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Circulation and vorticity
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Circulation and vorticity
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Circulation and vorticity

Stokes’ theorem

i.e.   if     = 0          = 0

Flows for which     = 0 are irrotational.
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Stream tubes and vortex tubes
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Stream filament and vortex filament

If   A1 0 

we have, respectively, a stream filament and 

a vortex filament.

Biot Savart law
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Kinematics of vortex lines

Since the divergence of the curl of a vector is zero 

(by definition, show it!) it is:

This means that there are no sources or sinks of 

vorticity in the fluid            the vortex lines must 

either form closed loops or terminate on the 

boundaries (solid surface or free surface) of the 

fluid. 


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Correspondence velocity-vorticity



v



v





Chapter 2:  VorticityAerodynamics                                      9

Correspondence velocity-vorticity

Incompressible flow:

Let’s integrate over the total volumeV of a 

stream tube (whose total outer surface is s):

Gauss theorem

v

v v

v v ሶሶ𝑉1 = ሶ𝑉2
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Correspondence velocity-vorticity

Vorticity is divergence-free:

Let’s integrate over the total volumeV of       

a vortex tube (including the ends):

Gauss theorem

1 = 2






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Helmholtz’s theorems (1858)

The circulation  at each cross-section  

of a vortex tube (or filament) is the 

same; alternatively, the average vorticity 

increases as the cross-section of the 

vortex tube decreases:

Helmholtz’s first theorem

the strength of a vortex filament is 

constant along its length, i.e.  is          

an invariant of the motion

 
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Helmholtz’s theorems (1858)

Helmholtz’s second theorem

A vortex filament cannot end in a fluid; 

it must extend to the boundaries of the 

fluid or form a closed path
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Helmholtz’s theorems (1858)

Helmholtz’s third theorem

In the absence of rotational external 

forces, a fluid that is initially irrotational

remains irrotational, i.e. fluid parcels   

free of vorticity remain free of vorticity. 
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Kelvin’s circulation theorem (1869)

In an ideal fluid which is either barotropic

[ p = g(r) ] or at constant density, with 

conservative body forces, the circulation 

around a closed curve (which encloses 

the same fluid elements) moving with the 

fluid remains constant with time:

𝐷

𝐷𝑡
= 0
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Kelvin’s circulation theorem (1869)

(t) v

Euler equation, with conservative body force:

v

v
v v

C(t)

C(t)C(t)
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Kelvin’s circulation theorem (1869)

v v

C(t)

C(t)

C(t)
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Kelvin’s circulation theorem (1869)

total spatial variation      

of p and G

Integrations are carried out on the closed 

contour C(t) and, since the velocity and the       

body force are single-values, we are left with:

C(t)
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Kelvin’s circulation theorem (1869)

If the density is constant it is easy to see that the 

material derivative of  vanishes. If the field is 

barotropic,              , then

which can be stated as follows: if we follow a given 

contour as it moves with the fluid, the total vorticity 

inside that contour does not change (KCT). 

Total vorticity could change because of (i) viscous effects, (ii) non-

conservative body forces, or (iii) density variations not due to dp.

C(t)
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Consequences of KCT

implies that

any closed contour 

C(t) in a fluid has a 

definite value of 

which does not 

change as the 

contour moves and 

is deformed by the 

flow. 
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Consequences of KCT

implies that any closed contour C(t)

in a fluid has a definite value of  which does 

not change as the contour moves and is 

deformed by the flow. 

If at a given time there is no body inside the 

contour, it will not enter the contour at later 

times.  If there is a body initially …
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Consequences of KCT
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Consequences of KCT

The airfoil has circulation around it while 

immersed in an irrotational flow.

https://youtu.be/bvV7-9wAXc0

https://youtu.be/VcggiVSf5F8

The starting vortex and the 

generation of lift lift

https://youtu.be/bvV7-9wAXc0
https://youtu.be/VcggiVSf5F8


Chapter 2:  VorticityAerodynamics                                      23

The vorticity equation

Navier-Stokes for a fluid of constant density 

and viscosity:

and taking the curl:

(curl grad = 0!)

v
v

v v

v
v

v vv v

v



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The vorticity equation

Vector identity:

vv v v v  

 


 vv

convection of vorticity               vorticity viscous

from the flow                 stretching/tilting       diffusion
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The vorticity equation

2D flows: the vorticity is orthogonal to the 

plane where the velocity is defined, hence

= 0

The vorticity equation (both 2D and 3D 

flows) does not have the pressure in it.

