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/Û1m
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Abstract

The aim of this research thesis is to deepen the knowledge and understanding
of sand wave dynamics, improving the description of the physics of the prob-
lem and introducing new elements to the analysis which were not taken into
account in previous works. The first step followed in this work is the set-up
of a two dimensional simple model focused on the study of the interaction
between the topography of small bedforms and the surrounding flow field.
In fact, the physical process leading to the formation and migration of sand
waves in tide-dominated coastal areas has been investigated by means of a
linear stability analysis of a flat sandy bottom subject to an oscillatory cur-
rent of tidal origin. To perform the analysis the problem has been divided in
to a basic state and a perturbed state. The former represents an undisturbed
tidal current in absence of bedforms, while the latter takes into account the
introduction of bottom perturbation which trigger the rise of a perturbed
flow responsible of the growth or decay of the bedforms.

In a second stage a fully three-dimensional model for the generation and
evolution of sand waves and tidal sand banks from bottom perturbations of a
flat seabed subject to the action of tidal currents is proposed. A horizontally
two-dimensional basic flow comprehensive of Coriolis effects, forced by the
local tidal currents, is considered. The basic flow is completely resolved also
in the vertical direction from the sea bed up to the free surface. The flow
regime is assumed to be turbulent and a Boussinesq approach is adopted
to model Reynolds stresses. The eddy viscosity depends on the distance
from the bed and an accurate description of the flow close to the sea bed,
where sediment motion is mainly confined, is obtained. Sediment transport is
modelled in terms of both suspended load and bed load. Finally, the presence
of wind waves is taken into account.





Introduction to Coastal
Morphodynamics

MORPHOLOGY AND MORPHODYNAMICS

The morphology of different patterns and forms, which are present on
the surface of the earth and on the bottom of the sea, is of great interest
from a scientific point of view as well as for many practical reasons. The
observation, investigation, and study of the appearance and evolution of
these natural patterns arising in sedimentary environments for different time
scales (depending on the physical processes involved) are the main subject
of morphodynamics.

These features invariably arise from the mechanical interaction of the
sediment with the motion of natural fluids and often show a spectacular sur-
prisingly high degree of self-organisation. Rivers, coasts and deserts may be
viewed as self-formed features triggered by this complex dynamic interaction
between the fluid forces and the sediment present in the environment.

The study of the Earth’s morphology has a strong multidisciplinary char-
acter. Relying on the understanding of the mechanics of sediment transport,
morphodynamics is part of the branch of fluid mechanics dealing with two
phase flows. However, the existence of quasi-equilibrium patterns and the dy-
namics whereby they evolve in response to change either of sediment inputs
or of fluid motion, is of great practical interest to environmental engineers for
the planning and design of fluvial and coastal structures. This is because they
yield the knowledge of the major factors controlling the erosion and deposi-
tion processes acting in rivers, along the coastline and in the continental shelf.
In these quasi-equilibrium patterns full equilibrium is not reached because
the time scale of the climatic changes is much greater than the morphody-
namic scale, for this reason nature tends to an equilibrium configuration that
changes slowly. Finally, understanding the origin of the morphodynamical
features of sedimentary structures is of interest to historical geology, con-
tributing to the environmental interpretation of stratigraphic records. The
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Figure 1: The sediment cycle from the mountains to the abyssal plains.

contribution of geomorphology to the description of physical processes plays
a fundamental role in studying and understanding the phenomena. In fact,
morphodynamics relies strongly on field observations, as the collection and
analysis of observations is crucial for the identification and characterisation
of morphological phenomena.

Observation of actual self-forming processes reveals their typical unsteadi-
ness, being both the flow conditions and the production of sediment con-
trolled by the climate. The self-adjusting character of such processes also
implies that the evolving shape of the container produces a feedback on the
flow field: states of coasts, deserts, and rivers may only be temporary. Nev-
ertheless, the observation of evolving patterns clearly indicates the presence
of different temporal and spatial scales characterising their dynamics. If the
process is viewed at its proper temporal and spatial scale, an ideal quasi-
equilibrium state can often be achieved such that the evolving pattern may
be thought as a perturbed state relative to equilibrium. This point of view
often allows to interpret a large number of morphodynamical processes.

The environments in which sedimentary patterns occur are all those in-
volved in the sediment cycle comprised of the mountain regions to the abyssal
plains (see figure 1). Sediment particles typically travel downhill from a con-
tinental source to an oceanic sink under the action of a sequence of agents as-
sociated with the different sedimentary environments traversed by the paths
of sediment particles. The most effective terrestrial transporting agents are
definitely rivers, fed with the sediment by debris flows, rock avalanches, and
other less-disruptive types of sediment motion occurring in mountain regions.
Through alluvial fans and alluvial valleys the sediment is carried by the flow
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to the coastal region which extends to the edge of the continental shelf. In
this region, the transport of solid material is carried out by the action of
tidal currents, waves, long-shore currents and other coastal flows.

COASTAL MORPHODYNAMICS

This research work focuses attention on the study and understanding
of coastal morphodynamics. Coastal morphodynamics investigates the ap-
pearance and development of the morphological patterns observed on the
continental shelf, from its offshore edge up to the beach face. Its aim is
to predict the motion and the time development of the interface comprised
between the seabed, which is a granular medium at high concentration, and
the flowing currents above it, consisting of a mixture of water and sediment.

The distinctive feature of coastal bedforms is the oscillatory character of
the flow which drives the dynamics of the bottom interface. The oscillatory
nature of the resulting flow is due to the presence of wind-generated waves
and the propagation of tides.

In principle, to accurately describe coastal morphodynamics it would be
necessary to use a very detailed model that can predict the motion of every
particle and of the forcing flow, taking into account the interactions which
are present between these two elements and the dynamics of inelastic colli-
sion between the sediment particles. Drawing up this kind of model presents
many difficulties because of the limited analytical capability of solving differ-
ential equations and because of the high computational time required even
for modern computers to solve a complete model.

Therefore the way to follow is to solve the problem separately, describing
the motion of water, assuming that its dynamics is not affected by the pres-
ence of the solid phase (one-way coupling) and simplifying the physics of the
phenomena obtaining an approximated model. This is justified if sediment
concentrations are small.

COASTAL AND OFFSHORE BEDFORMS

The main aim of this study is to understand the evolution of some of
the bed patterns which appear in coastal seas, characterised by the presence
of a sandy bed. In shallow sandy seas, like the North Sea, various types of
regular bottom patterns exist. Most readers will be familiar with the small
regular patterns that are visible on sandy beaches during low tide. These
particular seabed features are called ripples (figure 2) and they arise from
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Figure 2: 2D ripple patterns appearing on sandy beaches subjected to tidal
current and wind waves.

the interaction between the bottom waviness with the oscillatory current due
to the presence of waves in the surf zone (Sleath, 1984; Blondeaux, 2001).
Their appearance is very important to understand and study the mechanics of
sediment transport in coastal environments: the presence of these bedforms
has a strong influence on the value of the bed roughness and therefore on the
bottom resistance and the mechanism through which sediment particles are
picked up from the bed and then transported by the fluid motions.

These small scale seabed features, which can reach up to 0.5m of ampli-
tude (megaripples), can be observed lying on larger bed forms which appear
in deeper waters and are always completely covered by sea water. The wave-
length of these larger features greatly exceeds the local water depth and
in some case their amplitude can be up to 70% of the water depth. These
characteristics give a prominent role to these large scale bedforms in the mor-
phodynamics of the continental shelf. The overlapping of different types of
bedforms can give rise to very complex morphological patterns. Nevertheless
these large scale bottom patterns show a surprising regularity, considering
the large amount of physical processes involved in their environment.

The two most important kinds of bedforms encountered in the offshore
region consist of tidal sand banks and tidal sand waves. These two patterns
have different spacial dimensions and are formed along different time scales.
The former are associated with relatively strong tidal currents (0.9-1.2m/s),
the latter with relatively weak tides (0.3-0.7m/s) (Belderson, 1986).

Tidal sand banks (figure 3) are elongated sand bodies with wavelengths
of a few kilometres and heights of tens of meters (Stride, 1982), which is a
very large value compared to the water depth in shallow seas. Furthermore,
they hardly move, and in the northern hemisphere their crests are oriented
between 5◦ and 30◦ counter-clockwise with respect to the principal direction
of the tidal current, even if sand banks having a clockwise orientation exist
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Figure 3: Patches of tidal sand banks (left panel, adapted from Dyer &
Huntley, 1999) and of tidal sand ridges (right panel) present in the North
Sea.

Figure 4: Shoreface-connected ridges along the central part of the Dutch
coast (left panel, adapted form Van de Meene, 1994); origin of sand ridges
by shoreface spit growth (right panel).

(Dyer & Huntley, 1999). Their typical evolution time has been estimated to
be of a few hundreds of years.

Smaller bodies of sand, elongated and almost parallel to the main tidal
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Figure 5: Longshore bar at low tide (left panel) and beach cusps (right panel)
observed on sandy beaches.

current, have been recognised over large areas of continental shelves swept
by tidal currents (Stride, 1982). The spacing of these bedforms (often called
sand ribbons, longitudinal sand patches or sand ridges; see figure 3) usually
scales with the water depth.

Sometimes topographic rhythmic features are observed in the transition
region between the continental shelf and the near-shore region. These kind
of patterns usually start at the offshore end of the shore-face and extend
seaward. They are quasi alongshore periodic with a spacing of several kilo-
metres. They are oriented along the coastline, forming an angle of 20 − 35◦

with it, and they are named shoreface-connected ridges (figure 4).
Systematic studies, based on field surveys, have led to group beach mor-

phologies in two-dimensional states and states showing varying degrees of
three dimensionality. From the hydrodynamic point of view beaches are usu-
ally categorised as dissipative (gentle slope, breaking of waves well offshore)
and reflective (steep slope, breaking of waves close to the shore). Wright &
Short (1984) introduced a dimensionless parameter Ω which represents the
state of the beach, taking into account both wave and sediment characteris-
tics

Ω =
Hb

wsT
(1)

where Hb is the breaker height, ws is the sediment fall velocity and T is the
wave period. Values of Ω smaller than 1 identify fully reflective beaches, while
values greater than 6 represent fully dissipative beaches. A more detailed
classification can be introduced, identifying intermediate states, represented
by values of Ω comprised between 1 and 6.

Highly dissipative beaches are characterised by the presence of one or
more longshore bars consisting of ridges of sediment running roughly parallel
to the shore (figure 5), which may have a considerable longshore extent, and
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an inter-bar spacing of the order of 100 m. The generation and maintenance
of these bars are commonly associated with the shoaling and breaking of
high-frequency waves.

Field observations show that, for mild wave conditions, the longshore bars
may take on a rhythmic crescentic shape. Large crescentic forms appear in
the outer bar of a beach while the inner bars are segmented by more closely
spaced periodic forms. The shape of the arcuate crescentic bar is generally
symmetrical, but there are cases where it is skewed. Bottom patterns with
a significant asymmetry are named welded or transverse bars.

Observing the shoreface at a smaller scale it can be noted that the beach
face is seldom straight, but often contains seaward projections of sediment
that are known as beach cusps or shoreline rhythms (figure 5). A wide range
of cusps spacings can be found on beaches, the cusps wavelength varying
between 1 and 100m. The smaller values are found on beaches with small
waves, while the largest values are generated by large storms.

SAND WAVES

Among the many bedforms occurring in coastal regions, characterised
by non-cohesive (sandy) deposits, sand waves are undoubtedly one of the
most important for human activities. Sand waves typically occur in shallow
seas, among which the North Sea is one of the most studied (Van Veen, 1935;
Langeraar, 1966; Stride, 1970; Mc Cave, 1971; Terwindt, 1971; Huntley et al.,
1993; Dyer and Huntley, 1999). These bedforms have been observed as well
in the Japanese Sea (Knaapen et. al, 2002), in the Chinese Sea (Boggs, 1974)
and in front of the North American coasts (Ludwick, 1972). Even in deeper
waters, like the Strait of Messina in the Mediterranean Sea, field surveys
revealed the presence of these kinds of sand bodies (Santoro et al., 2002).
These bedforms have a typical wavelength ranging from 100m to 800m and
heights of a few meters and their crests are almost orthogonal to the direction
of propagation of the tidal wave. They are not static bedforms, in fact, they
migrate at a rate which strongly depends on the tide characteristics and in
particular on the intensity of the local residual currents, and can be of up
to some tens of meters per year (Terwindt, 1971; Bokuniewicz et al., 1977;
Fenster et al., 1990). The sawtooth-shaped profile of sand waves is similar,
but less asymmetric, to that of desert sand dunes or that of dunes observed in
fluvial environments. However, they differ from bedforms induced by steady
currents since the basic flow in which sand waves evolve has an oscillatory
nature. Even if their shape is asymmetric, flow separation does not occur in
the neighbourhood of the crests.
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Figure 6: Location of sand waves and sand banks patterns in the North Sea
in front of the Dutch coast (from Van Alphen and Damoiseaux, 1989).

As pointed by Hulscher, De Swart & De Vriend (1993), Hulscher (1996a)
and Gerkema (2000) the process which leads to the formation of these bed-
forms is similar to that originating sea ripples under gravity waves (Sleath,
1976; Blondeaux, 1990; Blondeaux, 2001). In fact, the interaction of the os-
cillatory tidal flow with bottom perturbations gives rise to a steady streaming
in the form of recirculating cells. When the net displacement of the sediment
dragged by this steady streaming is directed toward the crests of the bottom
waviness, the amplitude of the perturbation grows and bedforms are gener-
ated. On the other hand, the flat bottom configuration turns out to be stable
when the net motion of the sediment is directed toward the troughs of the
bottom waviness.

The appearance, growth, and migration of the sand waves have signifi-
cant effects on the human activities taking place in shallow shelf seas, as in
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Figure 7: Networks of telecommunication and energy cables (left panel) and
of pipelines, gas ducts and oil-extraction platforms (right panel) present in
the North Sea in front of the Dutch coast (source: Noordzeeatlas).

the North Sea, and even in deeper waters, like the Mediterranean Sea. In
recent decades, in fact, managers and engineers carrying on activities in envi-
ronments where sand waves were present, needed to understand and foresee
the behaviour of these bedforms. Pipelines and cables, navigability and sand
mining are the main activities influenced by the presence of these bedforms.

Pipelines and Cables

Laying down a new pipeline in shallow or deep seas requires good accuracy
and attention in order to position the lines in such a way that they are
protected from severe stresses and forces due to the exposure to tidal currents
and gravity, which could buckle or bend them. Usually the typical procedure
is to bury them well below the sea bed. Obviously, the cost of the pipeline
increases with the depth at which it is buried. However, if the depth at which
the pipes are buried is not deep enough and sand waves appear, the pipeline
will be exposed to the action of the tidal currents along its free span which
will be almost the same of the wavelength of the sand waves. This situation
can lead to high stresses of buckling under the action of the gravity and of the
drag force of the current, but also to vibration problems due to the release
of vortices.
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Figure 8: Top Panel - Strait of Messina (between Sicily and main land Italy):
location of the surveyed area (red circle). Bottom Panel - Bottom topogra-
phy; a sand waves field is clearly present in the middle of the area (adapted
from Santoro et. al, 2002).

In this case, a large amount of money has to be spent in periodic mainte-
nance work in order to protect and stabilise the lines. Even more dangerous
could be the linkage by ship anchors or by fishing gear, like the ground-nets,
which can lead to the fracture of the pipeline. Positioning the pipes on the
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top of the profile of the sand waves does not improve the situation: changes
in the shape of the bedforms or their migration can expose again the pipes
to the stresses described above. A very expensive solution to overcome the
problem is to position the lines around sand wave fields, instead of crossing
them. This is not a very suitable option because of the significant increase
of materials to be employed and because sand waves fields are not static and
they could move toward the pipeline. As shown in figure 7, the presence
of complicated networks of telecommunication cables (left panel) and of oil
and gas pipelines (right panel) lets one imagine the problems that could be
created by the interaction between these bedforms and the buried lines.

Figure 9: Surveys of the sea bed profile performed in different years in corre-
spondence of the gas-pipeline between Sicily and Italy. Source: SNAMPRO-
GETTI.

This problem has not been observed only in shallow seas like the North
Sea, but in deeper waters like in the Mediterranean sea. In particular, after
the laying of a pipeline in the Strait of Messina, located between the island
of Sicily and main land Italy, the formation of several sand waves after few
years has been observed. In figure 8 and 9 the location of the site where
sand waves have been observed and the surveys performed along the pipeline
in different years are reported. Note that the depth at which these bedforms
appeared was approximately 250m.

Navigation Channels

Large ships, like container carriers or huge oil-tankers, require a minimum
navigation depth, and even the width of the navigation channel is very im-
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Figure 10: Navigation channels present in the North Sea along the Dutch
coast. Approximatively 500,000 ships travel along these paths. More than
220,000 run through the channel leading to the Europoort of Rotterdam
(source: Noordzeeatlas).

portant when the ships are manoeuvring. In shallow seas like the North Sea
and in particular along the navigation route which leads to the Rotterdam
harbour (EUROPOORT), the maintenance of the navigability standards is
of vital importance for the economic activities of the region. To prevent
any risk to shipping, the Eurochannel is frequently dredged. Nevertheless,
the clearances are very marginal (in figure 10 the main navigation channels
present in the North Sea are shown, most of them have to be dredged in order
to reach the minimum nautical depth required by draught bulk carriers, i.e.
22-23 meters).

Both the migration and the seasonal variation in height or asymmetry of
the sand waves can significantly affect the topography of the sea bed. In some
cases this reduces the minimum free water depth necessary for the naviga-
tion of the vessels. Applying the knowledge concerning sand wave dynamics
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(growth and migration) with analytical tools could improve the management
and the planning procedures of the maintenance activities for safe navigation
conditions.

Sand Mining

In the last decade the need for coastal administration to decrease the rate
of erosion of the coasts, either for touristic aims, or for necessity, indicated
sand extraction from the sea bed as one of the solutions to be employed. The
dredged sand, in fact, can be used for beach nourishment, land reclamation
and even in the construction industry. Moreover, as explained before, the
dredging of these bedforms is necessary to allow safe navigation in shallow
seas. For this reason it is important to understand the influence of sand wave
fields on dredging and mining activities. Of particular interest is the question
whether sand waves fields tend to regenerate after the sand extraction, and
if so, how quickly they will reach their original size (Knaapen et a., 2002). A
good knowledge of the evolution of sand waves will allow to set up optimised
dredging/mining activities with respect to the environmental matters and
economical costs.

Other Practical Relevances

The appearance of sand wave fields is also of interest in regards to coastal
protection and dispersion of pollutants. In the first case the presence of sand
waves and sand banks provides for a direct protection of the adjacent coast-
line because they lead to the dissipation of the wave energy by the breaking
of storm waves before they reach the coast. In the second case, buried or
dumped material can be incorporated in the sand waves, and depending on
the specific weight of the material, it will tend to accumulate in the troughs
or on the crests of the bedforms. The following migration of these patterns
could lead to a dispersion of the dumped materials with potentially very
negative effects on the eco-system.

OUTLINE OF THE THESIS

The aim of this research thesis is to deepen the knowledge and under-
standing of sand wave dynamics, improving the description of the physics of
the problem and introducing new elements to the analysis which were not
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taken into account in previous works. The first step followed in this work is
the set-up of a simple model focused on the study of the interaction between
the topography of small bedforms and the surrounding flow field. In fact,
the physical process leading to the formation and migration of sand waves
in tide-dominated coastal areas has been investigated by means of a linear
stability analysis of a flat sandy bottom subject to an oscillatory current of
tidal origin. To perform the analysis the problem has been divided into a
basic state and a perturbed state. The former represents an undisturbed
tidal current in absence of bedforms, while the latter takes into account the
introduction of bottom perturbation which trigger the rise of a perturbed
flow responsible of the growth or decay of the bedforms.

In a second stage a fully three-dimensional model for the generation and
evolution of sand waves and tidal sand banks from bottom perturbations of a
flat seabed subject to the action of tidal currents is proposed. A horizontally
two-dimensional basic flow comprehensive of Coriolis effects, forced by the
local tidal currents, is considered. The basic flow is completely resolved also
in the vertical direction from the sea bed up to the free surface. The flow
regime is assumed to be turbulent and a Boussinesq approach is adopted
to model Reynolds stresses. The eddy viscosity depends on the distance
from the bed and an accurate description of the flow close to the sea bed,
where sediment motion is mainly confined, is obtained. Sediment transport is
modelled in terms of both suspended load and bed load. Finally, the presence
of wind waves is taken into account.

The outline of the thesis is as follows:

Chapter 1
In the first chapter the model has been applied to investigate the mech-

anism leading to the formation of sand waves.
The conditions for the decay or amplification of small bottom perturba-

tions are determined for arbitrary values of the typical parameters of the
problem, which are r, corresponding to the ratio between the amplitude of
the horizontal tidal excursion and the wavelength of the bottom perturba-
tions, and s, which is a stress parameter necessary for the description of the
partial slip condition, relating shear stress and velocity at the bottom.

According to field observations, the initial growth of sand waves requires
a minimum amplitude of the tidal current, even when the critical bed shear
stress for the initial motion of sediment is set equal to zero. In this first set
of runs only the main tidal constituent has been taken into account, while
steady currents and over-tides have been neglected. Moreover, the minimum
amplitude depends on sediment characteristics. In particular, the analysis
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shows that sand waves appear only on a sandy bottom and their growth does
not take place when a coarse sediment covers the sea bed.

The solution procedure extends the harmonic truncation method which
is often used to describe the flow generated by the interaction of bottom
perturbations with the oscillatory tidal current (Hulscher, 1996a; Komarova
& Hulscher, 2000; Komarova & Newell, 2000). In the present work, the
problem has been solved for arbitrary values of r and s using a procedure
similar to that employed by Vittori (1989) and Vittori & Blondeaux (1990)
in a different context. A Fourier series in time is used to compute the stream
function associated with the flow perturbations and the results show that
the number of harmonics necessary to obtain an accurate description of the
perturbed flow is relatively small for moderate values of r, but it increases as
the parameter r is increased. Finally, the asymptotic approach proposed by
Gerkema (2000) for large values of both r and s is modified in the bottom
boundary layer to describe cases characterised by values of s of order one,
which is the order of magnitude suggested by an analysis of field data.

Chapter 2
In the second chapter attention is focused on the mechanism of migration

of sand waves and in particular the study has been devoted to the prediction
of migration rates that sand waves undergo because of tidal and residual
currents.

The inclusion of steady current (Z0) and various harmonic components
(M2 and M4) of the tidal wave in the description of the phenomenon allows
for the prediction of the migration speed of sand waves. In fact, if only one
tidal component (M2) is accounted for and the residual current is neglected
as done by Hulscher (1996a), Gerkema (2000), Komarova & Hulscher (2000),
the flow at time t + T/2 (T being the tide period) is the mirror image of
that at time t, the time-averaged flow is symmetric and no migration of
sand waves can be induced. Although for practical problems migration is
probably the most important property of sand waves, only Németh et al.
(2002) modelled sand wave migration. Németh et al. (2002) investigated the
phenomenon by means of a model similar to that of Hulscher (1996) and,
hence, with an approach which is strictly valid only when the parameter r is
moderate. Moreover, Németh et al. (2002) only considered the presence of a
residual current and found that sand waves always migrate downstream, i.e.
in the direction of the steady current. Field data, which will be presented
in section 2.2, show that in some cases sand waves migrate upstream, i.e.
against the residual current. Even though different elements can contribute
to sand wave migration (a.o. storms, wind driven currents, ...), it is possible
to show that such an upstream migration can be modelled by investigating
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the interaction of different tide constituents (Z0, M2 and M4).
The model adequately predicts migration rates even for the cases of

upstream-propagating sand waves, i.e. for sand waves which migrate in
the direction opposite to that of the residual current. It is shown that up-
stream/downstream propagation is mainly controlled by the relative strength
of the residual current with respect to the amplitude of the quarter-diurnal
tide constituent and by the phase shift between the semi-diurnal and quarter-
diurnal tide constituents. Therefore, to accurately predict field cases a de-
tailed knowledge of the direction, strength, and phase of the different tide
constituents is required.

Chapter 3
In the third chapter attention is focused on the use of a more sophisticated

and complete model capable of giving both a more reliable description of the
process which leads to the formation of tidal sand banks and sand waves and
more accurate predictions of their characteristics. Turbulence generated by
tidal currents is described by introducing an eddy viscosity which is assumed
to linearly grow with the distance from the bottom in the region close to
the sea bed, to reach a maximum and to decrease and assume small values
close to the free surface. Sediment is supposed to move as both bed load and
suspended load since field surveys show that large amounts of sediment are
put into suspension and transported by tidal currents. Moreover, the sedi-
ment motions induced by surface gravity waves are also considered. Finally,
residual (steady) currents are taken into account because their presence is
essential in explaining sand wave migration.

The model is based on the study of the stability of the flat bottom con-
figuration. Small bottom perturbations are considered and a linear analysis
of their growth is performed. The results show that the model can describe
both the process which gives rise to sand waves and that leading to the for-
mation of sand banks. The former bedforms have their crests normal to the
direction of the tidal current and are characterised by wavelength of O(102

m). The latter bedforms have wavelengths of O(104 m) and turn out to be
rotated slightly counterclockwise or clockwise with respect to the direction
of propagation of the tidal current depending of the direction of rotation of
the tidal wave. A comparison of the theoretical results with field observa-
tions supports the model findings. As a matter of fact, model predictions are
successfully compared with field data of different sand banks (Le Bot et al.,
2000) and sand waves measured at different locations in the North Sea.
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Part I

A simple model
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Introduction to Part I

One of the first attempts to explain the appearance of large scale bedforms
is due to Huthnance (1982a). He focused his attention on sand banks and he
assumed that they arise as free instabilities of the sea bottom forced by tidal
currents. Further contributions to the study of sand banks formation were
given by De Vriend (1990), Hulscher et al. (1993) and De Swart & Hulscher
(1995). In the latter works it is also pointed out that a model based on depth
averaged shallow water equations can explain formation of sand banks but is
unable to predict the appearance of sand waves unless secondary circulations
in the vertical plane are properly parametrized. Indeed, as pointed out in
the studies of sand waves (Hulscher, 1996a; Gerkema, 2000), the process
which leads to the formation of these bedforms is similar to that causing sea
ripples under gravity waves (Sleath, 1976; Blondeaux, 1990; Blondeaux &
Vittori, 1999; Blondeaux, 2001). Thus the interaction of the oscillatory tidal
flow with bottom perturbations gives rise to a steady streaming in the form
of recirculating cells. When the net displacement of the sediment dragged
by this steady streaming is directed from troughs toward crests of bottom
perturbation, the amplitude of the latter grows. On the other hand, the
flat bottom configuration turns out to be stable when the net motion of the
sediment is directed from crests toward troughs of the bottom perturbations.

Finite-amplitude sand waves were investigated by Fredsøe & Deigaard
(1992) with an approach similar to that proposed by Fredsøe (1982) for dunes
in fluvial environments. The approach describes the form of sand waves, but
it is unable to explain the mechanism causing these bedforms and to predict
the conditions which lead to their appearance. First attempts to describe
sand wave appearance were made by Hulscher et al. (1993) and De Swart
& Hulscher (1995) using depth averaged models with parameterisations of
secondary currents in the vertical plane.

The first contribution aimed at a quantitative investigation of sand wave
formation by means of a 3D approach is due to Hulscher (1996a), who for-
mulated a model based on the three-dimensional shallow water equations.
In this study turbulent stresses are handled by means of the Boussinesq hy-
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pothesis and the eddy viscosity is assumed to be constant in time and over
the water depth. As discussed in Hulscher (1996a) a constant eddy viscos-
ity gives rise to an acceptable velocity profile, except in a negligible thin
layer close to the wall, only when the no-slip condition at the bottom is re-
placed by a partial slip condition. Finally, the bottom time development is
determined using the sediment continuity equation and a simple sediment
transport formulation. The analysis predicts the temporal development of
bottom perturbations of small amplitude (strictly infinitesimal) and deter-
mines the range of parameters for which the bottom perturbations amplify
or decay.

