Chapter 2: Vorticity



Circulation and vorticity

Circulation: [ = % V-dl
C
\Vorticity: £ =VxXV

The vorticity vector is numerically twice the angular
speed of rotation of the fluid element about its own axis.
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Circulation and vorticity

Fluid particles not rotating

Irrotational outer flow region
Velocity profile
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Circulation and vorticity

Stokes’ theorem

ngv-dl /(VXV)-ndA
C A

l.e. If =0 — I'=0

Flows for which € = 0 are irrotational.
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Stream tubes and vortex tubes
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Stream filament and vortex filament

f A, — 0

we have, respectively, a stream filament and
a vortex filament.

Vortex filament
of strength I’
N

[ dixr

- A4r |r)3

d
\IP Biot Savart law
dVv
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Kinematics of vortex lines

Since the divergence of the curl of a vector is zero
(by definition, show it!) it Is:

V.- =0

This means that there are no sources or sinks of
vorticity in the fluid —— the vortex lines must
either form closed loops or terminate on the

boundaries (solid surface or free surface) of the
fluid.
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Correspondence velocity-vorticity
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Correspondence velocity-vorticity

Incompressible flow: V-v=10

Let’s integrate over the total volume IV of a
stream tube (whose total outer surface Is s):

/V-VdV—U ' >/V-nds—0
v Gauss theorem S

/V-nder/V-ndS:O — V1:V2
A As
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Correspondence velocity-vorticity

Vorticity is divergence-free: V.¢ = 0

Let’s integrate over the total volume IV of
a vortex tube (including the ends):

/VV. C ':{V - 0 CIEaUSS theorer% / C-nﬂfj - 0

)

/C-nder Cnds=0 — | T
A A5

1
=]
(\)
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Helmholtz's theorems (1858)

The circulation I" at each cross-section
of a vortex tube (or filament) is the
same; alternatively, the average vorticity
Increases as the cross-section of the
vortex tube decreases: (i14; = (242

Helmholtz’s first theorem

the strength of a vortex fillament Is
constant along its length, i.e. T" IS
an invariant of the motion
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Helmholtz's theorems (1858)

Helmholtz’s second theorem
A vortex fillament cannot end In a fluid:
It must extend to the boundaries of the

fluid or form a closed path
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Helmholtz's theorems (1858)

Helmholtz’s third theorem

In the absence of rotational external
forces, a fluid that is initially irrotational
remains irrotational, I.e. fluid parcels
free of vorticity remain free of vorticity.
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Kelvin’s circulation theorem (1869)

In an ideal fluid which is either barotropic
| p = g(p)] or at constant density, with
conservative body forces, the circulation
around a closed curve (which encloses
the same fluid elements) moving with the
fluid remains constant with time:

DI

— =0
Dt

Chapter 2: Vorticity

Aerodynamics



Kelvin’s circulation theorem (1869)

I'(t) = j}é vV-dl
c)

Euler equation, with conservative body force:

Dt pdx; Ox
DI D DV,,' D(dx;)
Dt Dt Vi dxj = {E dxj +V; Dt
C(t) C(t)
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Kelvin’s circulation theorem (1869)

DI’ Dv;
> E: {Dt(h’_l_vm)}
e
1 0 0G
— ?g (—d—pdx, 5 dx,+v d’v)
. C(t) p ‘x] xf

dp |

= jﬁ [[—)erGJrzd(v v)]
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Kelvin’s circulation theorem (1869)

(Op/ Ox;)dx; = dp total spatial variation
(0G/0x;)dx; = dG of pand G

Integrations are carried out on the closed
contour C(t) and, since the velocity and the
body force are single-values, we are left with:

Dl dp

Dt ) p
Lo
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Kelvin’s circulation theorem (1869)

If the density Is constant it is easy to see that the
material derivative of I' vanishes. If the field is
barotropic, p = g(p), then dp = g'(p)dp

DU /
szg £ 4y — g
[ o P

which can be stated as follows: if we follow a given
contour as it moves with the fluid, the total vorticity
iInside that contour does not change (KCT).

Total vorticity could change because of (i) viscous effects, (i) non-
conservative body forces, or (iii) density variations not due to op.
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Conseqguences of KCT

DI _ _ - e
— = 0 implies that : P

Dt . D//' N l/ C,
any closed contour . —— S
C(t) In a fluid has a /D/U—G\g/(l Rk /,D_/_ri/ci_x
definite value of T ~% » ¢ 7 &

5 -g-2

which does not o\

change as the ek peniny
at time 1, . : at a later time ;. The
fluid elements  form
contour moves and iy e g
Is deformed by the

flow.
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Conseqguences of KCT

DI T
B 0 implies that any closed contour C(t)

In a fluid has a definite value of I" which does
not change as the contour moves and Is
deformed by the flow.