Pressure can be found a posteriori from:

  vvv v
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The vorticity equation

In 3D flows the rotation and damping/ 

amplification term               is crucial.

It is known that          = E +    W

symmetric strain skew-symmetric

rate tensor         rotation rate tensor 

with          thus related to deformation 

and rotation rates in the fluid.
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The vorticity equation

damping/amplification of vorticity 

of vorticity, plus tilting of the axis 

of the vortex tube because of the 

action of strain rate 

=       E +       W

show this!

E
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The vorticity equation

this term is a source/sink of vorticity

(absent in 2D) 

E

1

1

v1 v1

𝜀11 =
𝜕𝑣1
𝜕𝑥1

> 0

1

x1
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The vorticity equation

1

1

v1 v1

By Kelvin’s theorem (inviscid and barotropic fluid, conservative 

body forces), the circulation on a material line around any 

section of the vortex tube is conserved. Thus the reduction in 

section of the tube brings with it an increase in vorticity.  As the 

vortex tube is stretched (deformation work made by E) we

have an increase of the               

average vorticity.

Other interpretation: conservation of angular momentum.

Stretching of material surface           section             moment of 

inertia            angular velocity
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Exercise

Competition between linear strain of a viscous axisymmetric vortex and viscous diffusion

Les us consider a system of cylindrical coordinates (r, q , z) and an axisymmetric (𝜕/𝜕𝜃 = 0) 

vortex tube aligned with z.  The tube has a single component of vorticity (along z), which is         

w = w(r, t), t being the independent time variable.  The velocity field is a linear strain field, with 

the z component given by vz = a z, a a positive constant.

1. Starting from the vorticity equation, and focusing on the 

source/sink terms of vorticity, find the conditions under which the 

vorticity remains aligned with z, i.e. the source terms of the 

components of the vorticity equation along r and q vanish.  For 

these conditions find the radial and azimuthal components of the 

velocity, vr and vq .

2. The vorticity equation becomes a scalar equation for z = w, and 

it can be easily integrated in the steady case. Show that             

w = w1 exp(-a r2/4n).

3. Using Kelvin’s circulation theorem show that w1 ≈ w0

𝛼𝑟0
2

4n
, where r0 is the radius of the initial 

vorticity distribution and w0 the initial amplitude. This means that w1 (maximum value of vorticity 

at r = 0) increases with stretching (i.e. with a) and decreases with viscosity n. The amplification 

of w is accompanied (and limited) by viscous diffusion, i.e. the vortex widens radially. 
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Exercise

Competition between linear strain of a viscous axisymmetric vortex and viscous diffusion
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Exercise

Competition between linear strain of a viscous axisymmetric vortex and viscous diffusion

𝑣𝑟 = −
𝛼𝑟

2
, 𝑣𝜃 =

1

𝑟
න
0

𝑟

𝜌 𝜔 𝜌, 𝑡 d𝜌 = … ≈
𝜔0𝑟

2

2𝑟
1 − 𝑒−

𝛼𝑟2

4𝜈

w0

r0

w1

initial vortex      

(t = 0)

final, steady 

state vortex
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3D vorticity equation, cylindrical coordinates

 = (𝑟, 𝜃 , 𝑧)

v = (vr, vq, vz) 

source/sink

In cylindrical coordinates (r, q, z) the source/sink  term reads

𝒆𝑟  ∙ 𝜵𝑣𝑟 −
𝜃 𝑣𝜃
𝑟

+ 𝒆𝜃  ∙ 𝜵𝑣𝜃 +
𝜃 𝑣𝑟
𝑟

+ 𝒆𝑧  ∙ 𝜵𝑣𝑧

and the vorticity is

 = 𝒆𝑟
1

𝑟

𝜕𝑣𝑧
𝜕𝜃

−
𝜕𝑣𝜃
𝜕𝑧

+ 𝒆𝜃
𝜕𝑣𝑟
𝜕𝑧

−
𝜕𝑣𝑧
𝜕𝑟

+ 𝒆𝑧
1

𝑟

𝜕(𝑟𝑣𝜃)

𝜕𝑟
−
1

𝑟

𝜕𝑣𝑟
𝜕𝜃
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Appendix A: vector identities
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Appendix B: integral theorems