The hydrodynamics of the problem is characterised by the presence of the
parameter r, which is the ratio between the amplitude of the horizontal tidal
excursion and the wavelength of the sand waves. Under field conditions r is
typically large and, as discussed by Gerkema (2000), the truncation method
used by Hulscher (1996a) to work out the solution, is not appropriate. By
exploiting the fact that r is large, he solved the problem by using an asymp-
totic approach similar to that developed for the Orr-Sommerfeld equation for
large values of the Reynolds number Re (Lin, 1967; Drazin & Reid, 1981).
In this approach the fluid perturbation is split into two parts: an inviscid
outer solution and viscous boundary layers, located at the wall and possibly
corrections that are significant near ’critical’ levels. Moreover, an analysis of
the order of magnitude of the terms of the Orr-Sommerfeld equation shows
that the wall layer has a thickness of order Re−1/3. In closely following such
approach, Gerkema (2000) assumed that the viscous wall layer has a thick-
ness of order r−1/3. However, the latter estimate is suitable when the no
slip condition applies at the wall. In the context of the model employed by
Gerkema (2000), the turbulent basic velocity distribution is approximated
by a profile which does not vanish at the bottom, unless the stress parameter
s, as assumed by Gerkema (2000), tends to be much larger than one and the
turbulent velocity profile is almost coincident with that characterising the
laminar regime. An analysis of field data and previous works on the subject
(Hulscher, 1996a & 1996b) suggest that in the field s is of order one. In this
case it can be shown (see section 1.3.3) that the viscous wall layer turns out to
be of order r−1/2 rather than r−1/3 and critical layers do not exist. Gerkema
(2000) also solved the problem with two alternative approaches. The first is
an extension of Hulscher’s (1996a) approach and it is strictly valid only for
small values of the parameter r. The second uses a double series expansion
and applies to values of r much larger than one. Unfortunately the method
is not convergent in the case of, as pointed out by Gerkema (2000) himself,
r is very large. To make an example considering sand waves characterised
by a wavelength of the order of 100m and a semi-diurnal strong tide of the
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order of 1m/s, it can be easily found that r attains values about 400, a value
which is larger than the upper limit suggested by Gerkema (2003) for the
application of the double series expansion approach (300).

In the present work, the problem has been solved with a method that is
applicable for arbitrary values of r and s using a procedure similar to that
employed by Vittori (1989) and Vittori & Blondeaux (1990) in a different
context. A Fourier series in time is used to compute the stream function
associated with the flow perturbations. The results show that the number
of harmonics necessary to obtain an accurate description of the perturbed
flow, for moderate values of r, is relatively small, but larger than one and
increases as the parameter r is increased (see discussion in section 1.4). This
finding shows that the model of Hulscher (1996a), who evaluated the per-
turbed flow by considering just one harmonic, describes the main qualitative
features of sand wave growth, but the results might be affected by significant
quantitative errors.
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Chapter 1

Formation of sand waves

1.1 Formulation of the problem

The formulation of the problem does not differ from that of previous authors
(see for example Hulscher, 1996a, and Gerkema, 2000). Here, it is repeated
for the sake of completeness and clearness.

We consider the flow generated by a tidal wave propagating over a cohesion-
less bed and investigate the time development of the bottom configuration
it induces. To allow an easy comparison between the results of the present
analysis and that of Gerkema (2000), we use, when possible, the same no-
tations. We consider a two-dimensional turbulent flow and, we employ a
Boussineq type closure and the ‘slip velocity’ approach of Engelund (1964).
Hence the hydrodynamics of the problem is described by momentum and
continuity equations which read

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ A∇2u (1.1)

∇ · u = 0 (1.2)

where x denotes the horizontal coordinate in the direction of tide propaga-
tion, z is the vertical coordinate, u = (u, w) are the horizontal and verti-
cal velocity components averaged over turbulence respectively and ∇ is the
operator defined by (∂/∂x, ∂/∂z). Moreover, the density ρ and the eddy
kinematic viscosity A, which is introduced to model Reynolds stresses, are
assumed to be constant in space and in time. This assumption lead to a
simplified formulation of the problem, advantageous in terms of analytical
and numerical computations.

A constant eddy viscosity model provides an approximate but still ac-
ceptable description of the flow induced by tide propagation provided the
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1.1 Formulation of the problem

Figure 1.1: Sketch of the model geometry and of the partial slip condition.
The horizontal and vertical direction are denoted by x and z.
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FORMATION OF SAND WAVES

no-slip condition at the bottom is replaced by a partial slip condition

∂u||
∂n

= s̃u|| at z = η(x, t) (1.3)

where ∂/∂n denotes the derivative in the direction normal to the bottom, u||

indicates the along-slope velocity component and z = η(x, t) describes the
bottom profile (Engelund, 1964). In (1.3) s̃ is a stress parameter, the value of
which should be properly chosen. Moreover, at the bed the normal velocity
component should vanish

u
∂η

∂x
− w = 0 at z = η(x, t). (1.4)

Finally, we use the rigid lid approximation and, at the free surface (z = H),
we force

w = 0,
∂u

∂z
= 0 at z = H. (1.5a,b)

The results of the present analysis do not fully confirm the adequacy of
such model. However, before improving upon the turbulent formulation, we
need to investigate fully what predictions arise from the correct use of such
model.

The morphodynamics of the problem is governed by the sediment conti-
nuity equation which simply states that convergence (or divergence) of the
sediment flux must be accompanied by a rise (or fall) of the bed profile

∂η

∂t
+
∂Q

∂x
= 0 (1.6)

where Q denotes the sediment flux per unit width divided by a porosity
factor. The problem is closed by a sediment transport formulation. To allow
an easy comparison of present results with those of Gerkema (2000), we follow
his analysis and assume that

Q = α|u|3
(

u

|u| − γ
∂η

∂x

)

. (1.7)

The above sediment transport formula is obtained by relating Q to the
agitating forces which act on sediment grains. The latter move subject to the
drag force and to the tangential component of gravity acting along the bed
profile, other forces being negligible. The sediment transport induced by the
drag force is empirically known to be proportional to the third power of the
fluid velocity while that caused by gravity is known to be linearly related to
the local bottom slope, at least for small values of the latter. In (1.7) α is a
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1.2 The basic state

constant, the value of which is of order 10−4s2m−1, and γ is the dimensionless
bed-slope parameter which assumes typically values of order one (see Fredsøe,
1974). To estimate the constant value A of the eddy viscosity, the depth
averaged value of the actual eddy viscosity profile is computed. Moreover, it
is possible to obtain an estimate of the value of the parameter s̃ comparing
the parabolic velocity profile obtained by (1.1) in steady conditions with the
well known logarithmic distribution.

Using a parabolic profile to describe the z-variations of the kinematic
eddy viscosity and the values of the conductance coefficient C suggested in
the literature (see a.o Fredsøe and Deigaard, 1992), it turns out that

A =
κUmH

6C
; s̃ =

6

H(κC − 2)
with C = 2.5 ln

(

H

ε

)

+ 6 (1.8a,b)

where κ = 0.41 is the Von Karman’s constant, Um is the depth averaged
velocity defined as

Um =
1

H

∫ H

0

u(z) dz (1.9)

and ε is the bottom roughness. Similar relationships are obtained using dif-
ferent eddy viscosity profiles even if significant quantitative differences may
be present. Since tidal currents are a slowly varying phenomenon, relation-
ships (1.8) are expected to provide a reliable estimate also in the case under
investigation. On the basis of these results it can be concluded that A ranges
around 10−2 and 10−1 m2/s and s̃ around 10−2 and 10−1 m−1,values similar
to those employed by Hulscher (1996a) and discussed in Hulscher (1996b).

1.2 The basic state

In order to model the flow locally induced by the propagation of the tidal
wave, we consider the flow over a flat bottom forced by an oscillatory hori-
zontal pressure gradient of angular frequency σ and write

∂p

∂x
= −P1x

2

(

eiσt + c.c.
)

, (1.10)

where the strength of the pressure gradient can be related to the amplitude
of the tidal wave. In this first part of the work we assumed just one harmonic
constituent in order to study the effect of the main semi-diurnal tidal con-
stituent on the growth of the bedforms. The reader should notice that the
form of ∂p/∂x employed herein differs from that used by Gerkema (2000). It
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FORMATION OF SAND WAVES

can be easily verified that the vertical velocity component of the basic flow
vanishes identically, while the horizontal component (ub) reads

ub =
P1x

2iρσ

[

1 + c̃
(

E2e−(1+i) z
∆ + e(1+i) z

∆

)]

eiσt + c.c. , (1.11)

where ∆ is the thickness of the viscous boundary layer

∆ =
√

2A/σ , (1.12)

and

E = e(1+i) H
∆ ; c̃ = − s̃

s̃(E2 + 1) + (1 + i)(E2 − 1)/∆
. (1.13a,b)

As discussed by Gerkema (2000), for moderate values of the parameter
µ = H2/(A/σ), which is the square of the ratio between the water depth and
the thickness of the viscous boundary layer, the basic flow, given by (1.11),
can also be approximated as follows:

ub =
U0

2

(

zc +
z

H

)(

2 + zc −
z

H

)

eiϕeiσt + c.c. , (1.14)

where zc is a dimensionless constant defined in the form

zc = −1 +
√

1 + 2/(s̃H) , (1.15)

defined as the distance below the sea bed at which the parabolic profile of
the velocity vanishes, and U0 and ϕ are fitting parameters which can be
easily determined by comparing the depth averaged values of ub obtained
from (1.14) and (1.11). In particular, as described later in more detail, it
turns out that U0 = [2/3 + zc (2 + zc)]

−1 Um, where Um is the amplitude of
the depth average velocity oscillations induced by the tide.

In figure 1.2 the velocity profiles (1.11) and (1.14) with optimised values
of U0 and ϕ are shown at different instants throughout the tidal cycle, for
fixed values of the parameters and in particular for values of µ of order 1.
The agreement is satisfactory even though the reader should be aware that,
for increasing µ, the differences between (1.11) and (1.14) become significant.

At this stage it is worth pointing out that zc is always positive, smaller
than 1 but not close to zero if values of s̃, H (s̃ ∼ O(10−1 m−1), H ∼ O(10m))
typical of the tides in the North Sea are used. For example considering a
value of the bottom roughness ε equal to 3 cm (sea ripples are supposed to be
present) and a water depth of 30 m, (1.8) and (1.15) lead to zc equal to about
0.87. Even in the presence of megaripples, which can reach an amplitude up
to 0.5m, zc will turn out to be smaller than one, but not close to zero.
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Figure 1.2: Comparison between
the exact and approximated basic
velocity profiles. (a) µ=0.1, s=1
(U0=0.099P1x/ρσ, ϕ=−0.1342);
(b) µ=1, s=1 (U0=0.595P1x/ρσ,
ϕ=−0.9326); (c) µ=10, s=1
(U0=−0.742P1x/ρσ, ϕ=−1.4908).
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FORMATION OF SAND WAVES

1.3 The time development of bottom pertur-

bations

We now perform a normal mode analysis to investigate the stability of the
flat bottom configuration.

We consider perturbations of small amplitude (strictly infinitesimal), hence
the problem can be linearised and a generic component of the bottom per-
turbation of the form

η(x, t) = Π(t) cos(kx) =
Π(t)

2
eikx + c.c. (1.16)

can be considered.
In (1.16) Π is assumed to be much smaller than H and k is the wavenum-

ber of the perturbation that can be chosen arbitrarily.
In order to solve the mathematical problem, it is convenient to make it

dimensionless by introducing the following dimensionless variables which are
denoted by a prime:

x′ = kx, z′ = z/H, t′ = σt (1.17a,b,c)

u′b = ub/U0 (1.18)

η′ = η/H, Π′ = Π/H, ψ′ = ψ/(U0H) (1.19a,b,c)

T ′ = tαU3
0 /H

2, Q′ = Q/(αU3
0 ) . (1.20a,b)

In (1.19c), ψ is the stream function associated with the velocity field
induced by the bottom perturbation (u = ∂ψ/∂z, w = −∂ψ/∂x), while T ′

has been made dimensionless using the morphodynamic time scale (H2/αU3
0 ).

The quantity U0 has been chosen as velocity scale to allow an easy comparison
between the present analysis and that by Gerkema (2000). However, the
results described in the following can be easily converted into those obtainable
with different choices of the scaling velocity. For example, if the amplitude
Um of the depth averaged velocity oscillations is taken as the scaling velocity,
it can be easily shown that Um = [2/3 + zc(2 + zc)]U0. In fact operating the
average of (1.11) and (1.14) over the depth we respectively obtain

Um = −Pi
2σ

{

1 + c̃

√

2

µ

1

(1 + i)

(

E2 − 1
)

}

eit + c.c. (1.21)
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1.3 The time development of bottom perturbations

Um =
U0

2

[

zc (zc + 2) +
2

3

]

eiφeit + c.c. (1.22)

and equating the amplitudes it is straightforward to obtain the above men-
tioned relationship.

Using these scaled variables and taking into account that the stream
function can be written in the form

ψ(x, z, t) = Π(T )Ψ(z, t)eix + c.c. (1.23)

the hydrodynamic problem is posed by the following Orr-Sommerfeld like
equation:

1

r

∂

∂t
(N2Ψ) + iubN

2Ψ − iΨ
∂2ub

∂z2
=

1

µr
N4Ψ (1.24)

with the following boundary conditions

Ψ +
1

2
ub = 0,

∂2Ψ

∂z2
+

1

2

∂2ub

∂z2
= s

(

∂Ψ

∂z
+

1

2

∂ub

∂z

)

at z = 0 (1.25a,b)

Ψ = 0,
∂2Ψ

∂z2
= 0 at z = 1 (1.26a,b)

Because the morphodynamic time scale turns out to be much larger than
the hydrodynamic scale, the time derivative of Π has consequently been
neglected in (1.24). Moreover in (1.24) the operator N 2 is defined by N2 =
∂2/∂z2 − δ2.

Finally, the time development of the bottom configuration is described
by

∂Π

∂T
+ 2δi 〈Q〉Π = 0 (1.27)

Q = i

[

3u2
b

∂Ψ

∂z
− 1

2
γδ|ub|3

]

(1.28)

where the 〈〉 brackets denote the time average over the tide cycle and the
small oscillations of the bottom profile, which take place around its average
value during the tide cycle, have been neglected. In fact, we are interested
in studying the long term behaviour of the development of the bottom per-
turbations because the bedform’s morphodynamic scale is much greater than
the evolution time scale of oscillations of the bed profile. For convenience, in
(1.23)-(1.28) and in the following, the prime has been dropped.
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FORMATION OF SAND WAVES

The problem is characterised by the following dimensionless parameters

δ = kH, r = kU0/σ, µ = H2σ/A, s = s̃H, γ. (1.29)

At this stage it is useful to discuss the typical size of the parameters
δ, r, µ, s, γ for field conditions. The parameter δ is the dimensionless
wavenumber of the bottom perturbation. Since sand waves are characterised
by wavelengths of the order of 500 m and the water depth is tens of metres,
δ attains values of order one. Typical values of Um range around 1 m/s and
σ is equal to 1.4544 × 10−4 s−1 for a semi-diurnal tide and to 7 × 10−5 s−1

for a diurnal tide. Therefore r attains values ranging from 10 to 102. Since,
as already pointed out, tidal currents are characterised by a time scale much
larger than that of the turbulent eddies, an estimate of the eddy viscosity
A and of the stress parameter s̃ can be obtained from our knowledge of
turbulence structure and eddy viscosity in steady currents and by equating
A to the depth averaged value of empirical relationships proposed to describe
the kinematic eddy viscosity and forcing the shear stress acting on the bed
to be equal to ρ (Um/C)2 where C is a conductance coefficient which depends
on the bottom roughness. On the basis of (1.8) it follows that typical values
of µ and s are of order 1. Indeed figures 5 and 6 of Hulscher (1996b) show
that average conditions of the North Sea are characterised by values of s
(s = Ŝ/Ev) smaller than 1 while in the Middelkerke bank s can be larger
than 1 but it is smaller than 2. Moreover, as discussed in Hulscher (1996a),
the field data presented in Maas & van Haren (1997) show that s ranges
between 0.1 and 10. Finally in (1.7) α is a constant, the value of which is
of order 10−4s2m−1, and γ is the dimensionless bed-slope parameter which
assumes typically values of order one. Note that Fredsøe (1974) used γ = 0.1.

Since the morphodynamic time scale is much larger than the hydrody-
namic time scale (the tide period), the problem posed by (1.24)- (1.28) can
be split into two parts: the hydrodynamics governed by the equations (1.24)-
(1.26), the solution of which provides Ψ, and the morphodynamics governed
by the equations (1.27),(1.28), the solution of which provides the time be-
haviour of Π.

The hydrodynamics has been solved here following an approach which
holds for arbitrary values of r and is based on a procedure similar to that
employed by Vittori (1989) and Vittori & Blondeaux (1990) in a different
context. A Fourier series in time has been used to compute the stream func-
tion associated with the flow perturbation. In principle this approach can
be applied for any value of r, even though the evaluation of Ψ becomes dif-
ficult for very large values of r, because the number of harmonics which are
necessary to obtain an accurate description of the flow increases as the pa-
rameter r increases. However, as discussed in the following, accurate results
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1.3 The time development of bottom perturbations

can be obtained for any value of r of practical relevance and the results show
that the harmonic truncation method used by Hulscher (1996a) and later
by Komarova & Hulscher (2000) and Komarova & Newell (2000) provides
a qualitative description of the phenomenon but cannot be used to obtain
accurate results for any set of the parameters.

To test the present approach, results have been obtained also for small
values of r and they have been compared with those derived by means of a
perturbation approach based on the assumption r << 1. A good agreement
has been found.

Finally the problem has been solved assuming that the parameter r at-
tains large values. As pointed out in the introduction, the analysis follows
closely that of Gerkema (2000). However, since a finite velocity at the bot-
tom is required to have a good description of the velocity profile generated by
tide propagation, we show that the model requires a thickness of the viscous
bottom boundary layer of order r−1/2 rather than r−1/3. Hence our results,
and in particular those concerning the growth rate of bottom perturbation,
substantially differ from those described by Gerkema (2000). The results of
the asymptotic analysis have been successfully compared with those of the
approach which holds for arbitrary values of r.

Once Ψ is known, the solution of the morphodynamic problem (1.27),
(1.28) is trivial and the growth rate of Π can be easily determined.

1.3.1 The hydrodynamic problem for arbitrary values

of r and s

When r assumes finite values, the hydrodynamic part of the problem can be
solved using a procedure similar to that employed by Vittori (1989) and Vit-
tori & Blondeaux (1990). Since the basic flow is time periodic, the function
Ψ can be expanded as a Fourier series in time

Ψ =

∞
∑

n=−∞

Ψ̂n(z)eint. (1.30)

Then, substitution of (1.30) into (1.24)-(1.26) leads to the following sys-
tem of coupled linear ordinary differential equations

in

r
N2Ψ̂n + i

[

Û1N
2Ψ̂n−1 + Û∗

1N
2Ψ̂n+1

]

− (1.31)

i

[

d2Û1

dz2
Ψ̂n−1 +

d2Û∗
1

dz2
Ψ̂n+1

]

=
1

µr
N4Ψ̂n
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along with the following boundary conditions

Ψ̂n = 0 ;
d2Ψ̂n

dz2
= 0 at z = 1 (1.32)

Ψ̂n = 0 for n 6= ±1 at z = 0 (1.33)

Ψ̂1 = − Û1

2
; Ψ̂−1 = − Û1

∗

2
at z = 0 (1.34)

d2Ψ̂n

dz2
− s

dΨ̂n

dz
= 0 for n 6= ±1 at z = 0 (1.35)

d2Ψ̂1

dz2
− s

dΨ̂1

dz
= −1

2

d2Û1

dz2
+ s

dÛ1

dz
at z = 0 (1.36)

d2Ψ̂−1

dz2
− s

dΨ̂−1

dz
= −1

2

d2Û1
∗

dz2
+ s

dÛ1
∗

dz
at z = 0. (1.37)

In (1.32)-(1.37) the basic flow ub has been written in the form

ub = Û1(z)e
it + Û∗

1 (z)e−it (1.38)

where Û1 and its complex conjugate Û∗
1 can be derived comparing (1.38)

with (1.11) if the exact solution is sought or with (1.14) if the approximate
solution is used.

Notice that, in order to have a better description of the solution close to
the bottom, where large gradients are expected for large values of r, the nu-
merical integration has been carried out using a constant step in the variable
ζ defined by

ζ = ln(1 + r1/2z) . (1.39)

Hence this assumption bears

d

dz
=
r1/2

eζ

d

dζ
(1.40a)

d2

dz2
=

r

e2ζ

(

d2

dζ2
− d

dζ

)

(1.40b)

d3

dz3
=
r3/2

e3ζ

(

d3

dζ3
− 3

d2

dζ2
+ 2

d

dζ

)

(1.40c)

d4

dz4
=

r2

e4ζ

(

d4

dζ4
− 6

d3

dζ3
+ 11

d2

dζ2
− 6

d

dζ

)

. (1.40d)
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1.3 The time development of bottom perturbations

Substituting equations (1.40a-d) in (1.32), it is possible to write the sys-
tem of coupled linear ordinary differential equations in the form

in

r

[

1

e2ζ

(

d2

dζ2
− d

dζ

)

− δ2

r

]

Ψ̂n + (1.41)

+i

{

Û1

[

1

e2ζ

(

d2

dζ2
− d

dζ

)

− δ2

r

]

Ψ̂n−1 + Û∗
1

[

1

e2ζ

(

d2

dζ2
− d

dζ

)

− δ2

r

]

Ψ̂n+1

}

−

− i

r

{

d2Û1

dz2
Ψ̂n−1 +

d2Û∗
1

dz2
Ψ̂n+1

}

=

=
1

µ

{

1

e4ζ

[

d4

dζ4
− 6

d3

dζ3
+ 11

d2

dζ2
− d

dζ

]

− 2
δ2

re2ζ

[

d2

dζ2
− d

dζ

]

+
δ4

r2

}

Ψ̂n.

Analogously the boundary conditions can be written as follows

Ψ̂n = 0 ;
d2Ψ̂n

dζ2
− dΨ̂n

dζ
= 0 at ζ = ζfin (1.42)

Ψ̂n = 0 for n 6= ±1;

Ψ̂1 =
Û1

2
; Ψ̂−1 =

Û∗
1

2
at ζ = 0 (1.43)

d2Ψ̂n

dζ2
−
(

1 +
s

r1/2

) dΨ̂n

dζ
= 0 for n 6= ±1 at ζ = 0 (1.44)

d2Ψ̂1

dζ2
−
(

1 +
s

r1/2

) dΨ̂1

dζ
= − 1

2r

[

d2Û1

dz2
− s

dÛ1

dz

]

d2Ψ̂−1

dζ2
−
(

1 +
s

r1/2

) dΨ̂−1

dζ
= − 1

2r

[

d2Û∗
1

dz2
− s

dÛ∗
1

dz

]

where ζfin = ln
(

1 + r1/2
)

.
Neglecting harmonics higher than the N th in the Fourier series (1.30), the

functions Ψ̂n can be determined numerically using a Runge-Kutta scheme of
second order and a shooting procedure. More precisely, starting from z = 1,
a set of 2N + 1 linearly independent solutions Ψ̂

(j)
n are obtained assuming

linearly independent values for the second and third derivatives of Ψ̂n. Then,
the solution is determined as a linear combination of Ψ̂

(j)
n which satisfies the

boundary conditions at the bottom. The number N of harmonics retained
in (1.30) has been chosen on the basis of numerical experiments.
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1.3.2 The hydrodynamic problem for r � 1

While unrealistic in practical situations, the case r � 1 is the easiest to
analyse and provides results which can be used to test the procedure outlined
in section 1.3.1.

When r � 1 the stream function Ψ can be expanded in the form

Ψ = Ψ
(0)
0 + rΨ

(0)
1 + h.o.t. (1.45)

where the index (0) indicates contributions determined in the limit r → 0.

Then an analysis of the problems obtained at the first and second order
of approximation substituting (1.45) into (1.24)-(1.25) shows that

Ψ
(0)
0 = Ψ̂

(0)
0,1e

it + c.c. (1.46a)

Ψ
(0)
1 = Ψ̂

(0)
1,0 + Ψ̂

(0)
1,2e

2it − c.c. (1.46b)

The determination of Ψ̂i,j is straightforward. Analysing the terms of order
r0 it’s possible to write

N2Ψ̂
(0)
0,1µi = N4Ψ̂

(0)
0,1. (1.47)

Therefore we obtain the following differential equation

d4Ψ̂
(0)
0,1

dz4
− d2Ψ̂

(0)
0,1

dz2

(

2δ2 + µi
)

+ Ψ̂
(0)
0,1

(

δ4 + µiδ2
)

= 0. (1.48)

Hence the analytical solution can be easily written as

Ψ̂
(0)
0,1 = c

(0)
1 eδz + c

(0)
2 e−δz + c

(0)
3 ez

√
δ2+iµ + c

(0)
4 e−z

√
δ2+iµ (1.49)

where the constants c
(0)
1 , c

(0)
2 , c

(0)
3 , c

(0)
4 are determined imposing the boundary

conditions

Ψ̂
(0)
0,1 = 0 z = 1 (1.50a)

d2Ψ̂
(0)
0,1

dz2
= 0 z = 1 (1.50b)

Ψ̂
(0)
0,1 = − Û1

2
z = 0 (1.50c)

d2Ψ̂
(0)
0,1

dz2
− s

dΨ̂
(0)
0,1

dz
= −1

2

d2Û1

dz2
+ s

dÛ1

dz
z = 0. (1.50d)
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Performing the analysis for the terms of order r1, the resulting differential
equation reads

∂4Ψ̂
(0)
1

∂z4
+ Ψ̂

(0)
1 δ4 − 2δ2∂

2Ψ̂
(0)
1

∂z2
− ∂

∂t

(

∂2Ψ̂
(0)
1

∂z2
− δ2Ψ̂

(0)
1

)

µ =

µiub

(

∂2Ψ̂
(0)
0

∂z2
− δ2Ψ̂

(0)
0

)

− µiΨ̂
(0)
0

∂2ub

∂z2
. (1.51)

As pointed out by (1.46b) it is possible to split Ψ̂
(0)
0 into a time dependent

part (Ψ̂
(0)
1,2) and a part (Ψ̂

(0)
1,0) which does not depend on time

∂4Ψ̂
(0)
1,2

∂z4
+ Ψ̂

(0)
1,2δ

4 − 2δ2
∂2Ψ̂

(0)
1,2

∂z2
− 2µi

∂2Ψ̂
(0)
1,2

∂z2
+ µδ2Ψ̂

(0)
1,2 =

µi

(

A′
∂2Ψ̂

(0)
0,1

∂z2
− δ2A′Ψ̂

(0)
0,1 + µiΨ̂

(0)
0,1

)

(1.52)

∂4Ψ̂
(0)
1,0

∂z4
− 2δ2

∂2Ψ̂
(0)
1,0

∂z2
+ δ4Ψ̂

(0)
1,0 = µi

{[

A′∂
2Ψ̂

(0)
0

∂z2
− δ2A′Ψ̂

(0)
0

]

+ Ψ̂
(0)
0

}

(1.53)

where the term A′ is quantified by

A′ =
1

2
(zc + z) (2 + zc − z) . (1.54)

The boundary conditions corresponding to Ψ̂
(0)
1,2 and Ψ̂

(0)
1,0 are

Ψ̂
(0)
1,2 = 0 ;

∂2Ψ̂
(0)
1,2

∂z2
= 0 at z = 1 (1.55a)

Ψ̂
(0)
1,2 = 0 ;

∂2Ψ̂
(0)
1,2

∂z2
− s

∂Ψ̂
(0)
1,2

∂z
= 0 at z = 0 (1.55b)

Ψ̂
(0)
1,0 = 0 ;

∂2Ψ̂
(0)
1,0

∂z2
= 0 at z = 1 (1.56a)

Ψ̂
(0)
1,0 = 0 ;

∂2Ψ̂
(0)
1,0

∂z2
− s

∂Ψ̂
(0)
1,0

∂z
= 0 at z = 0. (1.56b)

The solution of (1.52) and (1.53) and that of (1.55) and (1.56) has been
obtained analytically. Further details are omitted and the results are directly
presented in section 1.4.
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1.3.3 The hydrodynamic problem for r � 1

As explained in the previous section, in order to validate the results of the
model obtained by introducing the Fourier series in time, we performed an
analysis for values of r � 1. Since in (1.24) the small parameter r−1 multi-
plies the highest derivative, for large values of r the flow domain can be split
into an inviscid core region, where z is of order one, and a viscous boundary
layer close to the bottom. In the core region, the leading order component
Ψ(∞) of the stream function is provided by the solution of (1.24) where both
the local acceleration term and the viscous term can be neglected and a
balance takes place between advective terms:

ubN
2Ψ(∞) − Ψ(∞)∂

2ub

∂z2
= 0 (1.57)

with the boundary conditions

Ψ(∞) = 0 at z = 1 (1.58a)

∂2Ψ(∞)

∂z2
= 0 at z = 1 (1.58b)

and a matching condition with the solution in the bottom boundary layer.
Hereinafter the index (∞) indicates contributions determined assuming val-
ues of r much larger than one.

