𝑎

𝑦

B                                                                                    B’ 𝑥A A’
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The symmetric J versus NACA airfoil

𝑐𝑙
𝑐𝑑

𝑐𝑙

𝑐𝑑

𝑐𝑙
𝑐𝑚 𝑐/4
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The Joukowski mapping

Case 3: circle of radius 𝑎 > 𝜆 centered on the imaginary axis

𝜂"

𝜉

𝜆

𝛽

𝑎

A                      B                           A’                                    B’ 𝑥

𝑦

𝜆 = 𝑎 cos𝛽

𝜀 = 𝑎 sin 𝛽 = distance of 

center of circle from origin

𝑠

circular arc airfoil of chord 𝑐 = 4𝜆
with cusps in A’ and B’

max camber height: 𝑠 = 2𝑎 sin𝛽

airfoil’s equation (for 𝜀 ≪ 𝜆 ): 𝑥2+ 𝑦 +
𝜆2

𝜀

2

≈ 𝜆2 4 +
𝜆2

𝜀2
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Case 4: circle of radius 𝑎 > 𝜆 centered in the complex plane

𝜂"

𝜉𝜆

𝑦

𝑎−𝜆

𝜆
controls the J airfoil’s thickness

𝛽 controls the camber of the airfoil

By increasing the thickness, circulation, and thus lift, around the 

airfoil increase; however, large thickness means large 𝐷′ …

The Joukowski mapping

A                      B                           B’ 𝑥

𝛽

Joukowski airfoil       

with cusp in B’
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Joukowski transformation

https://demonstrations.wolfram.com/TheJoukowskiMapping

AirfoilsFromCircles/

http://www.dicat.unige.it/~irro/
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Kutta condition

The Kutta condition (slide 65) imposes that the rear stagn pt

in the circle in the 𝜁 −plane must map onto a cusp in 𝑧. 

This condition mimics the effect of viscosity, i.e. the presence 

of a thin boundary layer around the airfoil: to let the flow out 

smoothly at the trailing edge we must add circulation to our 

potential flow solution. In physical reality this circulation is 

provided by the vorticity within the boundary layer.

http://dimanov.com/airfoil/feature.html
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The kinematic problem for the flat plate

Γ = 0

Flow past a cylinder with 

a small angle of attack

Γ ≠ 0

the correct amount of   

Γ is supplied to let the 

flow go out smoothly at 

the TE
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The kinematic problem for the flat plate

What is the correct amount of Γ?  Assume that the uniform 

incoming flow, of speed 𝑈, has an angle of attack 𝛼 with

respect to the AB segment.  For Γ = 0 stagnation points  

are P and Q.   

𝛼

𝑈

P

A                      B

Q

𝜂

𝜉

𝜆
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The kinematic problem for the flat plate

To satisfy the Kutta condition a clockwise vortex must be 

added so that the rear stagnation point is moved from Q to Q* 

(to coincide with B), while at the same time P moves to P*.

𝑈
P*

A                      B

𝜂

𝜉
2𝛼

Q*≡ B
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The kinematic problem for the flat plate

𝑈
P*

A                      B

𝜂

𝜉
B

We know that on the circle of radius 𝜆 we have (slide 23):

𝑣𝑟 𝜆 = 0, 𝑣𝜃 𝜆 = −2𝑈 sin 𝜈′ +
Γ

2𝜋𝜆

On B:    𝜈′ = −𝛼

It must thus be:   

Γ = −4 π 𝜆 𝑈 sin 𝛼

2𝛼

𝛼𝜈′

This same Γ is also the circulation about the flat plate (slide 58).!

𝜈
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The kinematic problem for the flat plate
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Tapez
une
équation
ici.