If at a given time there Is no body inside the
contour, it will not enter the contour at later
times. If there is a body initially ...
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Conseqguences of KCT

RNE
" Y
o _.k Starting ¢ ¢

vOslex

(b) Picture some moments after the start of the flow
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Conseqguences of KCT

The starting vortex and the
generation of lift

The airfoil has circulation around it while
Immersed in an irrotational flow.
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https://youtu.be/bvV7-9wAXc0
https://youtu.be/VcggiVSf5F8

The vorticity equation

Navier-Stokes for a fluid of constant density
and viscosity:

=
(...—V+ (V-V)V=-V (p) + W2V
Ot p

d—VJr V(%V-V) — Vx (V xV) = V(ﬁ) + v VAV

and taking the curl: ())C; ~Vx(vx§)=vV¥(
(

(curl grad = 0!)
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The vorticity equation

Vector identity:
Vx(vxg) :V(V/l;) - C(V/V) —(V-V)E +(C-V)v

% - (v-V)¢ —(¢-V)V+v Vi
|

ot
\ \ ] | )
| | |
convection of vorticity vorticity viscous
from the flow stretching/tilting diffusion
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The vorticity equation

2D flows: the vorticity Is orthogonal to the
plane where the velocity Is defined, hence

C-Vv=0

The vorticity equation (both 2D and 3D
flows) does not have the pressure In it.
Pressure can be found a posteriori from:

Vz(ﬁ) = ¢ ¢ +v- (V) —%Vz(v-v)
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The vorticity equation

In 3D flows the rotation and damping/
amplification term £ -V v Is crucial.

ltisknownthat Vv=E + Q

symmetric strain  skew-symmetric
rate tensor rotation rate tensor

with V v thus related to deformation
and rotation rates in the fluid.
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The vorticity equation

C.

s

Vv =C'E+C/Q

show this!

—

2
>+ (v-V)g = & E 4V
Ot L

Y
damping/amplification of vorticity
of vorticity, plus tilting of the axis
of the vortex tube because of the

action of strain rate
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The vorticity equation

O

Ot

- (veV)e = | C-E) +v V3¢

this term iIs a source/sink of vorticity
(absent in 2D)
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The vorticity equation

By Kelvin’s theorem (inviscid and barotropic fluid, conservative
body forces), the circulation on a material line around any
section of the vortex tube is conserved. Thus the reduction in
section of the tube brings with it an increase in vorticity. As the

vortex tube is stretched (deformation work made by E) we
have an increase of the

average vorticity.

Other interpretation: conservation of angular momentum.
Stretching of material surface == section/ == moment of

inertia / = angular velocity /
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Exercise

Competition between linear strain of a viscous axisymmetric vortex and viscous diffusion

Les us consider a system of cylindrical coordinates (r, 4, z) and an axisymmetric (d/06 = 0)
vortex tube aligned with z. The tube has a single component of vorticity (along z), which is

o = ofr, 1), t being the independent time variable. The velocity field is a linear strain field, with
the z component given by v, = oz, « a positive constant.

Starting from the vorticity equation, and focusing on the
source/sink terms of vorticity, find the conditions under which the
vorticity remains aligned with z, i.e. the source terms of the
components of the vorticity equation along r and #vanish. For
these conditions find the radial and azimuthal components of the
velocity, v, and v, .
The vorticity equation becomes a scalar equation for £, = o, and
it can be easily integrated in the steady case. Show that

@ =w, exp(-ariiv). 2

Using Kelvin’s circulation theorem show that o, = a)04—3, where r, is the radius of the initial

vorticity distribution and a, the initial amplitude. This means that @, (maximum value of vorticity
at r = 0) increases with stretching (i.e. with «) and decreases with viscosity v. The amplification
of @ is accompanied (and limited) by viscous diffusion, i.e. the vortex widens radially.

Y
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Exercise

Competition between linear strain of a viscous axisymmetric vortex and viscous diffusion

I
Swirl velocity \' Swirl velocity
™ \\\“

NG & |
S
r Filament undergoes
Filament is strained viscous diffusion r
or "stretched" N

| + Al

el

g

S

N

™ Swirl velocity

gl

“ Swirl velocity
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Exercise

Competition between linear strain of a viscous axisymmetric vortex and viscous diffusion

ar 1[” (0.8)d woT? ) _OZ_TZ]
= —— = — = .= — v
== ve=y) pwlpt)dp o e
final, steady R
state vortex 0 initial vortex
I<——///
(t=0)

A
Y
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3D vorticity equation, cylindrical coordinates

()i—l—(VV)C :(CV)V—Q—\'V?‘C {C:(Crage'gz)

Ot | | V=(V, Vg V,)

source/sink

In cylindrical coordinates (r, 6, z) the source/sink term reads

e, (g - Vv, _Ce:e)_l_ee (g -|7v9+§9vr>+ez(§ -Vv,)

r

and the vorticity is

B 10v, OJdvg N v, dv, N 10d(rvg) 10v,
c=erlya0 "oz )t G T )t v Tar v ae
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Appendix A: vector identities

In the following formulas, ¢ is any scalar and a, b, and ¢ are any vectors.
VXVp=0
V:(pa) =¢V-a+a-Vo
V X (pa) =V¢p Xxa+ ¢(V X a)
V-(Vxa) =0
(a-V)a=IV(a-a) —a x (V X a)
Vx(Vxa)=V(V-a)—Va
Vx(axb)=aV-b)—b(V-a)—(a-V)b+ (b-V)a
V-(axb)=b-(Vxa)—a-(VXxDh)
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Appendix B: integral theorems

In the following two theorems, which relate surface integrals to volume
integrals, V' is any volume and S is the surface that encloses 7, the unit nor-
mal on S being denoted by n. ¢ is any scalar and a is any vector.

Gauss’theorem: (also known as the divergence theorem):

/a-ndS:/V-adV
s V

Green’s theorem:

/ c/)?—(/)ds = / V- Vp + V2| dV
K} V

on

Stokes’ theorem:

jﬁa-dl:/A(V X a)ndA

This theorem relates a line integral to an equivalent surface integral. The
surface A is arbitrary, but it must terminate on the line /.
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