For the purpose of finding Ψ(∞), the basic velocity field (1.11) can be
approximated by the much simpler profile (1.14), which provides a good
approximation if µ is of order 1 or smaller (Gerkema, 2000)(see also figure
1.2). If the basic flow is assumed to be accurately described by (1.14), the
solution can be written in the form

Ψ(∞)(z, t) = c
(∞)
1 (t)φ1(z) + c

(∞)
2 (t)φ2(z) (1.59)

where

φ1 = (z + zc)

∞
∑

n=0

dn(z + zc)
n (1.60a)

φ2 = φ1 ln(z + zc) +

∞
∑

n=0

bn(z + zc)
n (1.60b)

and the constants dn and bn can be easily computed by means of recursive
relationships:

d1 = −d0

C
, d2 =

δ2d0

6
,
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1.3 The time development of bottom perturbations

dn+1 =
[n (n + 1) − 2] dn + Cδ2dn−1 − δ2dn−2

(n + 1) (n+ 2)C
(n ≥ 2)

where

d0 = 1, and C = 2 (1 + zc)

and

b2 =
1

2

(

δ2b0 +
d0

C
− 3d1

)

bn+1 =
{

[n (n− 1) − 2] bn + δ2 (Cbn−1 − bn−2)−

(2n+ 1)Cdn + (2n− 1) dn−1}
1

n (n+ 1)C

(n ≥ 2)

where

b0 = −C
2
d0, b1 = 0.

If zc was negative, the inviscid balance would produce a logarithmic sin-
gularity in φ2 which should be removed by taking into account the viscous
term on the right hand side of (1.24) for z falling close to −zc. However, zc

turns out to be positive with values smaller than one but not close to zero.
Therefore the evaluation of Ψ(∞) in the core region by means of (1.59),(1.60)
does not lead to any problem. Finally, the forcing of the boundary conditions
at the free surface allows to find a relationship between the constant c

(∞)
1 and

c
(∞)
2 but not to determine both of them (note that it can be easily verified

that (1.58a) is equivalent to (1.58b) because of (1.57)):

c
(∞)
1 = −c(∞)

2 ln (1 + zc) +
φ̃2

φ1
at z = 1 (1.61)

where

φ̃2 =

∞
∑

n=0

bnz̃
n and z̃ = z + zc . (1.62)

The inviscid balance should be corrected near the bottom, where a bound-
ary layer develops and viscous effects turn out to be relevant. In the classical
Orr-Sommerfeld equation, the thickness of this viscous layer is proportional
to the (−1/3) power of the Reynolds number (if Re >> 1), because the basic
velocity profile vanishes at the wall. In the present case the value of s has
been assumed ∼ 1, therefore the basic flow described by (1.14) keeps finite at
the bottom and an analysis of the order of magnitude of the different terms
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appearing in (1.24) suggests that the thickness of the bottom boundary layer
is of O(r−1/2).

The correct analysis requires the introduction of the variable ξ defined as
follows

ξ = r1/2z . (1.63)

Then the basic flow and the stream function associated with the pertur-
bation should be expanded in the form

ub = ub0 + r−1/2ub1 + r−1ub2 + h.o.t. (1.64)

Ψ = Ψ
(∞)
0 + r−1/2Ψ

(∞)
1 + r−1Ψ

(∞)
2 + h.o.t. (1.65)

By substituting (1.64), (1.65) into (1.24), (1.27)-(1.28) and equating like-

wise powers of r−1/2, the functions Ψ
(∞)
i are determined. Then, imposing of

the boundary conditions at the bottom and the matching condition with the
solution in the inviscid region leads to the following solution:

Ψ
(∞)
0 = −1

2
zc(2 + zc) cos(t + ϕ) , Ψ

(∞)
1 = c

(∞)
3 ξ , (1.66)

Ψ
(∞)
2 = − c

(∞)
4

iµub(t)
e−

√
iµub(t)ξ + c

(∞)
5 ξ + c

(∞)
6 ,

with c
(∞)
3 , c

(∞)
4 , c

(∞)
5 , c

(∞)
6 constants to be determined. Matching Ψ

(∞)
0 with

the inviscid solution determines the value of c
(∞)
2 while matching Ψ

(∞)
1 de-

termines the value of c
(∞)
3 . The constants c

(∞)
j (j = 4, 5, 6) are determined

by the matching at the next order of approximation which requires the eval-
uation of further terms of the stream function in the inviscid region. It is
also worth pointing out that the first two terms of (1.65) correspond to the
largest terms of the outer solution written using the inner variable while
strong gradients of Ψ appear only considering Ψ

(∞)
2 .

As already discussed by Gerkema (2000), the whole procedure breaks
down when the flow reverses, i.e. when the basic velocity profile ub vanishes
in the whole water column. The problem can be easily circumvented. Indeed
during the time intervals for which ub is close to zero, the sediment flow rate
vanishes and there are no significant morphodynamic implications.

1.3.4 The morphodynamic problem

Once the stream function associated with the bottom perturbation is com-
puted, the temporal development of the amplitude Π of the generic com-
ponent of the perturbation can be easily evaluated from (1.27) and (1.28).
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With some straightforward algebra, it turns out that

dΠ

dT
= δ(θ0 − γ̂δ)Π = ΓΠ (1.67)

where

γ̂ = γ〈|ub|3〉z=0 , θ0 =

〈

−6iu2
b

∂Ψ

∂z

∣

∣

∣

∣

z=0

〉

(1.68a,b)

and in terms of the coordinate ζ defined in (1.39):

θ0 =

〈

−6iu2
br

1/2∂Ψ

∂ζ

∣

∣

∣

∣

z=0

〉

. (1.69)

1.4 Discussion of the results

In this section the results on the morphodynamic stability, obtained on the
basis of the procedure outlined in the previous section will be presented. But
prior to this, we compare the stream function and other relevant quantities
valid for arbitrary values of r, with the results of the asymptotic analyses
applying for values of r much smaller or much larger than one. This has
been done to test the implementation of the numerical algorithm and to
ascertain the reliability of the results. Because the asymptotic solution for
large values of r is based on the approximate basic velocity profile, use is
made of (1.14). In figure 1.3 the function Ψ(z), computed by means of
(1.30), is compared with that found for r tending to zero, for fixed values of
δ, µ, s and for decreasing values of r (r = 10, 1, 0.1). It can be seen that, as r
becomes small, expansion (1.30) provides results close to those obtained on
the basis of the asymptotic analysis described in section 1.3.2 and for r equal
to 0.1 the two solutions are practically indistinguishable. Of course, for small
values of r the stream function is dominated by the first term in (1.45) and
by the harmonics eit and e−it in (1.30). For an exhaustive comparison we

have not only compared Ψ̂1 with Ψ
(0)
0,1 but also Ψ̂0 and Ψ̂2 divided by r with

Ψ
(0)
1,0 and Ψ

(0)
1,2, respectively.

A comparison is also made between (1.30) and the asymptotic solution
for large values of r. In figure 1.4 the stream function is plotted for fixed
values of δ, µ, s and increasing values of r at fixed phases of the tidal cycle. As
expected, for increasing values of r the agreement between (1.59) and (1.30)
improves and for large values of r the two approaches provide coincident
results and in particular the function Ψ becomes real as predicted by the
asymptotic analysis for large values of r. Hence (1.67) shows that the real
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Figure 1.3: Harmonic compo-
nents of the stream function
perturbation induced by pre-
scribed bottom perturbation.
Comparison between the ex-
act solution and the asymp-
totic solution for small values
of r. (a) Ψ̂1 and Ψ

(0)
0,1, (b)

(Ψ̂0/r) and Ψ
(0)
1,0, both Ψ̂0 and

Ψ
(0)
1,0 are imaginary, (c) (Ψ̂2/r)

and Ψ
(0)
1,2. (µ = 1, s = 0.8,

δ = 0.35).
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part Γr of Γ is always negative since it turns out to be equal to 〈γδ2|u3
b|〉,

i.e. the stabilising part related to the bed slope. Therefore for large values of
r, the other parameters being fixed, no growth of the bottom perturbations
takes place and the flat bottom configuration turns out to be always stable.

In figures 1.9, 1.10, 1.11 and 1.12, the stream function associated with
the bottom perturbation is plotted for fixed values of the parameters and for
different values of truncation number N of the Fourier series (section 1.3.1).
By looking at the results, it appears that the method of harmonic truncation
used by Hulscher (1996a), in which N =1, can be applied only for small
values of r and becomes inaccurate when r is increased.

This behaviour is clearly shown in figures 1.5, 1.6, 1.7 and 1.8 where the
trend of the stream function Ψ is plotted against the number of harmonics
used in the model, for a fixed value of z. It is evident that as r increases so
has to do the number of harmonics in order to have an accurate solution.

Indeed when the horizontal tide excursion becomes significantly larger
than the wavelength of sand waves (as it happens in the field), the interac-
tion between the oscillatory flow induced by tide propagation and the bottom
perturbation gives rise to a cascade process which generates many time har-
monic components. For all the results described in the following, tests have
been made to ensure that the results do not depend on the values of N
and cases characterised by realistic values of the parameters can be handled
without any problem.

An inaccurate evaluation of Ψ leads to errors also in the prediction of
the development of the bottom perturbation as it appears in figure 1.13,
where the real part Γr of the correct amplification rate, obtained setting
N= 100 is plotted versus δ for realistic values of the parameters along with
its value computed with N =1, i.e. considering just one harmonic component
in the flow perturbation induced by the bottom waviness. The amplification
rate obtained setting N =1 differs from the correct value by an amount
ranging about 100%. As discussed in the introduction, this finding questions
the recent results of Hulscher (1996a). Indeed significant variations of the
coefficients of the amplitude equation may induce not only quantitative but
also qualitative changes in the amplitude behaviour.

Once the reliability of the procedure is ascertained, to discuss the stability
of the flat bottom configuration, the growth rate Γ is evaluated for different
values of the parameters. Since the approach described in section 1.3.1 does
not require to approximate the basic flow by (1.14), in the following the
results have been obtained making use of the full solution (1.11). Both
the real Γr and the imaginary Γi parts of Γ are computed. While the real
part of Γ is related to the growth or decay of the amplitude of the bottom
perturbations, their migration speed is controlled by the imaginary part of Γ.
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Figure 1.4: Stream function Ψ
at different phases of the cy-
cle. Comparison between the
exact solution and the asymp-
totic solution for large values
of r. (µ = 1, s = 0.8, δ = 0.25,
N =150). (a) t = 0, (b)
t = 3/4π, (c) t = 5/4π.
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Figure 1.5: Value of streamfunction Ψ at a particular phase of the tidal cycle
plotted against the number of harmonics. (µ=5, s=5, δ=0.2, t=0, z=0.5,
r=10)
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Figure 1.6: Value of streamfunction Ψ at a particular phase of the tidal cycle
plotted against the number of harmonics. (µ=5, s=5, δ=0.2, t=0, z=0.5,
r=50)
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Figure 1.7: Value of streamfunction Ψ at a particular phase of the tidal
circle plotted against the number of harmonics. (µ=5, s=5, δ=0.2, t=0,
z=0.5, r=100)
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Figure 1.8: Value of streamfunction Ψ at a particular phase of the tidal
circle plotted against the number of harmonics. (µ=5, s=5, δ=0.2, t=0,
z=0.5, r=300)
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particular phase of the tidal cycle,
computed using different values of
N . (µ=5, s=5, δ=0.2, t=0, r=10)

0

0.2

0.4

0.6

0.8

1

-0.08 -0.04 0 0.04
Ψ/U0H

Ψ(z)

Real part

Imaginary part

z/H

N=1
N=10
N=30
N=50
N=80

N=100
N=150

Figure 1.10: Stream function Ψ
at a particular phase of the cycle,
computed using different values of
N . (µ=5, s=5, δ=0.2, t=0, r=50)

A positive value of Γr implies a growth of the perturbation while a negative
value denotes decay. Gravity, which tends to move the sediment down the
slope of the bottom waviness carrying it from the crests to the troughs, has
a stabilising effect. Indeed the term −γ̂δ2 gives always a real and negative
contribution to Γ.

A destabilising effect can be caused by the term δθ0 which describes the
effect of the sediment transport induced by the steady recirculating cells
originated by the interaction of the basic oscillatory tidal flow with bottom
perturbations (see figure 1.14). This mechanism, already pointed out by
Hulscher (1996a) and Gerkema (2000), is similar to that giving rise to sea
ripples and described for example by Blondeaux (1990). Indeed, for moderate
values of r, the stream function Ψ has an imaginary part and δθ0 gives a
contribution to the real part of Γ. An example of the steady streaming
is shown in figure 1.15. In figure 1.15b the steady recirculating cells are
shown for the same parameters as in figure 1.15a but for a larger value of
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Figure 1.12: Stream function Ψ at
a particular phase of the tidal cy-
cle, computed using different val-
ues of N . (µ=5, s=5, δ=0.2, t=0,
r=300)

r. An increase of the ratio between the horizontal tidal excursion and the
wavelength of sand waves leads to a shift of the centre of the cells toward the
bottom and hence to stronger velocity close to the sea bed. It is interesting
to point out that in the range of the parameters presently investigated the
steady streaming is always directed from the troughs towards the crests of
the bottom waviness.

Because of the symmetry of the problem, no migration of the bottom
forms is expected to take place after a tide cycle and indeed Γi vanishes for
whatever set of parameters is considered.

In order to allow predictions of the most unstable component of the bed
perturbation, it is convenient to slightly modify the parameters defined by
(1.29) and to replace r by the new parameter r̂

r̂ =
U0

σH
. (1.70)
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Figure 1.13: Growth rate Γr plotted versus δ for µ = 10, s = 5, r = 50, γ = 2
and N =1, 10, 100. Larger values of N provide results practically coincident
with those obtained setting N =100.

Figure 1.14: The interaction of the oscillatory tidal flow with bottom per-
turbations gives rise to a steady streaming in the form of recirculating cells
(from Hulscher 1966).

which does not depend on the characteristics of the bottom perturbations.
Introducing r̂ allows to perform the analysis having a parameter which is re-
lated to the strength of the current and not dependent on other dimensionless
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Figure 1.15: Steady recirculating cells for µ = 1, s = 10,
δ = 1, ∆Ψ = 0.005. (a) r = 10, (b) r = 600.
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In figure 1.16, Γr is plotted versus δ for fixed values of µ, s, γ and different
values of r̂. For small values of r̂, Γr is negative whatever value of δ is
considered. When r̂ is increased, a critical value r̂c is found such that for r̂
less than r̂c bottom perturbations decay for each value of the wavenumber
δ, while for r̂ slightly larger than r̂c bottom perturbations, characterised
by values of δ falling within a restricted range around a critical value δc,
experience an average amplification within a cycle. However, as soon as r̂ is
significantly larger than rc the bandwidth of unstable modes becomes large
including small values of δ, i.e. ultra-long bottom modes.

Figure 1.16 shows that r̂c is about 6.92 which, for a semi-diurnal tide
and a water depth equal to 40 m gives rise to a critical value of Um equal to
about 0.13 m/s. A quantitative comparison of present results with field data
is difficult because of the lack of data concerning field critical conditions.
Looking at figure 3.2 of Belderson et al. (1982), it appears that the criti-
cal value of Um is certainly underestimated but not too far from the values
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observed in the field which range around 0.5 m/s (incidentally sand waves
have been observed also in sites characterised by much weaker tidal currents).
Moreover it is worth pointing out that an increase of the value of bed slope
parameter γ leads to an increase of the critical value of Um. For example
the critical value of Um is about 0.30 m/s for γ = 2. On the other hand, the
wavelength of sand waves around the critical conditions is certainly overes-
timated (see figure 1.17). Therefore, in this respect, the present findings do
not improve the results of previous analyses which show that, when the tidal
current is strong enough to cause the instability of the flat bottom configu-
ration, bottom perturbations characterised by wavenumbers falling between
0 and a finite value become unstable and ultra-long waves tend to growth
(see Komarova & Hulscher, 2000, for a detailed discussion). However, it is
worth pointing out that realistic values of the parameters lead to values of
r̂ significantly larger than r̂c and in this case the most unstable perturba-
tions have wavelengths similar to those observed in the field. In fact, figure
1.18, where Γr is plotted also for large values of r̂, shows that the maximum
of Γr moves toward larger values of δ as soon as r̂ becomes larger than r̂c,
i.e. the wavelengths of the most unstable sand waves become shorter. Only
further increases of r̂ lead to decreasing value of δ, but the maximum of
the amplification rate always takes place for values of δ significantly larger
than δc. This finding is summarised in figure 1.19 where the dimensionless
wavenumber δmax of the most unstable perturbation is plotted versus r̂ for
fixed values of the parameters and different values of γ. The value of γ has
been varied because no precise estimate is available and the value of γ should
be tuned comparing theoretical results with field data. The performances of
the model can be evaluated by looking at figures 1.20 and 1.21.

Figure 1.20 shows the amplification rate Γr for µ = 1.7, s = 0.8, r̂ = 45
and γ = 0.28, values of the parameters chosen to reproduce a site in the
North Sea where sand waves have been observed (see figure 1.21 where the
bottom topography is reproduced). Taking into account that δmax turns out
to be 0.5 and the local water depth is about 20 m, the model predicts the
formation of sand waves characterised by a wavelength equal to about 250
m, a value quite close to the observed wavelengths ranging between 165 m
and 255 m (see figure 1.21).

As already pointed out, if r̂ is further increased, the amplification rate
tends to decrease as shown in figure 1.18 and for large values of r̂ the model
predicts the stability of the flat bottom configuration, as also shown by the
asymptotic analysis for r >> 1. Such finding agrees with fields observations
which show that sand waves are washed out when strong tidal currents are
present.
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Figure 1.20: Growth rate Γr plotted versus δ for µ = 1.7, s = 0.8, r̂ = 45
and γ = 0.28.

1.5 Using Meyer-Peter & Müller transport

formula

Once the results of the present analysis have been qualitatively compared
with those of Gerkema (2000) and Hulscher (1996a) using the same sediment
transport predictor and the same parameters, a more detailed investigation
of the phenomena is carried out by using the relationship proposed by Meyer-
Peter & Müller (1948) to evaluate the sediment transport:

Q = 8

√

(ρs/ρ− 1) gd3

(1 − p)

(
∣

∣

∣

∣

θ − γ
∂η

∂x

∣

∣

∣

∣

− θc

)3/2 (

θ − γ
∂η

∂x

)
∣

∣

∣

∣

θ − γ
∂η

∂x

∣

∣

∣

∣

−1

.

(1.71)
This formulation provides values of the bed sediment transport if the value
of the term |θ − γ∂η/∂x| is greater than the threshold value of the Shields
parameter θc, otherwise the sediment transport vanishes.

where ρs, p and d are the density, the porosity and the size of the sediment
respectively and θ is the dimensionless Shields parameter defined by

θ =
τ

(ρs − ρ) gd
. (1.72)

Moreover τ is the bed shear stress, which can be easily evaluated using the
constitutive law and the knowledge of the kinematic eddy viscosity, and θc is
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Figure 1.21: Sand waves data. Top: Contour map of the seabed at 51◦ 35’
N and 3◦ 2‘ E with reference transect P2. Bottom: seabed profile along
transect P2.

the critical value of θ for the initial motion of sediment. The term γ∂η/∂x
has been added in (1.71), as suggested by Fredsøe (1974), to take bed slope
effects into account.

Introducing dimensionless variables denoted by a prime, the quantity
√

(ρs/ρ− 1) gd3 scales the sediment transport rate and the dimensionless
morphodynamic time scale T ′ is expressed by the following relationship

T ′ = t
√

(ρs/ρ− 1) gd3/
[

(1 − p)H2
]

. (1.73)

As already done in previous sections, for convenience, in the following the
prime is dropped.

Therefore, the time development of the bottom configuration is described
by the following expressions

∂Π

∂T
+ 2δi〈Q〉Π = 0 (1.74)
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Q = 12
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(1.75)

where the 〈〉 brackets denote the time average over the tide cycle and the
small oscillations of the bottom profile, which take place around its average
value during the tide cycle, have been neglected.

The use of Meyer-Peter & Müller transport formula leads to the definition
of a new dimensionless parameter related to the sediments characteristics,
defined as

Ψd = U2
m/ [(ρs/ρ− 1) gd] . (1.76)

The sediment mobility number Ψd ranges between order 102 for fine sand
and strong currents and order 1 for coarse sand and weak currents.

Once the stream function associated with the bottom perturbation is
computed, the temporal development of the amplitude Π of the generic com-
ponent of the perturbation can be evaluated coupling (1.74) and (1.75), ob-
taining the following equation

Π = Π0 exp {ΓT} = Π0 exp

{〈
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. (1.77)

1.6 Results obtained with MPM formula

As already pointed out in section 1.4, it is convenient to replace r by the pa-
rameter r̂ (1.70) which does not depend on the characteristics of the bottom
perturbations. Moreover, in the literature (see a.o. Belderson et al., 1982)
the presence of sand waves in a particular site, where the water depth and
the bottom roughness are fixed, is related to the strength of the tidal cur-
rent. To discuss the appearance of sand waves in terms of just one parameter
containing U0, it is convenient to introduce the new viscous parameter as

µ̂ =
U0H

A
. (1.78)

In fact (1.8a,b) show that A is proportional to U0. Then, µ̂ is indepen-
dent of U0 and depends only on the relative roughness size. Similarly it is
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Figure 1.22: Dimensionless growth rate Γr plotted versus the dimensionless
wavenumber δ of the bottom perturbation. Model parameters are: µ̂ = 112.5,
s = 1.02, r̂ = 79, Ψ̂d = 0.0045, γ = 0.05 and θc = 0.047.

convenient to define the new sediment mobility number

Ψ̂d =
(Hσ)2

(ρs/ρ− 1) gd
. (1.79)

It turns out that µ̂ = µr̂ and Ψ̂d = Ψd/r̂
2.

The performances of the model can be evaluated by looking at figures
1.21 and 1.22. Figure 1.22 shows the amplification rate Γr for µ̂ = 112.5,
s = 1.02, r̂ = 79, Ψ̂d = 0.0045 and γ = 0.05, values of the parameters
which are chosen to reproduce the site SW1 located in the North Sea at
51◦35′N and 3◦2′E where sand waves have been observed (see figure 1.21
where the bottom topography is plotted) and tidal currents were measured.
The bottom roughness has been evaluated assuming that wave ripples were
present characterised by a wavelength l of about 20 cm. Their height ∆r is
assumed to be 0.17 l (Sleath, 1984) and the bottom roughness is fixed equal to
3∆r as suggested by Van Rijn (1991). If it is assumed that actual sand waves
are generated by the growth of the bottom perturbations characterised by the
largest amplification rate and it is taken into account that Γr is maximum for
δ = δmax = 0.4 and the local water depth is about 21 m, the model predicts
the formation of sand waves characterised by a wavelength equal to about
315 m, a value close to the observed wavelengths ranging between 165 m and
255 m (see figure 1.21).
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Figure 1.23: Dimensionless growth rate Γr plotted versus the dimensionless
wavenumber δ of the bottom perturbation for different values of r̂. Model
parameters are: µ̂ = 112.5, s = 1.02, Ψ̂d = 0.0045, γ = 0.05 and θc = 0.047.
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Figure 1.24: Dimensionless growth rate Γr plotted versus the dimensionless
wavenumber δ of the bottom perturbation for different values of r̂. Model
parameters are: µ̂ = 112.5, s = 1.02, Ψ̂d = 0.0045, γ = 0.05 and θc = 0.0.
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The data of figure 1.21 and the relationships (1.8a,b) show that field
cases are characterised by a value of µ̂ of order 100 while s depends on
the relative bottom roughness and falls in a small range around 1. Fixing
µ̂ = 112.5 and s = 1.02, it is interesting to look at model predictions for a
fine sandy bottom (Ψd = 0.0045) and varying the parameter r̂ which, in a
particular site, is proportional to the current strength U0. The results are
shown in figure 1.23 where Γr is plotted versus δ. For small values of r̂,
sediment transport does not take place and the bottom configuration does
not change (Γr ≡ 0). When r̂ is increased, a critical value r̂c is found such
that the sediment starts to be transported. For r̂ slightly larger than r̂c,
bottom perturbations, characterised by values of δ falling within a range
centred around δc,max, experience an average amplification within a cycle.
An analysis of the results (see figure 1.23) shows that r̂c is about 24 and
δc,max is about 0.07. These values, for a semi-diurnal tide and a water depth
equal to 21 m, which is the value measured at SW1, give rise to a critical
value of Um equal to about 0.2 m/s. A quantitative comparison of present
results with field data is difficult because of the lack of data concerning
field critical conditions. Looking at figure 3.2 of Belderson et al. (1982), it
appears that the critical value of Um is not too far from the values observed
in the field which range around 0.5 m/s. Incidentally sand waves have been
observed also in sites characterised by weaker tidal currents (at SW1 the
semi-diurnal constituent gives rise to a tidal current equal to about 0.4 m/s).
Moreover, close to the critical conditions, the wavelength of the most unstable
perturbation (1900 m) is of the same order of magnitude as those observed
in the field, even though it turns to be somewhat larger. The results of figure
1.23 have been obtained setting θc = 0.047.

To compare present findings with those obtained by means of sediment
transport predictors which neglect the existence of a critical bed shear stress
for the erosion of sand, figure 1.24 shows Γr versus δ for different values of
r̂, the other parameters being equal to those of figure 1.23 but for θc = 0.
Even for a vanishing value of θc, the model shows the existence of a critical
value r̂c of r̂ below which sand waves do not appear. For θc = 0, r̂c turns
out to be about 15. For a semi-diurnal tide and a water depth equal to 21
m, this value of r̂c gives rise to a critical value of Um equal to about 0.11
m/s, a value still not far from field observations. On the other hand for
θc = 0, the wavelength of the most unstable perturbation around the critical
conditions tends to infinity. This finding is not better than the results of
previous analyses which show that, when the tidal current is strong enough
to cause the instability of the flat bottom configuration, ultra-long waves tend
to grow (see Komarova & Hulscher, 2000, for a detailed discussion). However
realistic values of the parameters lead to values of r̂ significantly larger than
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Figure 1.25: Ratio of the wavelength Lmax of the most unstable perturbation
and the water depth H plotted versus the parameter r̂. Model parameters
are: µ̂ = 112.5, s = 1.02, Ψ̂d = 0.0045, and γ = 0.05.

r̂c and in this case the most unstable perturbation has a wavelength similar
to those observed in the field. Indeed figure 1.25, where the dimensionless
ratio between the wavelength Lmax of the most unstable perturbation and
the water depth H is plotted versus r̂, shows that Lmax/H rapidly decreases
as soon as r̂ becomes larger than r̂c and the wavelength of the most unstable
sand waves well agrees with field observations. In figure 1.25 the results
obtained with both θc = 0.047 and θc = 0.0 are shown.