The kinematic problem for the flat plate

The lift force on the flat plate is (from KJ theorem):

𝐿′ = −𝜌 𝑈 Γ = 4 𝜋 𝜌 𝑈2𝜆 sin 𝛼 = 𝜋 𝜌 𝑈2𝑐 sin 𝛼

The lift coefficient is:   𝑐𝑙 =
𝜋 𝜌 𝑈2𝑐 sin 𝛼

1

2
𝜌 𝑈2𝑐

= 2 𝜋 sin 𝛼 ≈2 𝜋 𝛼

The last relation is ok for 

small angles of incidence 𝛼;

the flat plate displays a 

linear behavior of 𝑐𝑙 with 𝛼
(measured in radians) 

𝑐𝑙

𝛼
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Tapez
une
équation
ici.

The kinematic problem for the flat plate

Bernoulli:    𝑝∞ +
1

2
𝜌 𝑈2 = 𝑝 +

1

2
𝜌 v ⋅ v (𝑝 and v on the                         

surface of the flat plate)

𝑐𝑝 = 1 −
𝑊 ഥ𝑊

𝑈2

We thus need the complex velocity 𝑊(𝑧) on the flat plate 

surface.  From slide 54 we know that

since 𝜁 = 𝜆 𝑒𝑖𝜈

on the cylinder
𝑊 𝑧 =

| ෩𝑊 𝜁 |

|𝑓′ 𝜁 |
=

| ෩𝑊 𝜁 |

1 −
𝜆2

𝜁2

=
| ෩𝑊 𝜁 |

1 − 𝑒−2𝑖𝜈
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Tapez
une
équation
ici.

The kinematic problem for the flat plate

𝑊 𝑧 =
| ෩𝑊 𝜁 |

1 − cos 2𝜈 + 𝑖 sin(2𝜈)
=

| ෩𝑊 𝜁 |

1 − cos(2𝜈) 2 + sin2 2𝜈

=
| ෩𝑊 𝜁 |

2 [1 − cos 2𝜈 ]
=

| ෩𝑊 𝜁 |

2 sin 𝜈
=

| ෩𝑊 𝜁 |

2 sin(𝜈′ + 𝛼)

Furthemore, from slide 81 we know that  Γ = −4 π 𝜆 𝑈 sin 𝛼 and

𝑣𝜃 𝜆 = −2𝑈 sin 𝜈′ +
Γ

2𝜋𝜆
→ 𝑣𝜃 𝜆 = −2𝑈 (sin 𝜈′ + sin𝛼)

|𝑊 𝑧 | =
|𝑈 (sin 𝜈′ + sin𝛼) |

sin 𝜈′ cos 𝛼 + cos 𝜈′ sin 𝛼
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Tapez
une
équation
ici.

The kinematic problem for the flat plate

|𝑊 𝑧 | =
|𝑈 (sin 𝜈′ + sin𝛼) |

sin 𝜈′ cos 𝛼 + cos 𝜈′ sin 𝛼

on A (LE of flat plate, A’): 𝜈′ → 𝜋 − 𝛼

on B (TE of flat plate, B’): 𝜈′ → −𝛼

on LE:

on TE:

|𝑊 𝑧 | →
|2 𝑈 sin 𝛼 |

sin 𝛼 cos 𝛼 − cos 𝛼 sin 𝛼
→ ∞

𝑊 𝑧 →
𝑈 (−sin 𝛼 + sin 𝛼)

−sin 𝛼 cos 𝛼 + cos 𝛼 sin 𝛼
→ ?
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Tapez
une
équation
ici.

The kinematic problem for the flat plate

|𝑊 𝑧 | =
|𝑈 (sin 𝜈′ + sin𝛼) |

sin 𝜈′ cos 𝛼 + cos 𝜈′ sin 𝛼

on B/B’:     lim
𝜈′→−𝛼

𝑊(𝑧) (using l'Hôpital's rule)

and for small angles of incidence, 𝛼, the velocity in B’, TE  

of the flat plate, has modulus equal to that of the free 

stream speed.

Notice: neither A’ nor B’ are stagnation points (cf. slide 54)

=
𝑈 cos 𝜈′

cos 𝜈′ cos 𝛼 − sin 𝜈′ sin 𝛼
=

𝑈 cos 𝛼

cos2 𝛼 + sin2 𝛼
= 𝑈 cos 𝛼
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Tapez
une
équation
ici.