The results described so far have been obtained assuming that the bottom
roughness is due to the presence of medium size ripples. Sometimes field
surveys show that megaripples cover the sea bottom. In this case the bottom
roughness is higher and relationships (1.8a,b) show that the parameter s
increases. It is then interesting to look at the amplification rate Γr for the
same values of the parameters as those of figure 1.22 but for s = 1.5 which is
the value of the stress parameter associated to megaripples (see figure 1.26).
The value of δmax turns out to be about 0.8. In this case, at SW1 where
H = 21 m, the model predicts the appearance of sand waves characterised
by a wavelength equal to 160 m. Therefore considering roughness size ranging
from medium size ripples to megaripples, the predicted wavelength of sand
waves falls between 160 m and 315 m, a range which well agree with field
observations.

Looking at the critical conditions, it appears that the value of r̂c is only
slightly affected by s while the wavelength of the most unstable perturbation
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Figure 1.26: Dimensionless growth rate Γr plotted versus the dimensionless
wavenumber δ of the bottom perturbation. Model parameters are: µ̂ = 112.5,
s = 1.50, r̂ = 79, Ψ̂d = 0.0045, γ = 0.05 and θc = 0.047.
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Figure 1.27: Dimensionless growth rate Γr plotted versus the dimensionless
wavenumber δ of the bottom perturbation. Model parameters are: µ̂ = 78.1,
s = 0.83, r̂ = 79, Ψ̂d = 0.0045, γ = 0.05 and θc = 0.047.
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Figure 1.28: Dimensionless growth rate Γr plotted versus the dimensionless
wavenumber δ of the bottom perturbation for different values of Ψ̂d. Model
parameters are: µ̂ = 112.5, s = 1.02, r̂ = 79, γ = 0.05, and θc = 0.047.

for r̂ close to r̂c significantly decreases if s is increased. For example for
µ̂ = 112.5, s = 1.5, Ψ̂d = 0.0045, γ = 0.05 and θc = 0.047, it turns out that
r̂c is about 24 and δmax is about 0.11.

Similar results have been obtained for different values of the parameters.
For example, using a different eddy viscosity profile (Van Rijn, 1991) and
assuming the roughness to be induced by medium size ripples, relationships
(1.8a,b) give µ̂ = 78.12 and s = 0.83. With these values of µ̂ and s and fixing
r̂ = 79, Ψ̂ = 0.0045, γ = 0.05 and θc = 0.047, figure 1.27 shows that δmax is
about 0.55. For H = 21 m, this value of δmax gives rise to a wavelength of
sand waves equal to about 240 m.

At a particular site, i.e. for a fixed value of H, the conditions leading
to the appearance of sand waves have been analysed also keeping fixed the
value of r̂, i.e. the strength of the tidal current, and considering different
values of Ψ̂d, i.e. of the grain size. From the results of figure 1.28, where Γr

is plotted versus δ, it appears that decreasing values of Ψ̂d lead to smaller
values of Γr till for Ψ̂d below a critical value Ψ̂dc, Γr is always negative and
sand waves do not appear. Since Ψ̂dc is equal to about 0.0006, for a semi-
diurnal tide of amplitude equal to 0.43 m/s and a water depth equal to 21 m,
the critical grain size above which sand wave do not appear is about 1 mm.
This finding qualitatively agrees with field observations which show that sand
waves develop only in sandy sea beds and they do not appear when a coarse
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Figure 1.29: Ratio of the wavelength of the most unstable perturbation and
the water depth H plotted versus the parameter Ψ̂d. Model parameters are:
µ̂ = 112.5, s = 1.02, r̂ = 79, γ = 0.05.

sediment covers the sea bottom. Finally figure 1.29, where Lmax/H is plotted
versus Ψ̂d, shows that a finer sediment causes the appearance of shorter sand
waves. A quantitative comparison between these theoretical findings and
field observations is not possible because of the lack of the latter.

1.7 Suspended load effect

In order to have a complete description of the phenomenon the model has
been improved taking into account also the effect on the growth rate coeffi-
cient caused by the suspended load. In fact rough estimates of the suspended
and bed loads under field conditions show that the former is not always negli-
gible and sometimes it can be very large. It follows that accurate quantitative
predictions of sand waves characteristics (wavelength, migration speed, ...)
can be obtained only considering the suspended sediment.

In a uniform steady flow the vertical distribution of sediment concentra-
tion is controlled by a balance between an upward flux of sediment induced
by the turbulent mixing and a downward flux forced by gravity. When the
current strength increases, sediment is entrained near the bed and sediment
concentration increases close to the bottom. Then sediment diffuses over
the whole depth but it takes a certain time before a steady state is reached.
Similarly, when the flow decelerates, sediment particles tend to settle down
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but sediment concentration takes a certain time before attaining the new
steady state. Hence, the depth averaged sediment concentration responds to
variations of the tidal current with a time lag which, in heuristic approach,
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1.7 Suspended load effect

can be related to the quantity H/ws where H is the local water depth and ws

is the particle settling velocity. However, it should be pointed out that other
quantities like the for example the eddy diffusivity, might affect such esti-
mate. Similarly an adaptation length, which presently scales with UmH/ws,
is usually introduced in steady non-uniform flows to take into account that
sediment concentration takes a certain distance to respond to local variations
of flow characteristics (Armanini & Di Silvio, 1988). However in shallow wa-
ters, with the exception of a very fine sediment, the adaptation time can be
assumed to be much smaller than the tidal period. Moreover sand waves are
characterised by wavelengths which can be assumed to be much larger than
the adaptation length. Hence, in a preliminary approach, the suspended load
can be evaluated by means of a relationship which hold for steady uniform
flows as specified with the actual and local values of the flow characteristics
(slowly varying approach). Finally, it is worth pointing out that the mecha-
nism which leads to the formation of sand waves is different from that giving
rise to bedforms in fluvial environments (ripples, dunes, alternate bars, ...)
and the adaptation length seems to play a minor role in the formation of sand
waves which are induced by a steady streaming generated by the interaction
of the oscillatory tidal current with the bottom waviness.

In order to have an estimate of the possible influence of the suspended load
on the growth and migration of sand waves, it is worth to look at the order
of magnitude of the suspended load with respect of the bed load. Plotting
the dimensionless transport rates due to the bed and suspended loads versus
the phase of the tide (figure 1.30) for typical field conditions of the North
Sea, it is possible to observe that the suspended load can attain values up
to 30% of the bed load. These values suggest that the suspended load plays
a significant role in the morphodynamic evolution of the sea bottom and, in
order to have accurate predictions of sand wave characteristics, it is necessary
to include the suspended load effects in the model equations.

As previously pointed out, the suspended load has been modelled and cal-
culated by assuming that the velocity and concentrations distribution along
the vertical coordinate are provided by those which are appropriate for the
description of the steady state. Indeed tidal currents are slowly varying flows.
Then it turns out that the suspended load for unit width can be written in
the following way

qss =

∫ Y

a

c(y) u(y) dy (1.80)

where Y is the water depth and a is a reference height at which is specified
a reference value cr of the concentration near the bed.

The velocity distribution of a turbulent plane flow has been considered,
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u = u∗/κ ln(30Y/ε) where u∗ is the friction velocity. The concentration
distribution has been evaluated by the procedure proposed by Rouse (1937),
which relates the value of the sediment concentration along the vertical co-
ordinate to a reference value cr estimated at the height a measured from the
bottom

c = cr

(

Y − y

y

a

Y − a

)Z

(1.81)

where Z is the Rouse number defined as Z = ws/κu∗ (ws is the falling velocity
of the sediment and κ=0.41 is the Karman constant).

Hence the dimensional suspended load can be written as

qss = 11.6cru∗a

[

I1 ln

(

30H

ε

)

+ I2

]

sign

(

∂ub

∂z

)

(1.82)

where I1 and I2 are the Einstein integrals defined as

I1 =
0.216

ξa

∫ 1

ξa

[

ξa (1 − ξ)

ξ (1 − ξa)

]Z

dξ (1.83)

I2 =
0.216

ξa

∫ 1

ξa

[

ξa (1 − ξ)

ξ (1 − ξa)

]Z

ln(ξ)dξ (1.84)

where ξa = a/Y .
In (1.82)-(1.84) cr is the reference concentration at the reference height a

from the bed, u∗ is the bottom shear velocity which can be easily evaluated
once the flow field is known, ε is the roughness size and Y is the local water
depth.

To perform the evaluation of qss it is necessary to have an estimate of the
values of a and cr. The classic Rouse solution relies on empirical expressions
and in the present contribution we adopt the relationships proposed by Van
Rijn (1984)

cr = 0.015
d

a

(

θ

θcr

− 1

)1.5

R−0.2
p , a = 0.01Y. (1.85a,b)

In (1.85a) Rp is the particle Reynolds number defined as

Rp =

√

(ρs/ρ− 1) gd3

ν
(1.86)

where ν is the kinematic viscosity of the sea water.
Hence in dimensionless form we obtain

Qs = 11.6

√
Ψd

d
c
′

r u
′

∗

a

H

[

I1 ln

(

30H

ε

)

+ I2

]

sign

(

∂ub

∂z

)

(1.87)
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where the apex denotes dimensionless quantities.
Performing a normal mode analysis to investigate the stability of the flat

bottom configuration as illustrated in section 1.3 and considering bottom
perturbation component (1.16), we split the suspended load into two terms:
the former (Qb

s) is that generated by the tidal current over a flat bottom, the
latter (Qp

s) describes the sediment transport perturbations induced by the
bottom waviness. Taking into account that Y=1−η and dropping the prime
it is possible to write the two contributions in the following dimensionless
forms

Q(b)
s = 0.116

√
Ψd

d
sign

(

∂ub

∂z

)

(cr0 u∗0)

[

I10 ln

(

30

ε

)

+ I20

]

(1.88)

Q(p)
s = 0.116

√
Ψd

d
sign

(

∂ub

∂z

){

cr0 u∗0

[

I11 ln

(

30

ε

)

+ I21 −
I10
2

]

+

+

[

I10 ln

(

30

ε

)

+ I20

]

[

u∗0 cr1 + cr0 u∗1 −
cr0 u∗0

2

]

}

Πeix + c.c. (1.89)

where

cr0 =
1.5

R0.2
p

d

( |θ0|
θcr

− 1

)1.5

(1.90)

cr1 =
1.5

R0.2
p

d

[

1

2

( |θ0|
θcr

− 1

)1.5

+ 1.5

( |θ0|
θcr

− 1

)0.5

θ1
θ0
|θ0|

]

(1.91)

θ0 =
Ψd

µr̂

∂ub

∂z
; θ1 =

Ψd

µr̂

(

1

2

∂2ub

∂z2
+
∂2Ψ

∂z2
+ δ2Ψ

)

(1.92a,b)

u∗0 =

√

1

µr̂

∣

∣

∣

∣

∂ub

∂z

∣

∣

∣

∣

; u∗1 =

√

1

µr̂

∂ub/∂z

2 |∂ub/∂z|3/2

(

1

2

∂2ub

∂z2
+
∂2Ψ

∂z2
+ δ2Ψ

)

.

(1.93a,b)
Moreover in the previous relationships the dimensionless parameter Ψd

introduced in section 1.5 and the dimensionless diameter d, scaled with the
water depth, have been used.

Finally the Einstein integrals become

I10 = 21.6

∫ 1

a

[

a (1 − z)

z (1 − a)

]Z0

dz (1.94)

I11 = 10.8

∫ 1

a

[

a (1 − z)

z (1 − a]

]Z0
{

Z1 ln

[

a (1 − z)

z (1 − a)

]

− Z0
1

1 − z
+ 1

}

dz (1.95)
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I20 = 21.6a2

∫ 1

a

[

a (1 − z)

z (1 − a)

]Z0

ln(z)dz (1.96)

I21 = 10.8a2
∫ 1

a

[

a (1 − z)

z (1 − a)

]Z0
{[

Z1 ln

(

a (1 − z)

z (1 − a)

)

−

−Z0
1

1 − z

]

ln(z) + 1

}

dz . (1.97)

where

Z0 =
1

κ
ws

√

µr̂

(

1/

√

∂ub

∂z

)

(1.98)

and

Z1 =
1

κ
ws

√

µr̂

{

− ∂ub/∂z

2|∂ub/∂z|5/2

(

1

2

∂2ub

∂z2
+
∂2Ψ

∂z2
+ δ2Ψ

)}

. (1.99)

Taking into account only the terms in which the bottom perturbation am-
plitude Π is present and keeping in mind relationship (1.74), we can estimate
the growth rate due to the presence of the suspended load and write

Γs = −0.232

√
Ψm

d
δ i sgn

(

∂ub

∂z

){

cr0u∗0

[

I11 ln

(

30

ε

)

+ I21 −
I10
2

]

+

[

I10 ln

(

30

ε

)

+ I20

]

(

u∗0cr1 + u∗1cr0 −
cr0u∗0

2

)

}

(1.100)

while the contribution of the growth rate due to the bed load can be expressed
in the form

Γb = −24δ [|θ0| − θc]
1/2

(

θ1i + γ
δ

2

)

. (1.101)

The model hence allows for the computation the growth/decay rate of
the bottom perturbations. The results described in the following have been
obtained using tide characteristics and water depths which can be considered
as representative of tidal currents in the North Sea and varying the sediment
size considering fine, medium as well as coarse sand.

In figure 1.31 the real part Γr of the growth rate is plotted versus the
dimensionless wavenumber δ for s = 1.02, µ̂ = 282, γ = 0.05, r̂ = 172,
Ψ̂d=0.0026 and Rp=11.4. As discussed in section 1.4, a value of δ, i.e. a
value of the dimensionless wavelength of the bottom perturbation, can be
identified which is characterised by the maximum amplification rate. In the
framework of a linear stability analysis such wavelength can be assumed to
be that of the sand waves which tend to appear. The results of figure 1.31
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Figure 1.32: Dimensionless growth rate Γr plotted versus δ for s=1.02,
µ̂=282, γ=0.05, r̂=224. The largest value of Γr are for Rp=11.4, Ψ̂d=0.00259,
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Figure 1.33: Dimensionless growth rate Γr plotted versus δ for s=1.02,
µ̂=282, γ=0.05, Ψ̂d=0.0026, Rp=11.4. The largest values of Γr are for r̂=224,
the smallest values are for r̂=137, the intermediate values for r̂=172.

show that the suspended load destabilises the flat bed configuration and
causes shorter sand waves to develop. In fact Γs is always positive and the
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maximum of Γb + Γs takes place for a value of δ larger than that of the
Γb curve. In figure 1.32, the tide characteristics and the water depth are
fixed and different grain sizes are considered. Note that the suspended load
influence on the perturbation development is strictly dependent on the value
of the grain size.

For a coarse sand, the suspended load has a negligible effect on the growth
rate Γr and the curve obtained considering only the bed load is close to that
obtained adding the effects of the sediment carried into suspension. On
the other hand, for a fine sand the inclusion of the suspended load induces
significant variations of the growth rate. Qualitatively similar results are
found for different tide characteristics as it appears in figure 1.33 where
different strengths of the tidal current are considered: as the strength of the
tidal current increases, the values of the growth rate Γr tend to increase.

Finally it could be pointed that the inclusion in the model of the sus-
pended load does not significantly affect the qualitative behaviour of the
process and the values of the real part Γr of the growth rate, leading to
results close to those obtained considering just the effect of the bed load.

1.8 Discussion of the model findings

The present analysis supports the idea that sand waves in tide dominated
coastal areas arise because of an inherent instability of the flat bottom config-
uration subject to tidal currents. The mechanism which leads to the growth
of sand waves is that discussed by Hulscher (1996a): the interaction of an
oscillatory tidal current with a bottom waviness gives rise to steady recircu-
lating cells. When the steady streaming close to the bed is directed from the
troughs toward the crests of the bottom perturbation and is strong enough
to overcome gravity effects which tend to carry the sediment from the crests
toward the troughs, the perturbation grows and gives rise to bottom patterns.

Present results provides a more accurate quantitative description of the
phenomenon since they hold for arbitrary values of the ratio r between the
horizontal tidal excursion and the wavelength of bottom perturbations. In
fact for large values of r, the interaction between the flow induced by tide
propagation and the bottom waviness gives rise to a perturbed flow charac-
terised by a large number of time harmonic components (see figure 1.34).

Notwithstanding the simplified description of turbulence and sediment
transport, for realistic values of the parameters, the present results allow the
prediction of patterns characterised by wavelenghts comparable with those
observed in the field. However the critical conditions are somewhat under-
estimated and close to the critical conditions, ultra-long sand waves become

71



1.8 Discussion of the model findings

excited. A more realistic description of turbulence and sediment transport is
required to significantly improve this aspect of the model predictions.

A height and flow-dependent model for eddy viscosity has been employed
by Komarova & Hulscher (2000) to resolve the problem of the excitation
of these very long sand waves. However in the model used by Komarova
& Hulscher (2000) the eddy viscosity changes in time only for a term pro-
portional to the amplitude of the bottom perturbation and becomes time-
independent for a flat bottom configuration, i.e. the changes of turbulence
structure taking place during the tidal cycle are not taken into account. This
first attempt of accounting for time variations of the eddy viscosity opens the
way to further investigation on the effects of temporal and spatial structure
of turbulence on sand wave formation.

The asymptotic approach proposed by Gerkema (2000) for large values
of r̂ and s is modified in the bottom boundary layer to describe cases char-
acterised by values of the stress parameter s of order one, which is the order
of magnitude suggested by an analysis of field data.

The use of a sediment transport formula which takes into account the size
of the sediment and the introduction of a critical bed shear stress for sediment
motion allows us to predict some aspects of the phenomenon which were not
considered by previous models. In fact, according to field observations, the
analysis shows that a coarse sediment, even when transported by the tidal
current, does not give rise to the appearance of sand waves. Moreover the
introduction of a critical shear stress for sediment movement allows a more
realistic evaluation of the conditions leading to sand waves appearance and
give rise to a finite value of the wavelength of the most unstable perturbations
when the parameters are close to their critical values.

The inclusion in the model of the suspended load does not affect signif-
icantly the qualitative behaviour of the system. For a coarse sediment the
values of the real part Γr of the growth rate are close to those obtained
considering just the effect of the bed load. However, significant quantitative
differences are found when considering a fine sediment. In particular, the
growth rate increases and shorter bedforms tend to appear.

Some aspects of the model can be improved. The actual value of the
eddy viscosity, which is introduced to model turbulent stresses, vanishes at
the bottom and increases moving far from it, before decreasing near the free
surface. Since the model uses a constant eddy viscosity, the well established
no slip condition at the bottom should be replaced by a partial slip condition.
It follows that the model provides a fair description of the flow far from the
bottom but it fails to describes the velocity profile close to the sea bed.
Moreover, as already pointed out, a time independent eddy viscosity model
is not accurate at flow reversal. Therefore to have a more accurate description
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Figure 1.34: Dimensionless growth rate Γr plotted versus the dimensionless
wavenumber δ of the bottom perturbation for µ̂ = 112.5, s = 1.02, r̂ = 25,
Ψ̂d = 0.0045, γ = 0.05 θc = 0.047 and N =1, 50. Larger values of N provide
results coincident with those obtained setting N =50.

of turbulence, spatial and temporal variations of the eddy viscosity should
be taken into account as well as the influence of bottom perturbations on
turbulent structure. Moreover the effects of wind waves are not taken into
account in the model, although it is known that in shallow seas the oscillatory
motion induced by wind waves close to the bottom can pick-up a lot of
sediments which is then transported by the steady currents. Quite often,
the local flow induced by tide propagation is not unidirectional and many
tide constituents give rise to a complex time development of the actual tidal
current.

Finally, being based on a linear approach, the model can predict only
the initial stage of bed form growth. In order to investigate the long-term
behaviour, when the amplitude of sand waves reach finite values, a nonlinear
approach is required.
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Chapter 2

Migration of sand waves

2.1 Introduction

As already pointed out in the section “Introduction to Coastal Morphodynam-

ics”, sand waves are rhythmic seabed features that occur in many shallow
seas.

One of their characteristics is that their crests are almost orthogonal to
the direction of the velocity oscillations induced by the tide. Furthermore
they often migrate with a rate that strongly depends on the tide characteris-
tics and in particular on the intensity of the local residual currents. Migration
velocities can be up to some tens of metres per year (Terwindt, 1971; Boku-
niewicz et al., 1977; Fenster et al., 1990). The sawtooth-shaped profile of
sand waves is similar, but less asymmetric, to that of desert sand dunes or
that of dunes observed in fluvial environments. However, they differ from
bed forms induced by steady currents since the basic flow, which cause the
sand waves to evolve, has an oscillatory nature. The reader interested in
bedforms generated by steady currents is referred to Engelund and Fredsøe
(1982), Richards (1980) and references therein.

In the section “Introduction to Coastal Morphodynamics” it has also been
argued that knowledge about the characteristics of sand is of great practi-
cal relevance. Economical sectors that are affected by the presence and/or
evolution of sand waves comprise:

i) the oil industry. Sand waves migration can represent a serious hazard
to pipelines which are laid in a region of intense seabed activity. A few
examples can be found of generation of large free-spans, related to sand
waves migration, which led to buckling or even failure of the pipeline.
On the other hand self-burial can also occur in relation with sand wave
activity;
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ii) the shipping industry. Intensive dredging activities may be required
because of sand waves migrating into or along shipping channels and
harbours, thereby reducing the local water depth and, consequently,
the navigability;

iii) the fishing industry. It is well known that fields of sand waves provide
an important shelter for fish stocks which find a propitious environment
for growth and reproduction;

iv) coastal maintenance. It has been acknowledged that nearshore, migrat-
ing sand waves might even affect shoreline evolution (Verhagen, 1989)
and hence coastal defence works.

The main objective of this section is to deepen the knowledge in sand
wave migration, predicting and understanding it. This is done by extend the
model proposed in chapter 1. The new aspect introduced is the incorporation
of steady currents and various harmonic components of the tidal wave in the
description of the phenomenon. This results in possible migration of sand
waves due to time asymmetry of the tidal current. In fact, if only one tidal
component is accounted for in the basic state, the flow at time t + T/2 (T
being the component period) is the mirror image of that at time t, the time-
averaged flow is symmetric and no migration of sand waves can be induced.
Although for practical problems migration is probably the most important
property of sand waves; only Németh et al. (2002) modelled sand wave
migration. Németh et al. (2002) investigated the phenomenon by means of a
model similar to that of Hulscher (1996a) and, hence, with an approach which
is strictly valid only when the parameter r is moderate. Moreover, Németh et
al. (2002) considered only the presence of a residual current in the basic state
and found that sand waves always migrate downstream, i.e. in the direction
of the steady current. As discussed in the following, field data exist which
show that sometime sand waves migrate upstream. Even though different
elements can contribute to sand wave migration (a.o. storms, wind-driven
currents,...), we show that such an upstream migration can be modelled by
investigating the interaction of different tide constituents.

2.2 Do sand waves migrate downstream or

upstream?

In the literature it is usually reported that sand waves generated by tidal
currents migrate downstream, i.e. in the direction of the residual steady
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Figure 2.1: Study area (southern bight of the North Sea and position of some
measurement sites for: bathymetry (diamonds) and currents (triangles).

current, at a speed of the order of several metres per year (Németh et al.,
2002). However, in the following an example of a field case characterised by
upstream-migrating sand waves is described. This field observation is not
surprising. Indeed, the theoretical analysis described in section 2.3 shows
that a simple mechanism exists able to cause the migration of sand waves in
the direction opposite to that of the residual steady current.

Data concerning bathymetry, sediment properties (e.g. grain sizes, poros-
ity, density, etc.) and current properties (i.e. tidal and residual currents
characteristics) have been provided by SNAMPROGETTI S.p.A. These data
were collected during a number of field surveys carried out in the North Sea
(see figure 2.1) between 1988 and 1995 for two pipeline engineering projects,
namely “ZEEPIPE” and “NORFRA”.

In the period August-October 1988 bathymetric surveys were performed
within 28 corridors located along the path shown in figure 2.1 and progres-
sively numbered from the coast toward the open sea. The width of the
corridors is 200 metres for corridors 1-3, 5300 metres for corridors 3-16, of
4100 metres for corridors 17-20 and of 1500 metres for corridors 21-28.

Two vessels equipped with ‘Simrad EM100’ multibeam echo sounders
were used. The ultrawide mode, covering 2.4 times the water depth, was
used during the surveys. The average survey speed was 6 knots and in bad
weather the velocity was reduced to about 3-4 knots. The primary positioning
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systems used during the bathymetric surveys were both the ‘Trinsponder’
and the ‘Syledis’, while a differential GPS was used for control purposes.
The positioning system gave a standard deviation better than +/- 3 metres.
Single beam echo sounders were also used to check the depth measurements
provided by the ‘Simrad EM100’. The vertical datum was the Mean Sea
Level. To calculate the tide and to have an accurate datum, a total of 50
tide recording stations were established along the planned route, all using
concrete anchors. The concrete anchors and the recorders were retrieved
by using release transponders. Data from 3 permanent stations supplied by
the Dutch Hydrographic Services and Eurosense were also used. The data
processing and map production were performed using a fully digital mapping
system.

The surveyed area has a water depth ranging from the 7.5 metres of corri-
dor 5 to the 50 metres of corridor 23. Sediment characteristics were obtained
by analysing samples taken from the bottom surface and in boreholes reach-
ing about 5 metres below seabed. In all the surveyed area there is a thick
surface layer of sand, the mean diameter of which ranges between 0.25mm
and 0.6mm. Along many corridors sand waves were observed. The typical
features of the existing sand wave field were established through an analysis
of the detailed bathymetric data. The sand waves present heights ranging
between 2m and 10m and wavelengths varying between 120 and 500 metres.
Sand waves are asymmetrical in most of the region of interest. Examples of
the bathymetric data collected during the surveys are shown in figures 2.2
and 2.4 where the bottom topographies measured at the ‘SW1’ (51◦ 35

′

N ,
3◦ 2

′

E) and ‘SW2’ (52◦ 21
′

N , 3◦ 9
′

E) sites (diamonds on figure 2.1) are dis-
played. The data shown in figures 2.2 and 2.4 correspond to those measured
at corridors 5 and 17, respectively.

For current data (triangle on figure 2.1), we have used those collected
at measurement sites located at (51◦ 30

′

N, 3◦ 2
′

E), (52◦ 0
′

N, 3◦ 5
′

E) and
(52◦ 41

′

N, 3◦ 11
′

E), taken as representative of current conditions at SW1
and SW2.
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MIGRATION OF SAND WAVES

Figure 2.2: Contour map of the seabed at location SW1 with reference tran-
sects P1 and P2 showing the presence of sand waves. The black arrow indi-
cates the north and the grid size is 500m. Courtesy of SNAMPROGETTI.
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Figure 2.3: Seabed profiles at SW1 along transects P1 and P2. Distances
are measured from the lower point of the transect toward the north-east.
Courtesy of SNAMPROGETTI.
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2.2 Do sand waves migrate downstream or upstream?

Figure 2.4: Contour map of the seabed at location SW2 with reference tran-
sects P1 and P2 showing the presence of sand waves. The black arrow indi-
cates the north and the grid size is 500m. Courtesy of SNAMPROGETTI.
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Figure 2.5: Seabed profiles at SW2 along transects P1 and P2. Distances are
measured from the lower point of the transect toward the north. Courtesy
of SNAMPROGETTI.
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2.2 Do sand waves migrate downstream or upstream?