The kinematic problem for the flat plate

A’

P*’

B’

The only stagnation point on the flat plate is in P*’

To find the position of P*’ we note that P*

is in  𝜈′ = 𝜋 + 𝛼 (or 𝜈 = 𝜋 + 2𝛼); since

the plate has eq: 𝑧 = 2 𝜆 cos 𝜈 (slide 71) 

we finally have

𝑧P∗′ = −2 𝜆 cos(2𝛼)

𝑦

𝑥
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Tapez
une
équation
ici.

The kinematic problem for the flat plate

Kutta-Joukowski theorem states that lift is always 

perpendicular to 𝑈 (slide 28). However, since pressure 

acts always normal to the flat plate, we seem to have a 

problem …

𝑈

𝐿′ ((
force 𝐹𝑝 arising from the 

integral of the pressure on 

lower and upper sides of 

the plate

(go back and check the heuristic argument of slide 29)
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Tapez
une
équation
ici.

The kinematic problem for the flat plate

Apparent paradox … the velocity at the LE tends to ∞ and 

the pressure thus tends to −∞ (Bernoulli).  This 𝑝LE produces 

a finite suction force 𝑆 at the LE, the product of a “very large” 

(in modulus) pressure and a “very small” LE area. 

D’Alembert paradox stands! There is no drag force      𝑈.  

𝑈

𝐿′ ((

𝑆

𝐹𝑝
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𝛼

Tapez
une
équation
ici.

The kinematic problem for the J airfoil

𝑈𝑈

The point Q on the circle must rotate (clockwise) by an angle 

𝛼 + 𝛽 for the fluid to flow smoothly out of the TE in B’.  Clearly, 

also the front stagnation point on the circle rotates (counter-

clockwise) so that the stagnation point on the physical plane 

moves on the lower side of the airfoil.

Q
Q’

J airfoil with 𝛼 angle of incidence

C
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𝛼

Tapez
une
équation
ici.

The kinematic problem for the J airfoil

𝑈𝑈

The tangential velocity on the point B of the circle centered in C 

and of radius 𝑎 is 𝑣𝜃 = −2𝑈 sin 𝜈′ +
Γ

2𝜋𝑎
= −2𝑈 sin −𝛼 − 𝛽 +

Γ

2𝜋𝑎
=

= 2𝑈 sin 𝛼 + 𝛽 +
Γ

2𝜋𝑎
.  Thus, B is stagnation point iff

Γ = −4 𝜋 𝑎 𝑈 sin(𝛼 + 𝛽)

Q
Q’

𝜈’

C
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Tapez
une
équation
ici.

The kinematic problem for the J airfoil

The same clockwise circulation Γ = −4 𝜋 𝑎 𝑈 sin 𝛼 + 𝛽 is

applied on the physical plane.

Lift on the airfoil is 𝐿′= −𝜌 𝑈 Γ = 4 𝜋 𝜌 𝑎 𝑈2sin(𝛼 + 𝛽) and 

the lift coefficient is

𝑐𝑙 =
𝐿′

1
2
𝜌𝑈2𝑐

=
8 𝜋 𝑎 sin(𝛼 + 𝛽)

𝑐

if the point C is not too far from the origin of the 𝜁 −plane, 

the chord of the airfoil is 𝑐 ≈ 4𝜆 ≈ 4𝑎 and the lift coefficient 

reads:

𝑐𝑙≈ 2 𝜋 sin(𝛼 + 𝛽) ≈ 2𝜋 (𝛼 + 𝛽)         (for 𝛼 and 𝛽 small)
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Tapez
une
équation
ici.

The kinematic problem for the J airfoil

𝑐𝑙 ≈ 2𝜋 (𝛼 + 𝛽) = 2 𝜋 𝛼′ with 𝛼′ the effective angle of attack,

which accounts for the camber of the airfoil (through 𝛽).