Constituent Major axis Minor axis Inclination of phase lag
Name [cm/s] [cm/s] major axis φ
Z0 4.607 0.000 59.1◦ 360.0◦

MM 0.687 -0.253 110.9◦ 286.5◦

MSF 1.417 0.829 77.8◦ 32.4◦

ALP1 0.258 0.065 155.3◦ 35.9◦

2Q1 0.363 0.020 97.0◦ 200.0◦

Q1 0.653 -0.010 116.9◦ 242.1◦

O1 1.911 0.076 115.4◦ 298.0◦

NO1 0.433 0.032 83.6◦ 274.8◦

K1 1.810 -0.392 106.8◦ 115.5◦

J1 0.369 -0.035 94.5◦ 59.6◦

OO1 0.299 0.048 107.3◦ 181.4◦

UPS1 0.101 -0.034 49.5◦ 184.8◦

EPS2 1.014 -0.175 89.9◦ 164.6◦

MU2 1.603 0.647 64.6◦ 170.5◦

N2 7.051 -0.837 82.0◦ 54.0◦

M2 43.392 -6.223 79.7◦ 70.9◦

L2 4.349 0.516 76.8◦ 88.5◦

S2 13.809 -2.680 79.2◦ 125.0◦

ETA2 0.442 -0.112 69.6◦ 129.4◦

MO3 0.703 -0.142 76.0◦ 155.0◦

M3 0.231 -0.065 115.1◦ 102.0◦

MK3 0.671 -0.163 77.4◦ 328.5◦

SK3 0.183 0.069 97.6◦ 50.6◦

MN4 1.196 0.307 163.8◦ 197.5◦

M4 2.237 0.798 151.3◦ 192.3◦

SN4 0.344 0.145 165.3◦ 296.8◦

MS4 1.658 0.553 155.1◦ 254.8◦

S4 0.233 -0.015 156.1◦ 355.4◦

2MK5 0.698 -0.225 168.3◦ 53.4◦

2SK5 0.155 0.060 146.2◦ 263.1◦

2MN6 0.878 -0.691 65.7◦ 71.9◦

M6 1.385 -1.264 178.8◦ 337.7◦

2MS6 1.414 -1.198 23.1◦ 187.4◦

2SM6 0.413 -0.276 128.1◦ 130.3◦

3MK7 0.130 0.041 37.9◦ 339.4◦

M8 0.153 -0.051 132.9◦ 61.0◦

Table 2.1: Tidal current data at Station 9. The inclination of the major
axis is measured with respect to the east axis in counterclockwise direction.
Courtesy of SNAMPROGETTI. 82



MIGRATION OF SAND WAVES

Constituent Major axis Minor axis Inclination of phase lag
Name [cm/s] [cm/s] major axis φ
Z0 5.286 0.000 70.9◦ 360.0◦

MM 2.370 -0.695 8.8◦ 318.2◦

MSF 1.370 -0.516 3.7◦ 43.9◦

ALP1 0.461 0.018 70.8◦ 271.9◦

2Q1 0.325 -0.029 64.5◦ 6.9◦

Q1 0.709 -0.259 70.9◦ 301.5◦

O1 1.019 -0.278 105.8◦ 297.3◦

NO1 0.114 -0.002 28.8◦ 108.5◦

K1 1.389 -0.534 77.0◦ 129.8◦

J1 0.323 0.028 6.9◦ 146.3◦

OO1 0.120 0.086 110.9◦ 142.2◦

UPS1 0.102 0.036 18.0◦ 272.0◦

EPS2 2.905 1.346 64.1◦ 200.9◦

MU2 5.381 2.303 67.2◦ 181.5◦

N2 6.057 -0.659 58.5◦ 9.7◦

M2 38.699 7.547 55.8◦ 60.8◦

L2 5.224 0.425 76.2◦ 58.3◦

S2 10.239 1.579 47.2◦ 86.0◦

ETA2 1.628 0.107 57.7◦ 143.0◦

MO3 0.340 -0.011 50.2◦ 162.2◦

M3 0.594 0.202 66.2◦ 197.8◦

MK3 0.291 0.000 40.8◦ 69.7◦

SK3 0.172 -0.119 162.7◦ 62.8◦

MN4 1.337 0.171 21.8◦ 326.8◦

M4 3.695 0.453 15.1◦ 5.3◦

SN4 0.466 0.169 9.0◦ 61.3◦

MS4 1.994 0.197 1.2◦ 45.4◦

S4 0.072 0.025 115.4◦ 228.0◦

2MK5 0.157 -0.100 138.3◦ 68.5◦

2SK5 0.286 0.016 84.8◦ 137.5◦

2MN6 0.661 -0.203 104.7◦ 345.9◦

M6 1.390 0.272 85.4◦ 49.2◦

2MS6 1.335 0.307 83.0◦ 69.1◦

2SM6 0.174 -0.033 97.9◦ 125.0◦

3MK7 0.163 0.083 101.0◦ 55.9◦

M8 0.504 0.235 33.6◦ 344.3◦

Table 2.2: Tidal current data at Station 10. The inclination of the major
axis is measured with respect to the east axis in counterclockwise direction.
Courtesy of SNAMPROGETTI. 83



2.2 Do sand waves migrate downstream or upstream?

Constituent Major axis Minor axis Inclination of phase lag
Name [cm/s] [cm/s] major axis φ
Z0 2.377 0.000 30.2◦ 360.0◦

MM 1.081 0.304 46.5◦ 221.9◦

MSF 1.047 0.451 31.0◦ 265.4◦

ALP1 0.104 0.085 2.9◦ 200.6◦

2Q1 0.205 0.079 160.3◦ 243.6◦

Q1 0.522 -0.188 37.9◦ 18.7◦

O1 1.474 -0.645 36.9◦ 73.9◦

NO1 0.304 -0.015 33.7◦ 171.1◦

K1 1.521 -0.740 60.9◦ 198.5◦

J1 0.333 0.208 80.8◦ 334.1◦

OO1 0.165 -0.040 177.9◦ 121.2◦

UPS1 0.190 -0.070 174.4◦ 16.9◦

EPS2 0.257 -0.034 167.3◦ 277.1◦

MU2 1.829 1.001 24.4◦ 66.4◦

N2 8.072 2.115 61.5◦ 23.1◦

M2 42.854 18.145 65.9◦ 35.5◦

L2 3.814 1.888 51.0◦ 344.9◦

S2 15.788 4.613 66.4◦ 95.1◦

ETA2 0.255 -0.042 81.1◦ 31.0◦

MO3 0.560 0.287 148.0◦ 163.7◦

M3 0.264 0.144 125.5◦ 275.6◦

MK3 0.665 0.286 155.7◦ 332.8◦

SK3 0.404 0.007 13.3◦ 201.1◦

MN4 1.664 -0.068 32.6◦ 320.2◦

M4 4.137 -0.102 28.7◦ 330.7◦

SN4 0.560 -0.163 100.9◦ 65.4◦

MS4 2.358 0.091 23.7◦ 25.7◦

S4 0.379 0.112 49.5◦ 131.1◦

2MK5 0.664 0.057 54.7◦ 151.3◦

2SK5 0.177 0.021 60.5◦ 347.7◦

2MN6 1.694 0.266 18.2◦ 235.7◦

M6 2.885 0.687 26.2◦ 266.4◦

2MS6 3.086 0.799 23.5◦ 317.2◦

2SM6 0.863 0.008 12.4◦ 12.8◦

3MK7 0.375 0.057 37.0◦ 56.6◦

M8 0.839 0.498 51.0◦ 256.4◦

Table 2.3: Tidal current data at Station 11. The inclination of the major
axis is measured with respect to the east axis in counterclockwise direction.
Courtesy of SNAMPROGETTI. 84
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Layer Top Bottom Soil description Total unit Friction angle d50

[m] [m] weight [kN/m3] undrained [deg] [mm]

Top of sand wave

I 0.0 3.0 - 7.0 SAND, medium to coarse, 20.0 - 21.5 35 - 43 0.60

medium dense to dense

II 3.0 >7.0 CLAY, very stiff 17.5 - 21.0 32 0.04

Bottom of sand wave

I 0.0 0.4 - 5.0 SAND, medium, loose to dense 19.0 - 21.0 30 - 43 0.35

II 0.4 - 5.0 >5.0 CLAY, stiff to very stiff 17.5 - 21.0 32 0.04

Table 2.4: Sediment characteristics in area SW1. Courtesy of SNAMPROGETTI.
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Layer Top Bottom Soil description Total unit Friction angle d50

[m] [m] weight [kN/m3] undrained [deg] [mm]

I 0.0 2.0 - 7.0 SAND, medium to fine, 19.5 - 20.5 25 - 41 0.25

medium dense to dense

II 2.0 - 7.0 >7.2 SAND, dense and 20.5 - 21.0 37 - 43 -

CLAY, stiff to very stiff - 32 -

Table 2.5: Sediment characteristics in area SW2. Courtesy of SNAMPROGETTI.
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MIGRATION OF SAND WAVES

Sediment characteristics are here summarised in terms of the total unit
weight, undrained friction angle and mean diameter (d50) (see tables 2.2 and
2.2).

Tidal currents can be considered as a deterministic forcing and were re-
constructed yielding the amplitude of the velocity oscillations Ûn and the
direction Θn of the major semi-axis of the tidal ellipses of the different tidal
components (see table 2.1, 2.2 and 2.3). Similarly, the forcing due to residual
currents can be given in terms of both the strength Û0 and the direction Θ0

of the steady component of the velocity field. At location SW1 an analysis
of the available data shows that the ellipse of the main tide component (M2)
is clockwise rotated with respect to the north by about 25 degrees, while the
M4-ellipse and the steady current are clockwise rotated by about 60 degrees.
The amplitude of the velocity oscillations induced by the M2 tide component
is about 50cm/s while the M4 tide component has an amplitude of the ve-
locity oscillations of about 5cm/s. Finally, the residual steady current is of
the order of a few centimetres per second. The phase angle φ between the
M2 and M4 components turns out to be φ = −295 degrees. Similar values
characterise tidal currents at location SW2.

To detect the presence of sand waves and determine their typical wave-
lengths, maps similar to those reported in figures 2.2 and 2.4 have been
analysed.

As far as the SW1 area is concerned, the data reveal the presence of two
different types of sand waves (refer to transects P1 and P2 of figure 2.2).
In the western part (transect P2) asymmetric sand waves are found that
slowly migrate (some metres per year) toward the south-west (240◦N) and
characterised by a length of about L = 210±45m. On the other hand, typical
sand waves of the eastern part (transect P1) are shorter (L = 135 ± 25m),
steeper, nearly symmetrical and almost stationary with the crests aligned
almost perpendicular to the 20◦ − 200◦ N direction. Moreover, it appears
that the bedforms in the eastern part have crests which are almost orthogonal
to the direction of the M2 tide component while the crests of those present
in the western part are orthogonal to the steady current and to the M4 tidal
component. It is not simple to explain why sand waves characteristics change
in such a small area (the area of SW1 is only 4×2 km2). A careful analysis of
the bathymetric data shows that the mean bottom slope in the eastern part
differs from that of the western part and hence this topographic difference
may trigger the appearance of different bedforms. The data also reveal that,
rather surprisingly, along the P1 and P2 sections sand waves migrate in a
direction opposite to that of the residual current. Besides, the migration rate
along P1 is much smaller than that along P2 (see figure 2.3).

Sand waves of the SW2 area are characterised by a more regular pattern
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2.2 Do sand waves migrate downstream or upstream?

(see figure 2.4). Again, field data useful for measuring migration rates are
available along two transects, P1 and P2. However, contrary to what found
in the SW1 area, no major differences were found by analysing properties of
sand waves along these two sections. In fact, sand waves are characterised by
a wavelength of about 275 ± 70m along section P1 and of about 296 ± 73m
along section P2. Heights range from 3.5m to 5.5m over the whole SW2 area
and the steepnesses does not vary in the domain. Moreover, bathymetric
data reveal a negligible net migration over the period 1988− 1995 (see figure
2.5).

The bottom configuration was measured again in March 1989, March
1990 and March 1995 only along the transects drawn in figures 2.2 and
2.4. These transects were selected by SNAMPROGETTI because the sand
waves along them are representative for sand wave fields encountered along
the route of the “ZEEPIPE” pipeline. The bottom configuration along the
transects was monitored in detail with the specific purpose of evaluating sand
wave migration and mobility. The measured data are shown in figures 2.3
and 2.5. As described in the following, an estimate of the migration speed
of sand waves can be obtained using the collected data and composing the
depth variations between subsequent profiles.

For current data, we have used those collected at the measurement sites
(triangles on figure 2.1) located at (52◦ 41

′

N , 3◦ 11
′

E) (station 9), (52◦ 00
′

N ,
3◦ 5

′

E) (station 10) and (51◦ 30
′

N , 3◦ 5
′

E) (station 11) and, therefore, taken
as representative of current conditions at SW1 (station 11) and SW2 (stations
9 and 10), respectively. Measurements were carried out at 3 metres above
the bottom. Current measurements were made by means of ‘Simrad UCM-
30’ acoustic current meters. The instrument samples current velocity at 10
Hz and stores mean values on 10 minutes every hour. The measurement
campaign was carried out in the period 15 October 1998 - 31 March 1989.
The harmonic analysis of the tidal current has been performed for the current
time series which have a length that is sufficient to resolve the main tidal
constituents.

For each tidal constituent it was possible to obtain the amplitude of the
major axis of the tidal current ellipse, the amplitude of the minor axis of the
tidal current ellipse (a positive minor axis means that the vector rotates in
the counterclockwise direction, a negative value indicates clockwise rotation),
the inclination of the major axis, indicated as the angle from the east axis in
the counterclockwise direction, the Greenwich phase lag of the constituents
(in degrees). It turns out that the tidal currents at the measuring sites are
mainly semi-diurnal with M2 as the dominant constituent. Weaker diurnal
and quarter-diurnal contributions as well as a steady current are also evident.
Tables 2.1, 2.2 and 2.3 summarise the characteristics of the tidal constituents
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MIGRATION OF SAND WAVES

Site Transect Direction of migration Av. migr. speed Stand. Dev.

From To (m/year) (m/year)

SW1 P1 north-east south-west 8.0 3.2

SW1 P2 north-east south-west 5.9 3.8

SW2 P1 south north 1.5 5.6

SW2 P2 south north 1.8 5.8

Table 2.6: Direction of migration, average migration speed of sand waves and
standard deviation observed at SW1 and SW2 along transects P1 and P2 in
the period 1988-1989.

for station 9, 10 and 11 respectively. In these table the tidal constituent Z0
represents the steady current.

At this stage it is worth providing a brief description of the procedure
adopted to evaluate the tide characteristics which are used in the follow-
ing to run the model. On the basis of the data shown in the previous
tables, the time history of the tidal current along the transects has been
reconstructed. The velocity induced by each tidal constituent was projected
along each transect (accounting for its amplitude, frequency and phase) and
summed up to the other contributions. Then, applying a FFT (Fast Fourier
Transform) algorithm over time windows of 12 hours and 25 minutes and
averaging over the total number of the windows, the amplitude and phase
of the one-dimensional, representative residual (Z0), semi-diurnal (M2) and
quarter-diurnal (M4) tide constituents, defined as those which best approxi-
mate the reconstructed signal, have been evaluated. This procedure has been
employed since the theoretical model only accounts for the above three tide
constituents.

The analysis of the data measured at SW1 reveals that, rather surpris-
ingly, along the P1 and P2 transects during the period ranging from 1988
to 1989 sand waves migrate in a direction opposite to that of the residual
current (see table 2.2). From 1989 to 1995 sand waves still migrate in the
same direction. However, since current data is not available for this period
and it is not possible to state that the migration is in the direction opposite
to that of the residual current (see table 2.2). In the same periods at SW2,
bathymetric data reveal a downstream migration.

Can these field data, and in particular the upstream sand wave migration,
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2.3 Migration of sand waves: a theoretical model

Site Transect Direction of migration Av. migr. speed Stand. Dev.

From To (m/year) (m/year)

SW1 P1 north-east south-west 3.5 7.1

SW1 P2 north-east south-west 8.8 11.4

SW2 P1 south north 4.4 7.0

SW2 P2 south north 6.0 5.8

Table 2.7: Direction of migration, average migration speed of sand waves and
standard deviation observed at SW1 and SW2 along transects P1 and P2 in
the period 1989-1995.

be explained by means of a simple model similar to that illustrated in chapter
1? In the following it is shown that the answer is positive, even though more
tidal constituents must be taken into account when studying the interaction
of tidal currents with the bottom waviness.

2.3 Migration of sand waves: a theoretical

model

As showed in the first chapter, it has been considered the flow generated by
a tidal wave propagating over a cohesionless bed and investigate the time-
development of the bottom configuration it induces. Following Gerkema
(2000) and Németh et al. (2002) we consider a two-dimensional flow. The
hydrodynamics of the problem is described by momentum and continuity
equations (see section 1.1 for details). The morphodynamics of the problem is
governed by the sediment continuity equation which states that convergence
(or divergence) of the sediment flux must be accompanied by a rise (or fall)
of the bed profile:

∂η

∂t
+

1

(1 − n)

∂Q

∂x
= 0 . (2.1)

Here Q denotes the sediment flux per unit width and n the bed porosity.
The problem is closed by the following sediment transport predictor

Q = α|u|3
(

u

|u| − γ
∂η

∂x

)

. (2.2)
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MIGRATION OF SAND WAVES

The above sediment transport formula is obtained by relating Q to the
agitating forces which act on sediment grains. The latter move subject to
the drag force and to the tangential component of gravity acting along the
bed profile, other forces being negligible. The sediment transport induced
by the drag force is assumed to be proportional to the third power of the
fluid velocity (Bailard, 1981; Bailard and Inman, 1981), while that caused
by gravity is known to be linearly related to the local bottom slope when
the latter is small (Fredsøe, 1974). In (2.2) the constant α has typically val-
ues of the order of 10−4 − 10−3s2m−1 while γ is the dimensionless bed-slope
parameter which typically assumes values ranging from zero to order one.
Relationship (2.2) can be judged to be based on an oversimplified picture of
reality (for example sediment, transported by sea gravity waves is not con-
sidered by (2.2)), however the works by Gerkema (2000) and Komarova and
Hulscher (2000), who used a similar sediment transport predictor, show that
the use of (2.2) in the problem under consideration leads to a fair description
of the phenomenon and to reliable predictions.

2.4 The basic state

In order to model the flow that is locally induced by the propagation of the
tidal wave, we consider the flow over a flat horizontal bottom forced by a
horizontal pressure gradient which is the sum of

i) a steady component;

ii) an oscillatory component of angular frequency σ;

iii) an oscillatory component of angular frequency 2σ:

∂p

∂x
= −P0x −

P1x

2
(eiσt + c.c.) − P2x

2
(e2iσt + c.c.). (2.3)

As shown in the following, the complex amplitudes P1x and P2x of the
oscillatory pressure gradient can be related to the amplitude of the different
tidal wave components and P0x to the strength of the residual current Z0,
the first two contributions can be thought of composing the M2 and M4
tidal components respectively while the steady part gives rise to the residual
current. It can be easily verified that the vertical velocity component of the
basic flow vanishes identically, while the horizontal component reads

ub =

2
∑

n=−2

Ûne
inσt = −P0x

ρA

[

z2

2
−zH−H

s̃

]

+
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2.5 The time-development of bottom perturbations

+

[

2
∑

n=1

Pnx

2niρσ

[

1+c̃n

(

E2
ne

−(1+i) z
∆n +e(1+i) z

∆n

)]

einσt + c.c.

]

. (2.4)

Here s̃ is the stress parameter defined in equation (1.8b). Furthermore ∆n

is a viscous length defined in terms of the kinematic eddy viscosity A and of
the angular frequency of the tide oscillations:

∆n =
√

2A/nσ (2.5)

and

En = e(1+i) H
∆n , c̃n = − s̃

s̃(E2
n + 1) + (1 + i)(E2

n − 1)/∆n
. (2.6)

Moreover, the functions Ûn can be easily by comparing the different har-
monic components appearing in (2.4) and it turns out that the amplitudes
Û1m

and Û2m
of the depth-averaged velocity oscillations are

Ûnm
=

|Pnx|
ρσ

∣

∣

∣

∣

1 + c̃
(∆n/H)

(1 + i)
(E2

n − 1)

∣

∣

∣

∣

, (2.7)

while the depth-averaged value of the steady current Û0m
is

Û0m
=

|P0x|
ρA

(

1

3
H2 +

H

s̃

)

. (2.8)

2.5 The time-development of bottom pertur-

bations

As in Hulscher (1996a), Gerkema (2000) and as showed in section 1.3 we per-
form a stability analysis of the flat bottom configuration considering pertur-
bations of small amplitude (strictly infinitesimal) and linearise the problem.

After linearising with respect to the amplitude of the initial perturbation,
the hydrodynamic problem is posed by the Orr-Sommerfeld-like equation
obtained in section 1.3 (see relationship (1.24)).

Expanding the stream function Ψ in equation (1.24) as a Fourier series
in time we obtain the following system of coupled linear ordinary differential
equations:

in

r̂δ
N2Ψ̂n +

2
∑

j=−2

ÛjN
2Ψ̂n−j − i

2
∑

j=−2

d2Ûj

dz2
Ψ̂n−j =

1

µr̂δ
N4Ψ̂n (2.9)
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supplemented with the following boundary conditions

Ψ̂n = 0,
d2Ψ̂n

dz2
= 0 at z = 1, (2.10)

Ψ̂n = −1

2
Ûn at z = 0, (2.11)

d2Ψ̂n

dz2
− s

dΨ̂n

dz
= −1

2

d2Ûn

dz2
+
s

2

dÛn

dz
at z = 0. (2.12)

The reader should notice that the presence of the terms with Û0 and Û2

makes (2.9) different from the equation (1.32) solved in section 1.3 and, as a
consequence, the solution of (2.9) is no longer symmetric with respect to the
crests and troughs of the bottom waviness. As shown in section 2.6, the loss
of symmetry is the cause of sand wave migration.

Notice that, a better description of the solution is achieved close to the
bottom, where large gradients are expected for large values of r̂, if the nu-
merical integration of equations (2.9) is carried out using a constant step in
the variable ζ defined by

ζ = ln[1 + (r̂δ)1/2z] (2.13)

which corresponds to clustering the computational points close to the bottom.

2.6 Results

The model allows for the computation of both the growth/decay rate of
the bottom perturbations and their dimensional migration speed C. These
quantities can be computed by noticing that the bottom configuration is
described by

η =
Π0

2
e

ΓrαÛ3
1m

H2 te
ik

„

x+
ΓiαÛ3

1m

kH2 t

«

+ c.c. (2.14)

where the complex quantity Γ has been split into its real (Γr) and imagi-
nary (Γi) parts. The real part Γr controls the amplification or the decay of
the bottom perturbations while, as shown by (2.14), Γi is related to their
migration speed. The dimensional migration speed is

Cd = Γi

(

αÛ3
1m

kH2

)

. (2.15)

Relationships (1.68a,b) allow to evaluate the growth rate Γ of the bottom
perturbations as function of the tidal currents and sediment characteristics.
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Figure 2.6: Generation and migration of sand waves due to the M2 con-
stituent only. Area SW1, transect P2: (a) dimensionless growth rate Γr, (b)
dimensionless migration speed Γi. Model parameters are: r̂ = 145, γ = 0.23,
µ = 2.25 and s = 0.84 (Û0m

= Û2m
= 0).

When both P2x and P0x vanish, i.e. the tide has only the M2 component,
the imaginary part Γi of Γ turns out to be identically zero and the bottom
perturbations do not migrate. This finding could be expected since the flow
at any phase ϕ of the cycle is the mirror image of that at ϕ± π.

In figure 2.6, Γr and Γi are plotted for values of the parameters describing
the conditions of the SW1 area that are estimated on the basis of measure-
ments taken during the years 1988-1989. In this computation it is assumed
that Û0m = Û4m = 0, and consequently the bedforms do not migrate, the
predicted wavenumber of the most unstable mode is δ ≈ 0.62 and the dimen-
sional wavelength turns out to be L = 2πH/δ ≈ 203m, a value close to the
observed sand wave size which along P2 is about 250m.

Of course a one-dimensional model like that described in the present pa-
per does not allow for an exhaustive description of the phenomenon taking
place in the area SW1, where a complex three-dimensional flow field is gen-
erated by tidal propagation. At this stage it is necessary to point out that
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Figure 2.7: Influence of the steady component Z0 on the generation and
migration of sand waves. Area SW1, transect P2: (a) dimensionless growth
rate Γr, (b) dimensionless migration speed Γi. Model parameters are: r̂ =
145, γ = 0.23, µ = 2.25, s = 0.84 and Û0m

/Û1m
= 0.03.

previous predictions (Chapter 1) have been obtained using the value of the
tidal currents measured in area SW1 and projected along the P2 transect,
the latter being approximately aligned with the major axis of the M4 ellipse
and the Z0 direction.

When values of P0x different from zero are considered, a background resid-
ual steady current is present and sand waves are found to migrate. Indeed
figure 2.7 shows that the presence of a residual current makes the flow to lose
its symmetry (see figure 2.8) and it induces values of Γi different from zero.
The results indicate that a positive value of the residual current induces neg-
ative values of Γi and viceversa, thus showing that sand waves always migrate
in the direction of the residual current. These results qualitatively agree with
those of Németh et al. (2002), even though the present analysis allows for
more accurate results to be obtained. The reason is that the evaluation of
the flow induced by the interaction of the bottom perturbations with the
tidal currents by means of just one harmonic component in (1.30) is strictly
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Figure 2.9: Basic flow obtained using tidal constituents M2 & M4
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Figure 2.10: Generation and migration of sand waves in the area SW1 caused
by Z0, M2 and M4. Transect P2: (a) dimensionless growth rate Γr, (b)
dimensionless migration speed Γi. Model parameters are: r̂ = 145, γ = 0.23,
µ = 2.25, s = 0.84, Û0m

/Û1m
= 0.03, Û2m

/Û1m
= 0.15 and φ = −295◦.

appropriate only for small values of r̂ while large values of r̂ require values
of N significantly larger than one. In fact, the interaction between the flow
induced by tidal propagation and the bottom waviness gives rise to a per-
turbed flow characterised by a large number of time harmonic components,
which are generated through a cascade process.

The dimensional migration rates predicted by the present analysis with
appropriate values of α turn out to be of the order of few metres per year,
values which are similar to those observed in the field. Indeed if α is chosen to
be 1×10−3s2m−1, i.e. a value within the range suggested by Gerkema (2000),
the value of Cd for the most unstable mode is equal to about 1.6m/year and
the average migration speed of sand waves observed in the period 1988-1989
along P2 is of about 6m/year.

Figure 2.10 shows the model predictions for values of the parameters
characteristic of the SW1 area along transect P2; in particular the phase be-
tween the M2 and M4 component has been fixed according to the measured
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Figure 2.11: Dimensionless amplification rate Γr (a) and dimensionless mi-
gration speed Γi (b) plotted versus the wavenumber δ in the case of tidal
constituents M2 and M4 only; s = 0.84, µ = 2.25, γ = 0.23, r̂ = 145,
U2/U1 = 0.0965.

field values and the residual current has been added. Figure 2.10 also shows
that the asymmetry in the sediment transport induced by the presence of the
M4 tide component prevails on that caused by the steady residual current and
sand waves are predicted to migrate in the upstream direction as shown by
field surveys. The observed migration speed (of the field site) has been eval-
uated looking at the displacement of each crests (see figure 2.13 which shows
some specific bedforms) and making the average on the observed bedforms.
The standard deviation of the measured migration speed is 3.8m/year. Note
that the model predictions have been made by fixing the phase between the
M2 and M4 constituents according to the measured field values (remember
that Û1m and Û2m are complex quantities). In fact, as shown by figure 2.11,
in which the flow only contains M2 and M4 components, the value of Γi is
strongly affected by the phase shift φ between the two tidal constituents. In
other words, sand waves can migrate in the upstream direction only when an
appropriate phase shift exists between the M2 and M4 tidal components.

If the hydrodynamic data are projected along transect P1, which is about
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Figure 2.12: Generation and migration of sand waves in the area SW1 caused
by Z0, M2 and M4. Transect P1: (a) dimensionless growth rate Γr, (b)
dimensionless migration speed Γi. Model parameters are: r̂ = 190, γ = 0.23,
µ = 1.71, s = 0.80, Û0m

/Û1m
= 0.017, Û2m

/Û1m
= 0.090 and φ = −295◦.

the direction of the major axis of the M2 ellipse, the results of figure 2.12
are obtained. The predicted wavelength of the most unstable mode does
not significantly change, while in the field the bedforms observed along tran-
sect P1 are shorter than those observed along transect P2. Moreover, the
predicted migration speed (0.6m/year) slightly decreases while the field ob-
servations indicate a slight increase. The analysis of the bathymetric data
along transect P1 leads to an observed migration speed equal to 8m/year
with a standard deviation equal to 3.2m/year. Notwithstanding the differ-
ences between the theoretical predictions and the field data, the agreement
is still satisfactory if the relative error is compared with the typical values of
the relative errors provided by the existing morphodynamic stability analyses
which are used to understand the characteristics of fluvial, coastal and estu-
arine bedforms (Blondeaux, 2001). Indeed, in the literature, relative errors
equal to 100% and even larger are judged to be satisfactory (see a.o. Colom-
bini et al., 1987; Blondeaux, 1990; Vittori & Blondeaux, 1990; Colombini,
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Figure 2.13: Details of sand wave profile in the area SW1 along transect P2.

1998; Calvete et al., 2001) and quite often comparisons between theoretical
findings and laboratory and/or field observations are made considering just
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Figure 2.14: Generation sand waves in the area SW2 caused by M2 only: (a)
dimensionless growth rate Γr, (b) dimensionless migration speed Γi. Model
parameters are: r̂ = 72, γ = 0.23, µ = 4.86 and s = 0.77.

the order of magnitude of the results or looking at their qualitative behaviour
(see a.o. Vittori et al., 1999; Coco et al., 2000; Komarova & Hulscher, 2000;
Komarova and Newell, 2000; Calvete & De Swart, 2003). In evaluating the
predictions of the model, it should also be taken into account that the analysis
is horizontally one-dimensional and therefore it cannot provide an exhaus-
tive description of the phenomenon taking place in the area SW1 where a
complex 2D current field is generated by tide propagation and bedforms of
different characteristics are present.

A fair agreement between model predictions and field data is also found
when the SW2 area is considered. The values of the model parameters are
fixed, taking the average between those measured at station 9 and those
measured at station 10, since SW2 is midway between the locations of the
two current-metres. Figure 2.14 suggests that the most unstable mode is
characterised by a wavenumber δmax ≈ 0.5 giving a wavelength equal to L ≈
500m, not far from the observed value. According with field observations, the
interaction between the M2, M4 and Z0 tidal constituents leads to negative
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Figure 2.15: Influence of the roughness size ε on the (a) dimensionless growth
rate Γr, (b) dimensionless migration speed Γi. Model parameters are: r̂ =
92, γ = 0.23, Û0m

/Û1m
= 0.088, Û2m

/Û1m
= 0.072 and φ = 118.5◦. The

parameters s and µ vary in function of the roughness size ε, according to
(1.8a,b) and (1.29).

values of Γi, i.e. to sand waves migration in the direction of the residual
current which points from South to North. The predicted migration speed,
which turns out to be of about 18m/year, overestimates the measured values
which are of 1.5m/year and 1.8m/year along transects P1 and P2 respectively.
The standard deviation of the measured values is about 5.7m/year along both
transects.

For the sake of completeness, it is worth pointing out that both at SW1
and SW2 the bathymetric data measured from 1989 to 1995 indicate that
sand waves keep migrating in the same direction as that measured from 1988
to 1989 and in particular the measured values are given in table 2.2 and
2.2. However, a comparison of these values with theoretical predictions is
not possible because of the lack of hydrodynamic data for the period under
consideration and in particular of the residual current data.

To conclude this section, we point out that the model requires the knowl-
edge of the eddy viscosity A and of the stress parameter s̃. Presently A, and
s̃ have been estimated using equations (1.8a,b) and assuming a roughness
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height equal to 3cm which can be thought to be induced by the presence
of sea ripples of medium size. Figure 2.15 shows the results analogous to
those of figure 2.14 obtained for larger and smaller values of the roughness
size. Quantitative differences can be observed, even though no qualitative
change is present and the predicted values still fall close to the observed ones.
Therefore it appears that reliable predictions of sand waves characteristics
can be made without accurate information about the bottom roughness. On
the other hand, notwithstanding the value of α does not affect the predicted
wavelength of the most unstable sand waves, the migration rate is propor-
tional to α (see (2.14)) and the evaluation of Cd requires reliable estimates
of α.

2.7 Discussion and Conclusions

The present analysis supports the hypothesis that sand waves in tide-dominated
coastal areas arise because of an inherent instability of the flat bottom con-
figuration subject to tidal currents. The interaction of an oscillatory tidal
current with a bottom perturbation gives rise to steady recirculation cells.
When the steady streaming close to the bed is directed from the troughs to-
ward the crests of the bottom perturbation and is strong enough to overcome
gravity effects which tend to carry the sediment from the crests toward the
troughs, the perturbation grows and gives rise to bottom patterns. The pres-
ence of a residual current induces a distortion of the spatial pattern of the
recirculation cells which are no longer symmetric with respect to the crests
and troughs of the sand waves. This distortion and loss of symmetry is the
cause of sand wave migration. The loss of symmetry can also be caused by
the presence of the M4 tide constituent. Although the current induced by the
superposition of the M2 and M4 tide constituents has a vanishing time aver-
age, sediment and bedforms can be moved in a preferential direction because
of the nonlinear relationship between the fluid velocity and the sediment
transport. As in other theoretical analyses of the phenomenon (Gerkema,
2000; Komarova & Hulscher, 2000; Neḿeth et. al, 2002), the present model
is based on the assumption of unidirectional tidal currents, even though field
data show that the velocity field generated by a tidal constituent has a pre-
dominant direction but may have also a significant transverse velocity com-
ponent. Moreover, the major axes of the tidal ellipses generated by different
tidal constituents may have different orientations. Hence, when the model
has been used to predict field conditions, the measured current data have
been projected along the direction normal to the crests of sand waves. At
location SW1 the direction of the transect P1 almost coincides with that of
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the major axis of the M2 ellipse, while the residual current and the major
axis of the M4 ellipse are rotated of about 30◦. The transect P2 is almost
aligned with the major axis of the M4 ellipse and the direction of the resid-
ual current while the major axis of the M2 tidal ellipse is rotated by about
30◦. Similar values characterise the SW2 site. Taking into account that the
direction of propagation of the tidal currents along the normal to sand waves
crests differs from original value of an amount less than 15% (cos 30◦ ∼= 0.87)
the use of the unidirectional model to investigate the field cases described in
the paper appears appropriate.

Notwithstanding the simplified description of the hydrodynamics and of
the sediment transport the present model predicts the formation of patterns
characterised by wavelengths comparable with those observed in the field.
Moreover, the model is able to predict the direction of sand waves migration
and provides a reasonable estimate of the migration speed, even though a
more refined model would be necessary to get migration speeds with an
accuracy suitable for practical purposes.

104



Part II

A 3D model





Introduction to Part II

The bottom of shallow seas characterised by the presence of tidal currents
and large deposits of sand exhibits a variety of regular morphological pat-
terns of different length scales. The largest bedforms are the tidal sand banks
described in general terms by Off (1963), Houbolt (1968) and, more recently,
by Dyer & Huntley (1999). Sand banks are periodic forms with wavelengths
ranging a few kilometres and heights up to one third of the water depth.
The crests of the sand banks in the North Sea are usually slightly rotated
counterclockwise (10◦ − 30◦) with respect to the principal axis of the tidal
ellipse and they hardly move. However, in the North Sea numerous exam-
ples of sand banks exist with the crests rotated clockwise with respect to
the principal axis of the tidal ellipse, the Sandettie bank being a typical ex-
ample (Belderson et al., 1982). At some locations smaller bedforms called
sand waves are present. Wavelengths of these rhythmic features are of a few
hundreds of metres while their heights are a few metres (Belderson et al.,
1982). The profile of sand waves is symmetric unless either significant resid-
ual currents are present or the tidal wave itself is asymmetric. A striking
characteristic of sand waves is that they are not static bed forms. Under the
action of tidal currents they migrate, with their crests almost orthogonal to
the direction of tide propagation, at a typical rate of about one to some tens
of metres per year, (Fenster et al., 1990). This migration can be both in
the direction of the residual current and against it (Besio et al., 2004). Tidal
bedforms and in particular sand waves, can be classified as rhythmic features
of great relevance to human activities (Dodd et al., 2003). Both the shipping
industry (sand waves can migrate into shipping channels) and the oil indus-
try (migrating sand waves can expose pipelines to both free-span generation
and self-burial) are particularly interested by the presence/evolution of sand
waves.

In the second part of this work a three-dimensional model is developed
in order to study the appearance of both tidal sand waves and sand banks.
In fact, in the study of the former, a two-dimensional model is sufficient
to perform a first analysis of the growth and migration of the sand waves,
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but it is not possible to get more information about the orientation of the
crest in the horizontal plane. In order to investigate both the growth and
the migration of the latter it is necessary to take into account the three-
dimensional character of the tidal flow propagating over the bedforms due to
the physical mechanism (described in the following) triggering the formation
of these kinds of bedforms.

As already pointed out in part I, previous studies of the processes which
lead to the formation of tidal sand banks and sand waves (Hulscher et al.,
1993; Hulscher, 1996) have shown that these regular features arise as free
instabilities of the system, describing the interaction between the sea bottom
and the water motion induced by tide propagation.

The physical mechanism leading to the formation of tidal sand banks
was first pointed out by Huthnance (1982a,b) and subsequently it was stud-
ied by Hulscher et al. (1993). As shown in these studies the Coriolis force
and bottom frictional effects cause an oscillatory tidal flow, interacting with
bottom forms characterised by crests rotated anticlockwise (in the Northern
Hemisphere) with respect to the principal tide direction, to form clockwise
horizontal residual circulation around the crests. Consequently, flow veloci-
ties on the upstream side of the crests are slightly higher than those on the
downstream side. Since sediment transport increases with increasing veloc-
ities it follows that sediment will accumulate at the crests of the bottom
waviness.

The formation of tidal sand waves, recently investigated by Hulscher
(1996), Gerkema (2000), Komarova & Hulscher (2000), Besio et al. (2003)
has strong analogies with the formation of coastal ripples (Blondeaux, 1990;
Vittori & Blondeaux, 1990; Vittori & Blondeaux, 1992; Roos & Blondeaux,
2001) as tidal flows over a rhythmic sequence of sand waves produce steady
streamings and a net displacement of the sediment. In this case the tidal
excursion length (the distance travelled by a water particle in one tidal pe-
riod) is of few kilometres, hence it is much larger than the sand wave length
scale which is of the order of 100m. Furthermore, in the case of ripples, the
thickness of the Stokes layer is much smaller than the water depth while in a
tidal flow the effect of friction extends from the bottom up to the free surface.

Although significant progresses have been made in predicting the appear-
ance of both tidal sand banks and sand waves, as well as in the prediction
of their characteristics (see also De Vriend, 1990; Fredsøe & Deigaard, 1992;
De Swart & Hulscher, 1995; Komarova & Newell, 2000), much remains to
be done. In fact, to describe the tidal flow, simple hydrodynamic models
are used in a manner that neglects important aspects of the phenomenon
and simple sediment transport predictors are employed. One of the main
limitation of the models comes from the very simple representation of the
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flow close to the bottom. Turbulent stresses are usually accounted for by
using Boussinesq hypothesis and by introducing an eddy viscosity which is
assumed to be constant over the water depth. In actual flows, turbulent mix-
ing tends to vanish close to a rigid wall. Hence, in the above models the wall
layer is neglected and a partial slip condition at the bottom is introduced for
the velocity. This approach neglects the strong velocity gradients which are
present close to the bottom and are the main agents that drive the dynamics
of the perturbations. Moreover, sediment transport is modelled only as bed
load. In the actual phenomenon, the suspended load transport influences
the process of generation and growth of tidal bedforms, particularly when
the bottom is made of fine sediment.

The aim of the present contribution is to use a more sophisticated and
complete model capable of giving a more reliable description of the process
leading to the formation of tidal sand banks and sand waves as well as more
accurate predictions of their characteristics. Turbulence generated by tidal
currents is described by introducing an eddy viscosity coefficient which is
assumed to increase linearly with the distance from the bottom in the re-
gion close to the sea bed, to reach a maximum and to decrease and assume
small values close to the free surface. Sediment is supposed to move as both
bed load and suspended load since field surveys show that large amounts
of sediment are put into suspension and transported by tidal currents. In
this contribution are also considered the sediment motions induced by sur-
face gravity waves. Finally, residual (steady) currents are taken into account
because their presence is essential to explain sand wave migration.

The model is based on the study of the stability of the flat bottom con-
figuration. Small bottom perturbations are considered and a linear analysis
of their growth is performed. Since the morphodynamic time scale is much
longer than the hydrodynamic time scale, it is possible to decouple the prob-
lem of flow determination from that of analysing the bottom profile time
development. Thus, the problem is reduced to determining the flow field in-
duced by the interaction of the tidal wave with a bottom waviness and then
studying the time development of the amplitude of a generic spatial Fourier
component of the bottom perturbation which turns out to be periodic in the
two horizontal directions. The results show that the model can describe both
the process which gives rise to sand waves and that which leads to the for-
mation of sand banks. The former bedforms have their crests normal to the
direction of the tidal current and are characterised by wavelength of O(102

m). The latter bedforms have wavelengths of O(104 m) and turn out to be
rotated slightly counterclockwise or clockwise with respect to the direction
of propagation of the tidal current depending of the direction of rotation of
the tidal wave. A comparison of the theoretical results with field observa-
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tions supports the model findings. As a matter of fact, model predictions are
successfully compared with field data of different sand banks (Le Bot et al.,
2000) and sand waves measured at different locations in the North Sea.
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Chapter 3

A 3D Model

3.1 Formulation of the problem

We consider a shallow sea of small depth h∗ (15-70m) which extends indefi-
nitely in the horizontal directions (herein ‘indefinitely’ means distances much
larger than the horizontal extent of the area we are considering which scales
with the typical wavelength of bottom forms under investigation): the x∗-
axis is along the parallels pointing East, the y∗-axis points North along the
meridian line and the z∗-axis is vertical pointing upward (see figure 3.1 ). As
pointed out in the Introduction, the aim of the work is to determine the time
development of perturbations of the flat bottom configuration forced by tidal
currents. The seabed is supposed to be made of a cohesion-less sediment of
uniform size d∗ and density of the water ρ∗s (from here on, a star will denote
dimensional quantities).

Figure 3.1: Definition sketch of the dimensional model geometry.

By using the f -plane approximation (see for example LeBlond & Mysak,
1978), the problem of flow determination is posed in terms of continuity and
momentum equations where the Coriolis contributions related to the Earth’s
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rotation (Ω∗ is the angular velocity of the Earth’s rotation and ϕ0 is the
local latitude) are taken into account because they affect tide propagation.
The flow regime is assumed to be turbulent and viscous effects are neglected.
An exhaustive analysis of turbulence properties in tidal currents is provided
in the review paper by Soulsby (1983). The field measurements of Heather
Shaw (1979), Bowden & Ferguson (1980), Soulsby (1980), Soulsby (1981)
and Soulsby & Dyer (1981) show that turbulence can be fairly assumed to be
isotropic. Hence using the Boussinesq hypothesis to model Reynolds stresses,
a scalar kinematic eddy viscosity ν∗t is introduced.

3.1.1 The hydrodynamic problem

The hydrodynamics of the problem, due to the propagation of the tides, is
described by continuity and momentum equations which read

∇ · u∗ = 0 (3.1)

∂u∗

∂t∗
+ (u∗ · ∇)u∗ = − 1

ρ∗
∇p∗ + ∇ · (ν∗t 2D∗) − C∗ + g∗ (3.2)

where u∗ = (u∗, v∗, w∗) are the horizontal and vertical velocity components
and p∗ is the pressure averaged over turbulence The operator ∇ is defined
by (∂/∂x∗, ∂/∂y∗, ∂/∂z∗), where x∗ and y∗ are two horizontal axes lying on
the bottom of the sea, while z∗ is the vertical coordinate pointing upward.
Moreover, the density ρ∗ is assumed to be constant in space and in time and
D∗ is the strain rate tensor. The terms C∗ and g∗ represent the Coriolis and
the gravity effects respectively:

C∗ = [2Ω∗ (w∗ cosϕ0 − v∗ sinϕ0) , 2Ω∗u∗ sinϕ0,−2Ω∗u∗ cosϕ0] (3.3)

g∗ = [0, 0,−g∗] (3.4)

where Ω∗ is the value of the angular velocity of the Earth’s rotation, ϕ0 is the
latitude of the location we are considering and g∗ is the gravity acceleration.
In (3.1)-(3.2) the flow regime is assumed to be turbulent and viscous effects
are neglected.

Introducing the following dimensionless variables

(x, y, z) = (x∗, y∗, z∗) /h∗0 ; (u, v, w) = (u∗, v∗, w∗) /U∗
0 (3.5a,b)

Ω = Ω∗/σ∗ ; t = σ∗t∗ ; p = p∗/ρ∗U∗
0σ

∗h∗0 (3.6a,b,c,d)
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(h∗0 is the local averaged water depth, t∗ is time, σ∗ is the angular frequency
of the tide and U∗

0 is the maximum value of the depth averaged fluid velocity
during the tidal cycle), it is possible to write the equations in the form

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (3.7)

∂u

∂t
+ kc

[

u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

]

= −∂p
∂x

+
1

µ

{

∂

∂x

[

2νt
∂u

∂x

]

+
∂

∂y

[

νt

(

∂u

∂y
+
∂v

∂x

)]

+
∂

∂z

[

νt

(

∂u

∂z
+
∂w

∂x

)]}

− 2Ω [w cosϕ0 − v sinϕ0] (3.8)

∂v

∂t
+ kc

[

u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

]

= −∂p
∂y

+
1

µ

{

∂

∂x

[

νt

(

∂u

∂y
+
∂v

∂x

)]

+

∂

∂y

(

2νt
∂v

∂y

)

+
∂

∂z

[

νt

(

∂v

∂z
+
∂w

∂y

)]}

− 2Ωu sinϕ0 (3.9)

∂w

∂t
+ kc

[

u
∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

]

= −∂p
∂z

+
1

µ

{

∂

∂x

[

νt

(

∂u

∂z
+
∂w

∂x

)]

+

∂

∂y

[

νt

(

∂v

∂z
+
∂w

∂y

)]

+
∂

∂z

(

2νt
∂w

∂z

)}

+ 2Ωu cosϕ0 −
g∗

U∗
0σ

∗
(3.10)

where the kinematic eddy viscosity ν∗t is written as the product ν∗t0νt. The
constant ν∗t0 is dimensional and provides the order of magnitude of the eddy
viscosity while νt = νt(x, y, z, t) is a dimensionless function (of order 1) de-
scribing the spatial and temporal variations of the turbulence structure. In
(3.7)-(3.10) two dimensionless parameters appear which we denote by kc and
µ respectively:

kc =
U∗

0

h∗0σ
∗
, µ =

σ∗h∗20
ν∗t0

. (3.11a,b)

The parameter kc is a kind of Keulegan-Carpenter number and is the ratio
between the amplitude of fluid displacement oscillations induced in the hori-
zontal direction by the tidal wave and the local depth. Actual values of kc are
much larger than one, let us say of order 102. The parameter µ represents the
ratio between the thickness of the viscous bottom boundary layer generated
by the tidal wave and the local depth. A rough estimate of µ shows that its
typical magnitude is of order one. Finally, Ω is the ratio between the angular
velocity of the Earth rotation and the angular frequency of the tidal wave.
For a semi-diurnal tide Ω ∼= 0.5 while for the diurnal tide component Ω ∼= 1.
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3.1 Formulation of the problem

The hydrodynamic problem is then closed by forcing appropriate bound-
ary conditions and providing the function ν∗t . The boundaries in the horizon-
tal directions are assumed to be infinitely far away, while the dynamic bound-
ary condition in the vertical direction forces the vanishing of the stresses at
the free surface described by the equation

F = z − h0 − χ(x, y, t) = 0 (3.12)

where χ is the free surface elevation. Hence for z = h0 + χ

−∂χ
∂x

(

−p µ
νt

+ 2
∂u

∂x

)

− ∂χ

∂y

(

∂u

∂y
+
∂v

∂x

)

+

(

∂w

∂x
+
∂u

∂z

)

= 0 (3.13a)

−∂χ
∂x

(

∂u

∂y
+
∂v

∂x

)

− ∂χ

∂y

(

−p µ
νt

+ 2
∂v

∂y

)

+

(

∂w

∂y
+
∂v

∂z

)

= 0 (3.13b)

−∂χ
∂x

(

∂u

∂z
+
∂w

∂x

)

− ∂χ

∂y

(

∂w

∂y
+
∂v

∂z

)

+

(

−p µ
νt

+ 2
∂w

∂z

)

= 0 . (3.13c)

The kinematic boundary condition forces

∂F

∂t
= w − ∂χ

∂t
− u

∂χ

∂x
− v

∂χ

∂y
= 0 at z = h0 + χ . (3.14)

Because the tidal period is much larger than the turbulence time scale,
the flow induced by the tide propagation can be assumed to be slowly varying
in time. Hence, as in steady flows, a boundary condition is specified at the
bottom by imposing the vanishing of the velocity at a distance from the
seabed equal to a fraction of the roughness z∗r :

u = 0 , v = 0 , w = 0 at z = zr/X . (3.15a,b,c)

In (3.15) the constant X has been chosen equal to 29.8 by analysing data of
steady velocity profiles (see a.o. Fredsøe & Deigaard, 1992). Moreover zr is
a dimensionless roughness parameter equal to z∗r/h

∗
0, z

∗
r being the size of the

bottom roughness.
For later convenience, the dynamic pressure P is introduced such that

p = P − g∗

U∗
0σ

∗
(z − 1) +

g∗

U∗
0σ

∗
χ . (3.16)

When (3.16) is substituted into equations (3.7)-(3.10), the dynamic pressure
P replaces p. Moreover, the extra-terms

− g∗

U∗
0σ

∗

∂χ

∂x
; − g∗

U∗
0σ

∗

∂χ

∂y
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appear in the right-hand side of (3.8) and (3.9), respectively, while in (3.10)
the gravitational term −g∗/(U∗

0σ
∗) disappears.

The hydrodynamic problem is finally closed providing an eddy viscosity
model. The eddy viscosity ν∗tc, which is assumed to be time-independent, is
presently assumed to be provided by

ν∗tc = κc1
U∗

0h
∗
0

C
F (ξ) . (3.17)

In (3.17) κ is the Von Karman constant, being equal to 0.41, and the eddy
viscosity is assumed to be proportional to the time average of the local friction
velocity ū∗τ and to the local depth h∗0. The average friction velocity is related
to U∗

0 by introducing the constant c1 which ranges between 0.65 and 1.0
(when the lower value of c1 is chosen, the shear velocity is indeed related to
the time averaged value of the tidal velocity; when the higher value is fixed,
the shear velocity is related to the maximum value of the tidal velocity) and
the friction factor C which only depends on the dimensionless roughness zr,
since the Reynolds number of the flow is assumed to be large. Standard
formulae for steady currents can be used to evaluate C (see a.o Fredsøe and
Deigaard, 1992)

C = 5.75 log10

(

10.9h∗0
z∗r

)

. (3.18)

The function F (ξ) describes the vertical structure of the eddy viscosity
and has been chosen, as suggested by Dean (1974), such that the eddy vis-
cosity grows linearly with the distance from the bed, when a region close to
the bottom is considered, and then decreases achieving a finite small value
at the free surface:

F (ξ) =
ξ(1 − ξ)

1 + 2Aξ2 + 3Bξ3
(3.19)

where A=1.84, B=-1.56 and ξ is defined as

ξ =
z∗ − χ∗

h∗ + χ∗
. (3.20)

A time constant value of ν∗tc may appear a strong approximation. How-
ever, it is worth pointing out that, as shown by Blondeaux & Vittori (2004a)
and Blondeaux & Vittori (2004b), a time independent eddy viscosity model
provides a fair description of the phenomenon because it fails only around
flow reversal, when tidal currents are very weak and the transport of any
quantity, and in particular of sediment particles, tends to vanish. Therefore,
the morphodynamic consequences of such an assumption are negligible. Fi-
nally, the eddy viscosity is written in the form ν∗tc = ν∗t0νtc(ξ) where ν∗t0 is
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3.1 Formulation of the problem

equal to

ν∗t0 = κU∗
0h

∗
0

∫ 0

−1

F (ξ)

C
dξ (3.21)

and

νtc(ξ) = F (ξ)/

∫ 0

−1

F (ξ)dξ . (3.22)

These definitions of ν∗t0 and νtc have been chosen in such a way that the depth
average value of νtc(ξ) is equal to one.

Since (3.17) shows that ν∗t0 is proportional to U ∗
0 , for later convenience, it

is useful to introduce the new viscous parameter

µ̂ =
C

κ
∫ 0

−1
F (ξ)dξ

= µkc . (3.23)

3.1.2 The morphodynamic problem

The morphodynamics is governed by the sediment continuity equation which
simply states that convergence (or divergence) of the sediment flux must be
accompanied by a rise (or fall) of the bed profile

∂η

∂T
+
∂Qx

∂x
+
∂Qy

∂y
= 0 (3.24)

where (Qx, Qy) = (Q∗
x, Q

∗
y)/
√

(ρ∗s/ρ
∗ − 1) g∗d∗3 are the dimensionless volu-

metric sediment transport rates per unit width in the x- and y-directions
respectively. In (3.24) has been used the following dimensionless morphody-
namic time scale

T =
td

√

ψ̂d (1 − por)

(3.25)

in order to take into account that the time scale of the bottom configuration
changes is much larger than the tide period. In (3.25) por is the sediment
porosity, d is the dimensionless sediment size which, along with the mobility
number ψ̂d and the particle Reynolds number Rp, characterises the sediment
particles:

d =
d∗

h∗0
, ψ̂d =

(σ∗h∗0)
2

(ρ∗s/ρ
∗ − 1)g∗d∗

, Rp =

√

(ρ∗s/ρ
∗ − 1)g∗d∗3

ν∗
.

(3.26a,b,c)
The problem is closed once relationships for Q∗

x and Q∗
y are provided.

Since the tide period is much larger than the turn-over time of turbulent

116



A 3D MODEL

eddies, the sediment transport rate can be predicted by formulae proposed
for steady currents specified with the actual values of the parameters.