𝑐𝑙

𝛼

symmetric 

airfoilcambered 

airfoil

𝛼 𝑙=0

symmetric airfoil 

𝑐𝑙 = 0 for 𝛼 = 0

cambered airfoil 

𝑐𝑙 = 0 for 𝛼 = −𝛽 = 𝛼𝑙=0

when the geometric angle 

of attack vanishes there is

still some lift: 𝑐𝑙 ≈ 2 𝜋 𝛽
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To Kutta or not to Kutta
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Tapez
une
équation
ici.

Another conformal mapping

Mapping by van de Vooren and de Jong

𝑧 =
𝜁 − 𝑎 𝑘

(𝜁 − 𝜖𝑎)𝑘−1
+

with a finite TE angle

𝜂 𝑦

𝜉
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Tapez
une
équation
ici.

TE angle

finite angle                                        cusp

at TE:   V1 = V2 = 0                       at TE:  V1 = V2 ≠ 0
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Conformal mappings

Exercises (third set)

1. For the symmetric Joukowski airfoil (slide 72) find the 

coordinate 𝑧A′ of the leading edge.

2. For the circular arc airfoil (slide 74) show that the 

maximum camber height is 𝑠 = 2𝑎 sin𝛽.

3. Consider the cambered Joukowski airfoil (slides 75 and 

92). Where does the center C of the circle in the 

𝜁 −plane go in the 𝑧 −plane?

4. Show that the conformal mapping 𝑧 = 𝜁 +
𝑎2−𝑏2

4 𝜁
maps a 

circles of radius  
𝑎+𝑏

2
in the 𝜁 −plane to an ellipse of 

semi-axis 𝑎 and 𝑏 onto the 𝑧 −plane.
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Tapez
une
équation
ici.

Using J mapping for arbitrary shapes

Let us now see how the J mapping for a flat plate of length 𝑐
can be used to model arbitrarily shaped 2D bodies, formed 

by many finite-length segments

real shape

discretized shape



Chapter 3:  Potential flow theoryAerodynamics                                      100

Let us imagine to replace the flat plate with a potential vortex 

of circulation Γ, positioned in the AC (which is 𝑐/4 from the   

LE of the plate) plus a collocation point, which is a point on 

the plate where we impose the flow to be tangent to the plate.

Recall: AC is defined such that  
𝑑𝑚𝐴𝐶

𝑑𝛼
= 0. For symmetric airfoils, e.g. the   

flat plate, it will also be shown that 𝑚𝐴𝐶 = 0 in the potential flow case.

Using J mapping for arbitrary shapes

𝑦

𝑥

𝑈

𝛼

𝑐 = 4𝜆

The fluid exits smoothly 

at B’ iff

Γ = −𝜋 𝑐 𝑈 sin 𝛼
(cf. slide 81)

A’                             B’’
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Distance vortex-collocation point = Δ𝑟

The azimuthal velocity induced by the vortex on the 

collocation point is Γ/(2𝜋Δ𝑟): this velocity is perpendicular to 

the plate and downwards (because circulation is negative).

The total vertical velocity on the collocation pt vanishes if 

𝑈 sin 𝛼 = 𝑐 𝑈 sin 𝛼 /(2 Δ𝑟)   → ∆𝑟 = 𝑐/2

Using J mapping for arbitrary shapes

𝑦

𝑥

𝑈

𝛼

Τ𝑐 4 Δ𝑟

Γ = −𝜋 𝑐 𝑈 sin 𝛼

A’                             B’’Γ
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Tapez
une
équation
ici.

The lumped vortex element method

All individual segments of length c which, taken one after 

the other, make up a complex 2D shape can be 

represented as a series of vortices positioned on the AC  

of the segments, plus a series of collocation points, 

positioned c/2 downstream of the vortices.

This is called the lumped vortex element method.

Note: for symmetric airfoils, and thus for the flat plate as   

well, the AC coincides with the CP (both of them are in 

c/4)complex 2D shape can be 
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Tapez
une
équation
ici.