Sediment transport is usually split into two components. The former is
due to sediment which moves close to the bottom (the “bed load”) while
the latter is due to sediment which is carried in suspension (the “suspended
load”). Presently the approach proposed by Van Rijn (1984a,b) is used to
evaluate the two contributions. In particular, an empirical formula is used to
quantify the bed load while the suspended load is evaluated by determining
the concentration profile and then computing the sediment flux. The bed
load (Q∗

bx, Q
∗
by) due to the tidal current can be evaluated by means of the

relationship:

(Qbx, Qby) =
(Q∗

bx, Q
∗
by)

√

(

ρ∗s
ρ∗

− 1

)

g∗d∗3

=
0.25

R0.2
p

(

θcw − θcr

θcr

)1.5
(θcx, θcy)√

θc

(3.27)

In (3.27) θcx and θcy are the x− and y− components of the Shields pa-
rameter due to the tidal current defined as

(θcx, θcy) =
(τ ∗x , τ

∗
y )

(ρ∗s − ρ∗)g∗d∗
(3.28)

where (τx, τy) are the dimensional shear stress components, which can be
easily evaluated by means of the constitutive law. Moreover θc is equal to
√

θ2
cx + θ2

cy and θcr is the critical value of the Shields parameter characterising
the sediment. Finally, θcw represents the algebraic sum of the dimensionless
shear stress θc induced by the tidal current and the maximum dimensionless
shear stress θw induced by the waves and acting along the direction of wave
propagation which is assumed to form an angle βw with the x−axis

θcw = θc + θw . (3.29)

The value of θw can be evaluated by the empirical relationship (Van Rijn,
1991)

θw = 0.15
k2

c ψ̂d

R
2/3
p

fw

(

Û∗
δ

U∗
0

)2

(3.30)

where fw is the wave friction factor which depends on the bottom roughness
size

fw = exp



−6 + 5.2

(

Û∗
δ

U∗
0

kc

zr

)−0.19


 (3.31)
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3.1 Formulation of the problem

and its maximum value is assumed equal to fmax
w = 0.3. Û∗

δ is the peak value
of the near-bed orbital velocity induced by the waves which can be easily
evaluated once the height H∗ and the period T ∗ of the sea waves are fixed.

In the case of combined currents and waves, even when the linear theory
is used to describe the wave motion and the induced oscillatory flow turns out
to be symmetric, a net time average wave-related sediment transport Q∗

w =
(Q∗

wx, Q
∗
wy) exists which should accounted for. Following Van Rijn (1991), it

can be assumed that the direction of Q∗
w is that of wave propagation, which

forms an angle βw with the x-axis, and the amount of the sediment transport
rate is the difference between Q∗+

w and Q∗−
w , where Q∗+

w and Q∗−
w are the time

average transport rates over half the wave period

Q±
w =

Q∗±
w

√

(

ρ∗s
ρ∗

− 1

)

g∗d∗3

= 0.03

√

ψ̂d

R0.2
p

Û∗
δ

U∗
0

(

θ± − θcr

θcr

)1.5

. (3.32)

The wave Shields parameters θ± are defined by

θ± =
√

(θcx ± θwx)2 + (θcy ± θwy)2 . (3.33)

To complete the description of the sediment transport, it is necessary to
account for the weak effects associated with a slow spatial variation of the
bottom topography, which affects the bed load sediment transport. Assuming
that the bottom slope ∇η is small, simple dimensional arguments coupled
with linearization lead to the following contribution

(Qpx, Qpy) = −(Qb +Qw)G · ∇η (3.34)

where G is a dimensionless second order 2-D tensor. Experimental observa-
tions of various authors (a.o. Talmon et al., 1995) provide estimates for the
components of G. In the intrinsic orthogonal coordinate system (s, n), with
s aligned with the average bottom stress, such estimates read:

Gss = −θcr

µ̄

dQb

dθc
(3.35)

Gsn = Gns = 0 (3.36)

Gnn = −rQb√
θc

(3.37)

where µ̄ is equal to the dynamic friction coefficient of the sediment and r is
an empirical factor roughly about 0.5 − 0.6 (Talmon et al., 1995).
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Finally, the suspended sediment transport (Q∗
sx, Q

∗
sy) is evaluated com-

puting the concentration c = c(x, y, z, t) by solving a standard convection-
diffusion equation:

1

kc

∂c

∂t
+ u

∂c

∂x
+ v

∂c

∂y
+ w

∂c

∂z
− ws

kc

√

ψ̂d

∂c

∂z
=

1

µ̂

{

∂

∂x

(

νt
∂c

∂x

)

+
∂

∂y

(

νt
∂c

∂y

)

+
∂

∂z

(

νt
∂c

∂z

)}

(3.38)

where ws is the dimensionless particle fall velocity defined by

ws =
w∗

s
√

(

ρ∗s
ρ∗

− 1

)

g∗d∗

. (3.39)

The settling velocity of the sediment can be derived from a balance between
the gravitational force acting on a sediment grain and the drag force exerted
by the surrounding fluid. If the latter is expressed in terms of a drag coef-
ficient, it turns out that the fall velocity depends on the sediment Reynolds
number.

Suitable boundary conditions must be provided at the seabed and at the
free surface. The free surface boundary condition states that the sediment
flux in the normal-to-surface direction n̂ must vanish:

(

D∗
t∇c+ w∗

sck̂
)

· n̂ = 0 at z = h + χ (3.40)

where k̂ is the unit vector in the vertical direction and n̂ is the unit vector
normal to the free surface. In (3.40), the diffusion coefficient D∗

t of sediment
particles is assumed to be equal to the diffusion of fluid momentum. Ac-
cording to the data analysed by Van Rijn (1984b), in a turbulent flow the
centrifugal forces on the sediment particles (which are of higher density) are
greater than those on the fluid particles, thereby causing the sediment par-
ticles to be thrown to the outside of the eddies with a consequent increase of
the diffusion rate. However, it is worth pointing out that other investigators
have concluded that the sediment particles cannot respond fully to the tur-
bulent velocity fluctuations and hence the diffusion rate of particles is smaller
than that of fluid momentum. Therefore, because of the large uncertainty,
to make morphological predictions it is possible to approximate D∗

t with ν∗t .
A more articulated description is required for the bottom boundary con-

dition. This is a Dirichlet-type boundary condition and prescribes a reference
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3.2 The basic flow

concentration cζ∗ at a given distance ζ∗ off the seabed. Following Van Rijn
(1984b) an expression for cζ∗ is used which is valid for slowly-varying flows:

cζ∗ = 0.015
d∗

ζ∗R0.2
p

(

θcw − θcr

θcr

)3/2

. (3.41)

The reference distance from the sea bed is chosen to be ζ∗ = 0.01h∗0, though
in general ζ∗ is related also to the bottom roughness. However, ζ∗ depends
on the bottom roughness only when the latter is not smaller than 0.01h∗

0 as
in the case under consideration.

Once the concentration c is obtained by solving (3.38) subject to (3.40)
and (3.41), the suspended sediment transport Q∗

s is found as the integral of
the horizontal flux of concentration over the water column:

(Qsx, Qsy) =
(Q∗

sx, Q
∗
sy)

√

(

ρ∗s
ρ∗

− 1

)

g∗d∗3

=
kc

√

ψ̂d

d

∫ χ

η+ζ

(u, v) c dz . (3.42)

3.2 The basic flow

The solution of the problem for arbitrary functions h∗ is a difficult task.
However, in the present analysis small perturbations of the flat bottom con-
figuration are considered. Thus, the bottom configuration differs from the
flat one of a small amount proportional to ε, this being a small (strictly in-
finitesimal) quantity. Therefore the bottom configuration can be thought to
be given by the superposition of different spatial components which evolve
one independently from the other. A normal mode analysis can be performed
and the problem can be solved for the generic spatial component.

η = εΠ(t)ei(δxx+δyy) + c.c.+O(ε2) (3.43)

where Π(t) is the amplitude of the generic component which is periodic in
the x- and y-directions with wavenumbers δx and δy respectively and ε << 1.
The small value of ε allows for the solution to be expanded in terms of ε.
Additionally, an analysis of the order of magnitude of the different terms in
continuity and momentum equations shows that it is convenient to assume

[u, v, w, p, χ, c] =

[

ub, vb,
h∗0
L∗
wb,

L∗

h∗0
Pb,

a∗

h∗0
eb, cb

]

+

ε

[

u1, v1, w1, kcP1,

(

a∗

h∗0

)2

e1, c1

]

Π(t)ei(δxx+δyy) + c.c. +O(ε2) . (3.44)
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At the leading order of approximation, i.e. O(ε0), the bottom turns out
to be flat and the problem is reduced to the determination of both the flow
and sediment transport induced by tide propagation over a flat seabed.

The scaling used in the previous section to define the dimensionless vari-
ables is appropriate for studying the flow induced by the interaction of a tidal
wave with bedforms which are characterised by a length scale of the same
order of magnitude of water depth h∗0. In this case the three velocity compo-
nents are expected to be of the same order of magnitude. When a tidal wave
propagating over a flat bottom is considered, the most appropriate horizontal
length scale turns out to be

L∗ =

√

g∗h∗0
σ∗

. (3.45)

Since the ratio h∗0/L
∗ is much smaller than one, an analysis of the order of

magnitude of the different terms in the continuity equation suggests that
the vertical velocity component is of order h∗

0U
∗
0 /L

∗. Similarly, the kine-
matic condition at the free surface suggests that χ∗ is of order a∗, where
a∗ = U∗

0h
∗
0/(σ

∗L∗) is related to the amplitude of the tidal wave. Finally,
the momentum equation shows that the dynamic pressure P ∗ is of order
ρ∗U∗

0σ
∗L∗. The above order of magnitude analysis along with the assump-

tions
h∗0
L∗

� 1 ,
a∗

h∗0
� 1. (3.46a,b)

justify (3.44). Then, in order to determine the flow induced by tide propa-
gation, it is appropriate to introduce the slow spatial coordinates

X =
h∗0
L∗
x , Y =

h∗0
L∗
y . (3.47a,b)

The solution at the leading order of approximation is supposed to be
given by the sum of the main tide constituent (n = 1) plus super-harmonics
components (n > 1) and a steady part (n = 0)

(u, v, w, P, χ) =
N
∑

n=0

(

u
(n)
b , v

(n)
b ,

h∗0
L∗
w

(n)
b ,

L∗

h∗0
P

(n)
b ,

a∗

h∗0
e
(n)
b

)

e−int + c.c. (3.48)

Substituting (3.48) into equations (3.7)-(3.10) and into boundary condi-
tions (3.13)-(3.15), and making the problem dimensionless, we obtain

∂u
(n)
b

∂X
+
∂v

(n)
b

∂Y
+
∂w

(n)
b

∂z
= 0 (3.49)
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kc

µ̂

∂

∂z

[

νt0
∂u

(n)
b

∂z

]

+ 2Ωv
(n)
b sinϕ0 + inu

(n)
b − ∂P

(n)
b

∂X
=
∂e

(n)
b

∂X
(3.50)

kc

µ̂

∂

∂z

[

νt0
∂v

(n)
b

∂z

]

− 2Ωu
(n)
b sinϕ0 + inv

(n)
b − ∂P

(n)
b

∂Y
=
∂e

(n)
b

∂Y
(3.51)

∂P
(n)
b

∂z
= 0 (3.52)

along with the boundary conditions at the free surface

P
(n)
b = 0 ,

∂u
(n)
b

∂z
=
∂v

(n)
b

∂z
= 0 , e

(n)
b = inw

(n)
b at z = 0 (3.53a,b,c,d)

and close to the bottom

u
(n)
b = v

(n)
b = w

(n)
b = 0 , at z =

zr

X . (3.54a,b,c)

In (3.49)-(3.52) the eddy viscosity has been split into a contribution of
order one and a contribution of order ε as shown by (3.73).

Of course, to find the solution of the above problem it would be necessary
to provide conditions at the boundary of the area of interest in the (x, y)-
plane and to remove the assumption of a constant water depth. Indeed, on
the length scale of the tide the bottom configuration can nearly be assumed
flat. However, the horizontal structure of the tidal wave is not of interest
here, as bedforms are characterised by a wavelength which is much smaller
than that of the tidal wave. Hence, equation (3.49) is not considered and
equations (3.50)-(3.52) are used to find the vertical structure of the velocity
field for given characteristics of the tidal ellipse (orientation with respect

to the x−axis, eccentricity, etc.). Indeed, from (3.52) P
(n)
b is found to be

constant and the first of the boundary conditions (3.53) forces P
(n)
b to vanish.

Then equations (3.50) and (3.51) can be locally solved in the vertical direction
for fixed values of the complex constants

∂e
(n)
b

∂X
= %Xe

iθ
(n)
X ,

∂e
(n)
b

∂Y
= %Y e

iθ
(n)
Y . (3.55a,b)

These quantities can be thought of as two parameters which control the
orientation and the form of the local tidal ellipse. The solution of the hydro-
dynamic problem can be divided by %

(n)
X eiθ(n)

X and hence the only parameters
controlling the tidal ellipse are

%(n) =
%

(n)
Y

%
(n)
X

, θ(n) = θ
(n)
Y − θ

(n)
X . (3.56a,b)
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The solution of the ordinary differential problem posed by

kc

µ̂

∂

∂z

(

νt0
∂û

(n)
b

∂z

)

+ 2Ωv̂
(n)
b sinϕ0 + inû

(n)
b = 1 (3.57)

kc

µ̂

∂

∂z

(

νt0
∂v̂

(n)
b

∂z

)

− 2Ωû
(n)
b sinϕ0 + inv̂

(n)
b = %(n)eiθ(n)

(3.58)

along with the following boundary conditions

∂û
(n)
b

∂z
=
∂v̂

(n)
b

∂z
= 0 at z = 0 (3.59a,b)

û
(n)
b = v̂

(n)
b = 0 at z =

zr

X . (3.60a,b)

where (û
(n)
b , v̂

(n)
b ) = (u

(n)
b , v

(n)
b )/%

(n)
X eiθ

(n)
X , is found with a standard shooting

procedure, starting from the free surface down to the bottom profile. Equa-
tions (3.57)-(3.58) are numerically integrated by means of a Runge-Kutta
method of the fourth order. In order to handle the large velocity gradients
which are expected to occur close to the bottom, the vertical coordinate has
been stretched, introducing the new variable ζ defined by

ζ = ln

(

zX
zr

)

. (3.61)

For each tide constituent, with an iterative procedure on %(n) and θ(n),
it is possible to determine the values of %(n) and θ(n) which give rise to a
tidal ellipse of assigned orientation and a given ratio between the major and
minor axes. Then the value of %

(n)
X should be chosen in such a way that

the maximum value of the dimensionless depth average velocity assumes an
assigned value. Finally, it is worth pointing out that θ

(n)
X fixes the phases

among the different tide constituents.
Once the local flow is known, the vertical distribution of sediment con-

centration over a flat bed can be easily computed using (3.38) and the ap-
propriate boundary conditions which provide

kc

µ̂

∂

∂z

[

νt0
∂c

(n)
b

∂z

]

+
ws
√

ψ̂d

∂c
(n)
b

∂z
+ inc

(n)
b = 0 (3.62)

c
(n)
b = c

(n)
ζ at z = 0.01 (3.63)
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kc

µ̂
νt0
∂c

(n)
b

∂z
+

ws
√

ψ̂d

c
(n)
b = 0 at z = 0 . (3.64)

The values of the reference concentration c
(n)
ζ come from

1.5

R0.2
p

(

θcw − θcr

θcr

)3/2

=
N
∑

n=0

c
(n)
ξ e−int + c.c. . (3.65)

It is worth pointing out that, even when only the main tide constituent
is considered, i.e. N = 1, the concentration c is characterised by many
harmonic components because of the non-linear relationship between the
concentration and the velocity field at the bottom.

3.3 The time development of the bottom per-

turbations

In order to investigate the stability of the flat bottom configuration, we
perform a normal mode analysis introducing perturbations of small amplitude
(strictly infinitesimal), as described in section 3.2, and linearise the problem.
Therefore, substituting (3.44) in equations (3.7)-(3.10), at O(ε), it is possible
to obtain the following set of linear equations for u1, v1, w1, p1 and e1,

∂w1

∂z
+ i [δxu1 + δyv1] = 0 (3.66)

i [δxubu1 + δyvbu1] + w1
∂ub

∂z
= −iδx [P1 + e1] +

1

µ̂

{

νt0

[

∂2u1

∂z2
− u1

(

δ2
x + δ2

y

)

]

+
∂νt0

∂z

(

∂u1

∂z
+ w1iδx

)

+

νt1
∂2ub

∂z2
+
∂νt1

∂z

∂ub

∂z

}

− 2
Ω

kc
(w1 cosϕ0 − v1 sinϕ0) −

1

kc

∂u1

∂t
(3.67)

i [δxubv1 + δyvbv1] + w1
∂vb

∂z
= −iδy [P1 + e1] +

1

µ̂

{

νt0

[

∂2v1

∂z2
− v1

(

δ2
x + δ2

y

)

]

+
∂νt0

∂z

(

∂v1

∂z
+ w1iδy

)

+

νt1
∂2vb

∂z2
+
∂νt1

∂z

∂vb

∂z

}

− 2
Ω

kc
u1 sinϕ0 −

1

kc

∂v1

∂t
(3.68)
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iw1 [δxub + δyvb] = −∂P1

∂z
+

1

µ̂

{

νt0

[

∂2w1

∂z2
− w1

(

δ2
x + δ2

y

)

]

+

2
∂νt0

∂z

∂w1

∂z
+ iνt1

[

δy
∂vb

∂z
+ δx

∂ub

∂z

]}

+ 2
Ω

kc

u1 cosϕ0 −
1

kc

∂w1

∂t
(3.69)

along with the following boundary conditions

u1 =
∂ub

∂z
, v1 =

∂vb

∂z
, w1 = 0 at z =

zr

X (3.70a,b,c)

∂u1

∂z
+ w1iδx = 0 ,

∂v1

∂z
+ w1iδy = 0 ,

2νt0

µ̂

∂w1

∂z
− P1 = 0 at z = 1

(3.71a,b,c)

w1 − e1i (ubδx + vbδy) −
1

kc

∂e1
∂t

= 0 at z = 1 (3.72)

where the eddy viscosity νt has been split into a contribution of order one
and a contribution of order ε which is induced by the bottom perturbation:

νt = νt0 + ενt1Π(t)ei(δxx+δyy) + c.c.+O(ε2) . (3.73)

The functions νt0 and νt1 can be easily computed by expanding (3.19)-(3.20).
First of all, let us point out that the value of e1 appearing in equations

(3.66)-(3.69) seems to be free and the value of the boundary condition at
the free surface seems to be unnecessary. However, by noticing that the term
−∂e1/∂z can be added to (3.69) and by introducing the variable P1 = p1+e1,
it appears that the system can be solved without any problem. Indeed equa-
tions (3.67) and (3.68) require boundary conditions for u1 and v1 both at the
free surface and at the bottom. Then, equation (3.66) needs one boundary
condition for w1, for example that at the bottom. The boundary condition
for w1 at the free surface can be satisfied by choosing an appropriate value
of P1 = P1 + e1. Finally the boundary condition at the free surface involving
the pressure P1 fixes the value of the amplitude e1 of the perturbation of
the free surface elevation induced by the interaction of the tidal wave with
the wavy bed. This discussion shows also that the rigid lid assumption does
not introduce any approximation. Then, let us point out that those terms
proportional to the time derivative of the perturbation amplitude Π(t) are
negligible with respect to the other terms. Finally, the sediment continuity
equation states that dΠ(t)/dt is proportional to Π(t) through the ratio be-
tween the hydrodynamic and the morphodynamic time scales which turns
out to be much smaller than one.

Since the basic flow is time periodic, it can be written in the form

ub =

∞
∑

n=−∞

Ûn (z) e−int , vb =

∞
∑

n=−∞

V̂n (z) e−int . (3.74a,b)

125



3.3 The time development of the bottom perturbations

However, in the present contribution only the main tidal harmonic (n=1) and
a residual steady current (n=0) have been considered and Û1 = Û , Û0 = Ûs.

Hence it is possible to expand all the O(ε) terms as Fourier series in time

u1 =
∞
∑

n=−∞

une
int , v1 =

∞
∑

n=−∞

vne
int , w1 =

∞
∑

n=−∞

wne
int (3.75a,b,c)

P1 =
∞
∑

n=−∞

pne
int , e1 =

∞
∑

n=−∞

ene
int . (3.76a,b)

Substitution of relationships (3.74)-(3.76) in the continuity equation (3.66)
and in the momentum equations (3.67)-(3.69) leads to the following system
of coupled linear ordinary differential equations

∂wn

∂z
+ i [δxun + δyvn] = 0 (3.77)

∂An

∂z
=

{

wn+1
∂Û

∂z
+ wn−1

∂Û∗

∂z
+ wn

∂Ûs

∂z
+ iδx (pn + en)+

i
[

δx

(

Ûun+1 + Û∗un−1 + Ûsun

)

+ δy

(

V̂ un+1 + V̂ ∗un−1 + V̂sun

)]

+

2
Ω

kc
(wn cosϕ0 − vn sinϕ0) +

in

kc
un

}

µ̂

νt0
+ un

(

δ2
x + δ2

y

)

−

1

νt0

∂νt0

∂z
(An + iwnδx) −

νt1

νt0

(

∂2Û

∂z2
+
∂2Û∗

∂z2
+
∂2Ûs

∂z2

)

−

1

νt0

∂νt1

∂z

(

∂Û

∂z
+
∂Û∗

∂z
+
∂Ûs

∂z

)

(3.78)

∂Bn

∂z
=

{

wn+1
∂V̂

∂z
+ wn−1

∂V̂ ∗

∂z
+ wn

∂V̂s

∂z
+ iδy (pn + en)+

i
[

δx

(

Ûvn+1 + Û∗vn−1 + Ûsvn

)

+ δy

(

V̂ vn+1 + V̂ ∗vn−1 + V̂svn

)]

+

2
Ω

kc
un sinϕ0 +

in

kc
vn

}

µ̂

νt0
+ vn

(

δ2
x + δ2

y

)

−

1

νt0

∂νt0

∂z
(Bn + iwnδy) −

νt1

νt0

(

∂2V̂

∂z2
+
∂2V̂ ∗

∂z2
+
∂2V̂s

∂z2

)

−

1

νt0

∂νt1

∂z

(

∂V̂

∂z
+
∂V̂ ∗

∂z
+
∂V̂s

∂z

)

(3.79)
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∂pn

∂z
=

1

µ̂

{

νt0

[

∂2wn

∂z2
− wn

(

δ2
x + δ2

y

)

]

+ 2
∂νt0

∂z

∂wn

∂z

}

− in

kc
wn +

2
Ω

kc

un cosϕ0 − iwn+1

(

Ûδx + V̂ δy

)

− iwn−1

(

Û∗δx + V̂ ∗δy

)

− iwn

(

Ûsδx + V̂sδy

)

+

iνt1

µ̂

{(

δx
∂Û

∂z
+ δy

∂V̂

∂z

)

+

(

δx
∂Û∗

∂z
+ δy

∂V̂ ∗

∂z

)(

δx
∂Ûs

∂z
+ δy

∂V̂s

∂z

)}

(3.80)

where the quantities An and Bn are defined as

An =
∂un

∂z
, Bn =

∂vn

∂z
(3.81a,b,c)

The boundary conditions (3.70)-(3.72) can be rewritten as follows

if n 6= ±1 or 0 un = vn = wn = 0 at z = zr/X

if n = 1 uI = −∂Û
∗

∂z
, vI = −∂V̂

∗

∂z
, wI = 0

if n = −1 u−I = −∂Û
∂z

, v−I = −∂V̂
∂z

, w−I = 0

if n = 0 u0 = −∂Ûs

∂z
, v0 = −∂V̂s

∂z
, w0 = 0 (3.82)

wn = 0 ∀n at z = 1 (3.83)

∂un

∂z
= 0 ,

∂vn

∂z
= 0 at z = 1 (3.84a,b)

2

µ̂
νt0
∂wn

∂z
− pn = 0 at z = 1 . (3.85)

As was done in the solution of the basic state, the vertical coordinate has
been stretched, introducing the variable ζ defined by (3.61).

Once the velocity perturbations are computed, the perturbed concentra-
tion can be evaluated by solving the following differential problem obtained
by substituting (3.44) in the standard convection-diffusion equation (3.38)

1

kc

∂c1
∂t

+

[

iδxubc1 + iδyvbc1 + w1
∂cb
∂z

]

− ws

kc

√

ψ̂d

∂c1
∂z

=
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1

µ̂

{

νt0

(

∂2c1
∂z2

− δ2
xc1 − δ2

yc1

)

+
νt0

∂z

∂c1
∂z

+ νt1
∂2cb
∂z2

+
∂νt1

∂z

∂cb
∂z

}

(3.86)

along with the following boundary conditions

c1 +
∂cb
∂z

= cζ at z = 0.01 (3.87)

ws

kc

√

ψ̂d

c1 +
νt0

µ̂

∂c1
∂z

+
νt1

µ̂

∂cb
∂z

at z = 1 (3.88)

where cζ is the term of O(ε) of the reference concentration at the bottom. In-
troducing the Fourier series expansion in time for the concentration, equation
(3.86) reads

∂2cn
∂z2

=
µ̂

νt0

[

in

kc
cn + wl

∂cbm
∂z

− ∂cn
∂z

ws

kcψ̂d

+
(

Ûcn+1 + Û∗cn−1 + Ûscn

)

iδx+

(

V̂ cn+1 + V̂ ∗cn−1 + V̂scn

)

iδy

]

+ cn
(

δ2
x + δ2

y

)

−
1

νt0

(

∂νt0

∂z

∂cn
∂z

+
∂νt1

∂z

∂cbn
∂z

+ νt1
∂2cbn
∂z2

)

(3.89)

where l+m = n. The values of the different harmonics of cb have to be eval-
uated solving the problem at the leading order of approximation as explained
in section 3.2. Analogously, the boundary conditions can be rewritten as

cn +
∂cbn
∂z

= cζn at z = 0.01 (3.90)

ws

kcψ̂d

cn +
νt0

µ̂

∂cn
∂z

+
νt1

µ̂

∂cbn
∂z

= 0 at z = 1 . (3.91)

Hence, it is possible to evaluate the perturbations of the bottom shear
stresses and those of the sediment transport rates. In particular, from the
constitutive law it is possible to obtain the Shield stresses related to the
action of the current:

θc
0x =

k2
cψd

µ̂
νt0
∂ub

∂z
, θc

0y =
k2

cψd

µ̂
νt0
∂vb

∂z
(3.92a,b)

θc
0 =

k2
cψd

µ̂

√

(

∂ub

∂z

)2

+

(

∂vb

∂z

)2

(3.93)

θc
1x =

k2
cψd

µ̂

{

νt0

(

∂u1

∂z
+ w1iδx

)

+

(

νt1 +
∂νt0

∂z

)

∂ub

∂z
+ νt0

∂2ub

∂z2

}

(3.94)
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θc
1y =

k2
cψd

µ̂

{

νt0

(

∂v1

∂z
+ w1iδy

)

+

(

νt1 +
∂νt0

∂z

)

∂vb

∂z
+ νt0

∂2vb

∂z2

}

(3.95)

θc
1 =

k2
cψd

µ̂

1
√

(

∂ub

∂z

)2

+

(

∂vb

∂z

)2

{

νt0
∂ub

∂z

(

∂u1

∂z
+ w1iδx +

∂2ub

∂z2

)

+

νt1

[

(

∂ub

∂z

)2

+

(

∂vb

∂z

)2
]

+ νt0
∂vb

∂z

(

∂v1

∂z
+ w1iδy +

∂2vb

∂z2

)

+

∂νt0

∂z

[

(

∂ub

∂z

)2

+

(

∂vb

∂z

)2
]}

. (3.96)

Concerning the wave shear stress, expanding relationship (3.30), it is
possible to obtain the following expression for the evaluation of the wave
Shields stresses

θw
0 = 0.15

k2
c ψ̂d

R
2/3
p

fw

(

HTU

HGT

)2

π2 (3.97)

θw
0x = θw

0 cos βw , θw
0y = θw

0 sin βw (3.98a,b)

θw
1 = 1.5θw

0 , θw
1x = θw

1 cos βw , θw
1y = θw

1 sin βw (3.99a,b,c)

whereHTU andHGT are dimensionless parameters related to characteristics
of the sea wave:

HTU =
H∗

T ∗U∗
0

, HGT =
2π
√

h∗0√
g∗T ∗

. (3.100a,b)

Hence, remembering that θcw
0 = θc

0 + θw
0 and θcw

1 = θc
1 + θw

1 , it is straight-
forward to obtain the expression for the evaluation of the sediment transport
in the case of bed load, suspended load, bed slope effect and wave load:

• Bed Load

(

Qb
0x, Q

b
0y

)