The lumped vortex element method

Example: let us use the lumped vortex element method to 

represent a flat plate of length 𝑙 made up by three equal 

segments of length 𝑐 = 𝑙/3

𝑙 = 3𝑐

𝑥

𝑦
element        distance from origin

V1 c/4 

C1 3c/4

V2 c+c/4 = 5c/4

C2 c+3c/4 = 7c/4

V3 2c+c/4 = 9c/4

C3 2c+3c/4 = 11c/4

1           2 3
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Tapez
une
équation
ici.

The lumped vortex element method

Vertical velocity on C1 induced by the 3 vortices:

𝑙 = 3𝑐

𝑥

𝑦 V1 c/4

C1 3c/4

V2 c+c/4 = 5c/4

C2 c+3c/4 = 7c/4

V3 2c+c/4 = 9c/4

C3 2c+3c/4 = 11c/4

1           2 3

𝚪𝟏

2𝜋 𝑥C1 − 𝑥V1
−

𝚪𝟐

2𝜋 𝑥V2 − 𝑥C1
−

𝚪𝟑
2𝜋(𝑥V3 − 𝑥C1)

𝑣c1 = 𝑈 sin 𝛼 + σi=1
3 Γi

2𝜋 𝑥C1−𝑥Vi

𝑈
𝛼



Chapter 3:  Potential flow theoryAerodynamics                                      105

The lumped vortex element method

𝑣cj = 𝑈 sin 𝛼 + σi=1
3 Γi

2𝜋 𝑥Cj−𝑥Vi

The vertical velocity components on the 3 collocation 

points must vanish:

C1: 2 𝜋 𝑈 sin 𝛼 +
Γ1

𝑙/6
−

Γ2

𝑙/6
−

Γ3

𝑙/2
= 0

C2: 2 𝜋 𝑈 sin 𝛼 +
Γ1

𝑙/2
+

Γ2

𝑙/6
−

Γ3

𝑙/6
= 0

C3:   2 𝜋 𝑈 sin 𝛼 +
Γ1

5𝑙/6
+

Γ2

𝑙/2
+

Γ3

𝑙/6
= 0
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The lumped vortex element method

The system of three equations in three unknowns yields:

Γ1 = −
5

8
𝜋 𝑈 𝑙 sin 𝛼 - 1(clockwise circulation)

Γ2 = −
1

4
𝜋 𝑈 𝑙 sin 𝛼 -(clockwise circulation)

Γ3 = −
1

8
𝜋 𝑈 𝑙 sin 𝛼 -(clockwise circulation)

The total circulation around the flat plate is Γ = σ𝑖=1
3 Γ𝑖

Γ = − 𝜋 𝑈 𝑙 sin 𝛼 (cf. slide 81!)
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The mirror image method

When in the vicinity of the ground (landing or takeoff) the 

behavior of a wing is modified from that observed in an 

unrestricted freestream. This is called ground effect. If the 

wing is modelled by lumped vortex elements, the presence

of the ground can be modelled by the method of images,
for the ground to 

become a streamline.

A similar strategy  can 

be adopted, for 

example, to model 

wind tunnel walls.

𝑈
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The mirror image method

The same technique can 

be used in 3D when using 

distributions of surface 

singularities (3D panel 

method)
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Lumped vortex element method

Exercises (fourth set)

1. Let us consider a tandem of flat plate airfoils, as in the figure, in a uniform 

stream of velocity 𝑈 and angle of attack 𝛼. Compute the circulation of both plates.

2. Let us model a symmetric airfoil as an 

equilateral triangle, formed by three panels 

of length 𝑙, potential vortices on the vertices 

of the triangle and collocation points centered 

along the sides. Compute the circulation of 

each potential vortex, when the profile is in  

a stream of constant velocity 𝑈.

Tapez une équation ici.

𝑈 0 𝑐 Τ3𝑐 2 Τ5𝑐 2 𝑥x

𝑈

𝑙

Γ2

Γ3

Γ1