=
0.025

R0.2
p

(

θcw
0 − θcr

θcr

)1.5
(

θc
0x, θ

c
0y

)

√

θc
0

(3.101)
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(

Qb
1x, Q

b
1y

)

=
0.025

R0.2
p

{

(

θcw
0 − θcr

θcr

)1.5
[

(

θc
1x, θ

c
1y

)

√

θc
0

− 1

2

θcw
1

(θc
0)

3/2

(

θc
0x, θ

c
0y

)

]

+

1.5

(

θcw
0 − θcr

θcr

)0.5
(

θc
0x, θ

c
0y

)

√

θc
0

θcw
1

θcr

}

(3.102)

• Suspended Load

(

Qs
0x, Q

s
0y

)

= kc

√

ψ̂d

∫ 0

zr+a

cb (ub, vb) dz (3.103)

(

Qs
1x, Q

s
1y

)

= kc

√

ψ̂d

∫ 0

zr+a
[c1 (ub, vb) + cb (u1, v1)] dz −

kc

√

ψ̂dcb (ub, vb) |z=zr/X+a (3.104)

• Slope Effect

(

Qp
1x, Q

p
1y

)

= Qb
0

[(

∂η

∂x
θ0x +

∂η

∂y
θ0y

)

θ0x

θ2
0

(Gss −Gnn) +
∂η

∂x
Gnn ,

(

∂η

∂x
θ0x +

∂η

∂y
θ0y

)

θ0y

θ2
0

(Gss −Gnn) +
∂η

∂y
Gnn

]

(3.105)

where

Qb
0 =

0.25

R0.2
p

(

θcw
0 − θcr

θcr

)1.5
√

θcw
0 (3.106)

• Wave Load

(

Qw±
0x , Q

w±
0y

)

= 0.03R−0.2
p

√

ψ̂dkc
HTU

HGT
π

(

θ±0 − θcr

θcr

)1.5

(cos βw, sin βw)

(3.107)

(

Qw±
1x , Q

w±
1y

)

= 0.03R−0.2
p

√

ψ̂dkc
HTU

HGT
π

[

3

4

(

θ±0 − θcr

θcr

)1.5

+

130



A 3D MODEL

1.5

(

θ±0 − θcr

θcr

)0.5
θ±1
θcr

]

(cos βw, sin βw) (3.108)

where

θ±0 =
√

(θc
0)

2 + (θw
0 )2 ± 2

(

θc
0xθ

w
0x + θc

0yθ
w
0y

)

(3.109)

θ±1 =
(θc

0x ± θw
0x) (θc

1x ± θw
1x) +

(

θc
0y ± θw

0y

) (

θc
1y ± θw

1y

)

θ±0
. (3.110)

The amplitude equation which provides the time development of Π(t)
(amplitude of the bottom perturbation) follows from the sediment continuity
equation:

dΠ(T )

dT
= γ(t)Π(T ) (3.111)

where γ is a periodic, complex function of t which depends on the parameters
of the problem:

γ(t) = γb(t) + γs(t) + γw(t) + γp(t) =

=
{

i
(

δxQ
b
1x + δyQ

b
1y

)

+ i
(

δxQ
s
1x + δyQ

s
1y

)

+

i
(

δxQ
w
1x + δyQ

w
1y

)

+ i
(

δxQ
p
1x + δyQ

p
1y

)}

(3.112)

where

Qw
1x = Qw+

1x +Qw−
1x , Qw

1y = Qw+
1y +Qw−

1y . (3.113a,b)

The solution of (3.111) is clearly:

Π(T ) = Π0 exp

[
∫ T

0

γ(t
′

)dt
′

]

. (3.114)

Hence, the growth or the decay of the perturbation is controlled by the
real part of the time average of γ, while the imaginary part is related to the
migration speed of the perturbations. The periodic part of γ, with a vanishing
time average, simply describes oscillations of the sand wave configuration
around its average configuration which turn out to be quite small since the
tide period is much smaller than the morphodynamic time scale. Different
contributions to the amplification rate γ of the bottom perturbation can be
identified according to the mechanisms of sediment transport. The most
important contributions are those related to the bed load and to the slope
effects, the latter always being real and negative and tending to stabilise
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any bottom waviness. These two contributions are described by the first
and fourth terms appearing on the right hand side of (3.111). The value
of γ is also affected by the suspended load even though the latter becomes
important only when the particle mobility number is large.

3.4 Results

Before discussing the results on the morphodynamic stability it is necessary
to point out that for each run the model has been used in a first time ne-
glecting the terms appearing in (3.66)-(3.69) which are proportional to the
time derivative of the perturbation amplitude Π(t) because they are smaller
than the other terms, being of O(1/kc). In a second step the same runs have
been obtained taking into account the time derivative in order to study its
effect on the formation of sand waves and sand banks. If the parameter kc

attains large values, the influence of the time derivative is expected to be
negligible. However, in the case of sand bank formation, a predominant role
on the physical processes is played by the effect of the Coriolis force. An
analysis of the order of magnitude of the different terms appearing in the
momentum equation shows that the terms proportional to the time deriva-
tive of the perturbation amplitude Π(t) are of the same order of those related
to the Coriolis term. Hence, it is necessary to take into account the terms
relative to the local acceleration in order to have a more realistic description
of sand bank formation.

3.4.1 Case study

Because of the large number of parameters controlling the behaviour of the
system, it is useful to start to check the capability and reliability of the model
by considering specific sets of data which allow for a comparison of the the-
oretical results with some field observations. Subsequently, on varying the
parameters, it is possible to try to identify the role of the different physi-
cal processes (tide characteristics, sediment transport, etc.) involved in the
phenomenon of sand wave and sand bank formation and migration.

Let us start by considering two different locations in the North Sea, which
were already considered in the previous chapters where simpler models have
been used to predict the characteristics of the observed morphological pat-
terns. Data concerning bathymetry, sediment properties and current veloci-
ties were provided by SNAM PROGETTI S.p.A.. The surveyed areas have
a water depth ranging from 20 to 40m. The bathymetric data of the first
site, identified as SW2 are shown in figure 3.2, where the bottom topography
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Figure 3.2: Bottom topography measured at 52◦ 21′ N and 3◦ 9′ (Area SW2)
showing the presence of sand waves. The grid size is 500m. Courtesy of
SNAMPROGETTI.

measured at 52◦ 21′ N and 3◦ 9′ E is displayed. The average water depth is
about 40m but a wavy bed (sand waves) characterised by a wavelength of
about 285 ± 85m and heights ranging between 3.5 and 5.5m is present. The
harmonic analysis of the tidal current measured at two different locations
close to the observed sand waves shows that the tide is mainly semi-diurnal
with M2 as the dominant constituent (see analysis of chapter 2). The am-
plitude of the velocity oscillations induced by the M2 constituent during the
measuring period (15 October 1998 - 31 March 1989) is about 0.41m/s and
the direction of the velocity is almost orthogonal to the crests of the sand
waves. Moreover, the ratio between the minor and major axis of the tidal el-
lipse, denoted in the following ecc, is about 0.17. Finally, the sediment turns
out to have a mean grain size equal to 0.25mm.

Even though the current measurements show the co-existence of many
tidal constituents, to make the presentation of the results as simple as pos-
sible, the model has been run considering just the semi-diurnal tidal con-
stituent. To show the model’s capability of predicting the appearance of
sand waves, the real part γr of the time average of the function γ is ob-
tained as function of δx and δy for values of the parameters chosen in order
to reproduce the local climate and sediment characteristics. Unfortunately,
no information was available about the bottom roughness which presently
is supposed to be due to sea ripples 0.3m long and 5cm high. We remind

133



3.4 Results

the reader that γr is the growth rate of the bottom perturbations. Hence,
positive values of γr imply the growth of the bottom perturbations while neg-
ative values of γr cause the disappearance of any initial bottom disturbance.
Finally, when γr vanishes, perturbations neither amplify nor decay.
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Figure 3.3: Growth rate γr plotted versus δx and δy for kc = 72, ecc =

0.17, µ̂ = 315, Rp = 15.9, ψ̂d = 0.008, d = 6.4 10−6 and no wind waves.
Only positive isolines are displayed with ∆γr = 0.002. Top panel: no time
derivative included. Bottom panel: time derivative included. The maximum
value of γr, in both cases, is located at (δx, δy) ' (0.65, 0.0).

The results obtained (figure 3.3) show that the bedforms which tend to
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appear are characterised by crests almost orthogonal to the major axis of
the tide since the maximum value of γr is reached for practically vanishing
values of δy (x and y are two horizontal axes such that x is aligned with the
major axis of the tidal ellipse). This theoretical prediction agrees well with
the field observations (see also Belderson et al., 1982; Stride, 1982). The
wavelength of sand waves predicted by the theory also falls within the range
of observed values, since the perturbation component characterised by the
maximum amplification rate, i.e. the component which will dominate the
bottom configuration for long times, is characterised by (δx, δy) ' (0.65, 0.0).
These wavenumbers correspond to a dimensional wavelength of about 340m,
a value similar to the observed wavelengths ranging between 200m and 370m.
By taking into account the terms proportional to the time derivative of Π(t),
it is possible to note, comparing the top and the bottom panels of figure
3.3, that the results do not change significantly from a qualitative point of
view. It is noticeable when considering the full solution that the values of
the growth rate γr are slightly smaller than in the previous case.

Figure 3.4: Bottom topography measured at 51◦ 35′ N and 3◦ 2′ (Area SW1)
showing the presence of sand waves. The grid size is 500m. Courtesy of
SNAMPROGETTI.

Sand wave appearance is investigated at a different location (51◦ 35′ N
and 3◦ 2′ E), where the average water depth is much smaller (20m) and sand
waves, orthogonal to the main tidal current, are characterised by a wave-
length equal to 210± 45m (see figure 3.4). The amplitude of the velocity os-
cillations induced by the M2 constituent, which is the dominant constituent,
is about 0.43m/s a value close to the previous one, even though the eccen-
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tricity of the tidal ellipse is larger (ecc = 0.42). Because the site is closer to
the coast, the sediment is much coarser and characterised by a value of the
mean grain size equal to 0.60mm. Figure 3.5 shows the amplification rate
γr provided by the model for this new data set. As in the previous case, the
most unstable bottom perturbation turns out to have its crest orthogonal to
the main tidal axis and a wavelength of about 300m, a value which is not
too far from the observed sand wave spacing.

Because of the large value attained in this situation by the parameter
kc, the inclusion of the time derivative does not lead to significant changes
neither in a qualitative nor in a quantitative sense.

The stability analysis described in section 3.3 is linear and therefore un-
able to provide any information on the equilibrium amplitude attained by
the growing perturbation for long times. Indeed, as soon as the amplitude
Π(t) of the bottom waviness grows and reaches large values, nonlinear ef-
fects become strong and the analysis fails. However, the results which can
be obtained by the linear analysis provide further information on the con-
figuration of the sea bottom forced by a tidal wave. Indeed, Hulscher et al.
(1993), using the shallow water approximation and considering the depth-
averaged velocity field, showed that the interaction of tidal currents with
2D-horizontal bottom perturbations can lead to the appearance of a much
longer bottom waviness which can be assumed to represent sand banks. For
a unidirectional tide, the fastest growing mode determined by Hulscher et
al. (1993) is characterised by crests almost aligned with the main tidal axis
and wavelengths in agreement with the field values which characterise sand
banks. However, very long waves are also growing exponentially. Moreover,
the analysis of Hulscher et al. (1993) shows that the first mode that would
become unstable, when the parameters are varied, corresponds to ultra-long
waves. A better description of the phenomenon was found by Hulscher et
al. (1993) by considering circular tides. In this case, the first mode to be-
come unstable, when the parameters are varied, is characterised by a finite
wavenumber but, since a circular tide has no preferred direction, the wave-
length but not the orientation of the selected bedforms can be predicted.
Since the depth averaged equations cannot describe the vertical recirculat-
ing cells which are the driving mechanism of sand wave formation, Hulscher
et al. (1993) did not consider the conditions leading to the appearance of
sand waves, even though their approach could be used to this aim with an
appropriate parametrisation of the secondary currents in the vertical plane
(De Swart & Hulscher, 1995).

Since the present model is based on the full three-dimensional Reynolds
averaged momentum equations, it can in principle describe both the processes
leading to sand waves and sand banks. Figure 3.6 shows the plot of γr versus
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Figure 3.5: Growth rate γr plotted versus δx and δy for kc = 148, ecc =

0.42, µ̂ = 288, Rp = 59, ψ̂d = 0.00087, d = 3.0 10−5 and no wind waves.
Only positive isolines are displayed with ∆γr = 0.0005. Top panel: no time
derivative included. Bottom panel: time derivative included. The maximum
value of γr, in both cases, is located at (δx, δy) ' (0.4, 0.0).

(δx, δy) for values of the parameters chosen to reproduce the site in the North
Sea described by Le Bot at al. (2000). The field survey was carried out in the
Calais-Dover strait midway between France and England. Both sand waves
and sand banks are present on the site. Sand waves were observed with wave-
length ranging between 350m and 750m and crests orthogonal to the main
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tidal current which was dominated by the semi-diurnal component. Nearby
(see figure 1 of Le Bot et al.’s, 2000 paper), sand banks are present and
are characterised by crests almost aligned to the main tidal axis but slightly
clockwise rotated (see in particular Sandettie bank, Ruytingen bank, Dyck
bank) and by a mean spacing of about 6km. Unfortunately, even though
accurate quantitative data concerning the local bathymetry are available, no
data is given about the strength of the M2 tidal constituent, and on the bot-
tom roughness which is presently fixed on the basis of measurements carried
out in similar sites. The growth rate of the bottom perturbations predicted
by the theory is characterised by the presence of two relative maxima. One
of them appears close to the δx−axis for δx equal to about 0.26 (see figure
3.6).

The second relative maximum appears more clearly in figure 3.7, which
is an enlargement around the origin of the figure 3.6. As pointed out before,
the introduction of the terms proportional to the local acceleration plays a
very important role in the study of formation of sand waves. Comparing
the top panel of figure 3.7 with the bottom panel it is possible to notice
how the terms proportional to the time derivative more strongly enhance the
formation of a maximum of the real part of the growth rate for δx = 0.015
and δy = 0.055.

Therefore, the theory indicates that there are two perturbation compo-
nents which will tend to grow and to originate two different types of bedforms
which coexist and characterise the sea-bed configuration.

The first type of bedform is characterised by crests almost orthogonal to
the direction of the tidal flow and by a wavelength of about 630m. This result
agrees with the data of the sand waves observed by Le Bot et al. (2000)
which are characterised by a wavelength ranging between 350 and 750m.
The second type of bedform has crests almost aligned to the main tidal flow
direction, though slightly clockwise rotated (about 12◦) and a wavelength of
about 4km. These characteristics fairly agree with those of the sand banks
which are observed nearby (Sandettie bank, Ruytingen bank, Dyck bank).

At this stage, we point out that the present model has no parameter
which can be tuned to make the theoretical results fit the field data.

3.4.2 Sensitivity analysis

This section is dedicated to the investigation of the role of the different
physical phenomena involved in the process of generation and migration of
sand waves. These bedforms can affect several human activities and the
understanding of their dynamics is very important from a practical point
of view. Furthermore, the characteristic time of evolution of sand waves is
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Figure 3.6: Growth rate γr plotted versus δx and δy for kc = 90, ecc = 0.15,

µ̂ = 375, Rp = 20.9, ψ̂d = 0.0053, d = 8.6 10−6 and no wind waves. Only
positive isolines are displayed with ∆γr = 0.0005. The maximum value of γr

is located at (δx, δy) ∼ (0.26, 0.0). Top panel: no time derivative included.
Bottom panel: time derivative included.

comparable to that of the economic activities interested by their appearance
(migration of the order of tens of meters per year, regeneration time of sand
waves after dredging of the order of a few years).

Every dimensionless parameter can be thought of as characterising the
properties of the different physical dimensions of the processes. In particular
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Figure 3.7: Growth rate γr plotted versus δx and δy for kc = 90, ecc =

0.15, µ̂ = 375, Rp = 20.9, ψ̂d = 0.0053, d = 8.6 10−6 and no wind waves.
Only positive isolines are displayed with ∆γr = 0.00003. Top panel: no
time derivative included. The maximum value of γr is located at (δx, δy) ∼
(0.012, 0.045). Bottom panel: time derivative included. The maximum value
of γr is located at (δx, δy) ∼ (0.015, 0.06).

the parameter kc is proportional to the strength of the main tidal current,
µ̂ gives information about the roughness of the bed, ψ̂d, Rp and d take into
account the sediment properties and finally HTU and HGT refer to the
height and periods of waves generated by the wind. Considering different
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values of these parameters, comprised in a range which is representative of
realistic physical conditions that may occur in seas like the North Sea, it is
possible to experience changes in the results from both a quantitative point
of view and from a qualitative point of view.

Considering the study of sand wave formation, the obtained results show
that the most unstable perturbations are characterised by almost vanishing
values of δy. In order to investigate the relevance of the different parameters
of the model on the phenomenon, a further set of model runs has been done
considering only γr(δx) and fixing δy = 0. Figure 3.8 shows γr versus δx for
different values of the parameter kc.
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Figure 3.8: Growth rate γr plotted versus δx fixing δy = 0.0 for ecc = 0.42,

µ̂ = 288, Rp = 59, ψ̂d = 0.00087, d = 3.0 10−5 and different values of kc

and no wind waves. The lines represent the solution neglecting the time
derivative, the points represent the full solution.

For a semi-diurnal tide propagating over a constant water depth and a
fixed sediment, different values of kc imply different amplitudes of the depth
averaged velocity oscillations induced by the tide. When the strength of the
tide is increased, the values of γr grow, showing that the flat bottom configu-
ration is more unstable. Furthermore, the full solution tends to coincide with
the solution obtained neglecting the terms proportional to the time deriva-
tive of the perturbation amplitude because of the large values assumed by
the parameter kc. Moreover, the value of δx which gives rise to the maximum
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Figure 3.9: Growth rate γr plotted versus δx fixing δy = 0.0 for kc = 150,

ecc = 0.42, µ̂ = 288, Rp = 59, ψ̂d = 0.00087, d = 3.0 10−5, H∗ = 1.5 m,
T ∗ = 5.7 s and different values of the angle βw between the direction of wave
propagation and the major axis of the tidal ellipse.

value of γr, increases, thus showing that stronger tidal currents generate
shorter sand waves. On the other hand, when kc is decreased, smaller values
of γr are found until, for kc smaller than a critical value kcr

c , which at the
site under consideration ranges about 110, no sediment motion takes place.
Therefore, it appears that in the considered North Sea site, the flat bottom
configuration is stable only when the Shields parameter is smaller than its
critical value and no sediment is moved during the tidal cycle. These findings
are in qualitative agreement with the results of Besio et al. (2003).

Figures 3.9-3.10 show the results obtained by adding the effects related to
the presence of wind waves. In particular, in figure 3.9 the wave period and
height are fixed equal to 5.7s and 1.5m respectively and different directions
of propagation are considered. In figure 3.10, waves propagating along the
main tide axis are considered and the wave period is fixed equal to 5.7s
while the height is varied. The results show that wind waves always have
a stabilising effect since they produce smaller values of γr. This stabilising
effect increases for increasing wave height. Moreover, the strongest stabilising
effect is induced by waves which propagate along the direction of the main
tidal axis.

Up to now, γi vanishes and sand waves do not migrate. A significant
sand wave migration is induced by the presence of a residual current. The
migration speed of the bedforms is a quantity of practical relevance, since
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Figure 3.10: Growth rate γr plotted versus δx fixing δy = 0.0 for kc = 150,

ecc = 0.42, µ̂ = 288, Rp = 59, ψ̂d = 0.00087, d = 3.0 10−5, T ∗ = 5.7 s.
Different values of the wave height are considered and the angle βw between
the direction of wave propagation and the major axis of the tidal ellipse is
fixed equal to 0◦.

migrating sand waves can expose pipelines to both free-span generation and
self-burial. Moreover they can cause burial of shipping channels. Figure 3.11
shows that both the real γr and imaginary γi parts of γ are different from
zero when a residual current aligned with the main tide axis is added to
the oscillatory velocity induced by the M2 constituent, the other parameters
being equal to those considered in figure 3.5. From the results shown in figure
3.11, it appears that the dimensionless migration speed γi/|δ| is of order 10−1,
which corresponds to a dimensional migration speed of order 10 m/year. This
predicted speed falls exactly in the range of the observed values (i.e. some
tens of metres per year), even though no completely reliable measurements
of sand wave displacement exist which allow for an accurate quantitative
comparison between theoretical predictions and field values. The residual
current induces not only a migration of the bottom forms but also destabilises
the wavy bottom configuration.

When the residual current and the waves are aligned with the main tide
axis, the maximum of γr is located at the δx−axis. If the residual current
and/or the wind waves are orthogonal to the main tidal axis, the value of δy

giving rise to the maximum of γr is no longer negligible even though it stays
small for realistic values of the parameters.

To gain information on the relative importance of the bed and suspended
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Figure 3.11: Amplification rate γ plotted versus δx fixing δy = 0.0 for

kc = 148, ecc = 0.42, µ̂ = 288, Rp = 59, ψ̂d = 0.00087, d = 3.0 10−5

and no wind waves. Top panel: real part γr. bottom panel: imaginary
part γi. Dimensionless residual currents equal to 0.0, 0.1 and 0.2 are consid-
ered aligned with the major axis of the tidal ellipse. The lines represent the
solution neglecting the time derivative, the points represent the full solution.
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Figure 3.12: The different contributions to γr defined by (3.112) plotted
versus δx for δy = 0.0 and r̂ = 72, ecc = 0.17, µ̂ = 315, Rp = 15.9, ψ̂d = 0.008,
d = 6.4 10−6 and no wind waves. The lines represent the solution neglecting
the time derivative, the points represent the full solution.

loads and of sediment transport due to wind waves, the different contributions
to γr, as defined by (3.112), are plotted in figure 3.12 for the same values
of the parameters as those considered in figure 3.3 while in figure 3.13 a
smaller grain size is considered. When the sand is coarse (figure 3.12) the
suspended load vanishes. Therefore, γrs is zero and the growth or decay of
the bottom perturbations is controlled by a balance between the destabilising
effect due to the bed load and the stabilising effect due to the bottom slope.
When the sand is fine (figure 3.13) the suspended load provides a significant
contribution to the time development of the bottom. In particular γrs turns
out to be negative and therefore the sediment carried into suspension provides
a stabilising contribution to γr (γrs < 0). This finding is not in agreement
with the results obtained by the simplified two dimensional model employed
in the first part of this work. A reason for the discrepancy between this result
and the previous one can be identified in the approximation employed in the
evaluation of the time lag and of the adaptation length in the first part of
this work.

Both in figures 3.12 and 3.13, no wave is considered and γrw vanishes.
As shown in figures 3.9 and 3.10 wind waves always have a stabilising effect.
As done in the previous figures, the lines represent the solution obtained
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Figure 3.13: The different contributions to γr defined by (3.112) plotted
versus δx for δy = 0.0 and r̂ = 72, ecc = 0.17, µ̂ = 315, Rp = 5.62, ψ̂d = 0.016,
d = 3.2 10−6 and no wind waves. The lines represent the solution neglecting
the time derivative, the points represent the full solution.

neglecting the time derivative proportional to the perturbation amplitude
and the points represent the full solution.

3.5 Conclusions

In the second part of this work we have provided more evidence for the
hypothesis that a simple model, based on the study of the time development
of small bottom perturbations of a shallow sea, where the water motions are
induced by tide propagation and by wind waves, can explain the formation
of sand waves and tidal sand banks and can also give reliable predictions of
their characteristics.

Concerning sand banks, it is worthwhile to point out that a predominant
role in the process of their formation is played by the direction of rotation of
the tidal wave. In fact, as pointed out by Soulsby (1983), a fixed tidal ellipse
can be characterised by a clockwise rotary component of the depth average
velocity or by a counter-clockwise rotary component.

Because the present model does not solve tide propagation but only de-
scribes the local structure of the tidal velocity, it cannot predict whether the
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Figure 3.14: Ratio of the counter-clockwise to the clockwise rotary compo-
nent of depth-average velocity of the mean spring tide in the seas around
the British Isles. Shaded regions have a net clockwise rotation of the current
vector. Results from the numerical model of Flather (1976). Adopted from
Soulsby (1983).

tidal ellipse is clockwise or counter-clockwise. However, this information is
available from numerical models of tide propagation and the proposed model
can describe the vertical structure of a clockwise or of a counter-clockwise
tidal ellipse (see figure 3.14). The preliminary results we have obtained show
that sand bank orientation depends on the clockwise or counter-clockwise ori-
entation of the tidal ellipse as well as on the other parameters of the model
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Figure 3.15: Growth rate γr plotted versus δx and δy for kc = 78, ecc = 0.15,

µ̂ = 353, Rp = 1.99, ψ̂d = 0.02546, d = 1.8 10−6 and no wind waves.
Only positive isolines are displayed with ∆γr = 0.001. Top panel: counter-
clockwise rotating tide. Bottom panel: clockwise rotating tide.

(sediment and tidal parameters). As shown in figure 3.15 where positive
isoline of the growth rate γr are plotted against δx and δy, the direction of
rotation of the tide has a strong influence on the relative orientation of sand
banks. In fact clockwise rotating tides (bottom panel of figure 3.15) give
rise to counter-clockwise oriented sand banks, while counter-clockwise rotat-
ing tides lead to a clockwise orientation of the bedforms with respect to the
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Figure 3.16: Growth rate γr plotted versus δx and δy for kc = 310, ecc = 0.15,

µ̂ = 331, Rp = 1.99, ψ̂d = 0.0083, d = 3.1 10−6 and no wind waves. Only
positive isolines are displayed with ∆γr = 0.05. Top panel: counter-clockwise
rotating tide. Bottom panel: clockwise rotating tide.

direction of propagation of the main tidal flow. In both cases the length scale
of the predicted sand banks is of the order of 3.5km and their orientation is
of about 7◦. The above findings have been obtained taking into account a
semi-diurnal tide of about 0.4m/s propagating over a cohensionless bed with
a mean diameter of 0.0625mm and an average depth of 35m. This kind of
behaviour is present even if we consider different strength of the tide and
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Figure 3.17: Growth rate γr plotted versus δx and δy for kc = 310, ecc = 0.15,

µ̂ = 331, Rp = 5.62, ψ̂d = 0.0042, d = 6.2 10−6 and no wind waves. Only
positive isolines are displayed with ∆γr = 0.01. Top panel: counter-clockwise
rotating tide. Bottom panel: clockwise rotating tide.

different water depth as shown in figure 3.16 where it has been considered
a stronger tide (0.9m/s) propagating over a smaller depth (20m), while the
sediment mean diameter has been kept fixed. This configuration leads to the
formation of bedforms with a characteristic wavelength of about 4.2km and
an orientation of about 6◦. Increasing the mean sediment diameter does not
lead to significant qualitative changes, and the orientation of the bedforms is
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still controlled by the direction of rotation of the tide (see figure 3.17 where
the results obtained with the same set of the parameters of figure 3.16 are
reported but the sediment mean diameter which has been assumed equal to
0.125mm). This set of the parameters leads to the formation of sand banks
characterised by a wavelength of about 5km and an orientation of about 10◦

The reader can recognise the generation mechanism of some of the sand bank
patterns observed in the field and described a.o. by Dyer & Huntley (1999).

The above findings suggest that it is necessary to have detailed informa-
tion about the characteristics of the tide and of the sediment in order to be
able to perform reliable predictions and analyses of these large scale bed-
forms. In particular the direction of rotation of the tidal waves influences
directly the orientation of the bedforms.

The idea that bottom forms observed in tidal seas arise as free instabil-
ities of a simple morphological system driven by tide propagation is due to
Huthnance (1982) and refinements of Huntnance’s (1982) analysis were per-
formed by Hulscher et al. (1993), De Vriend (1990) and Hulscher (1996) and
more recently by Gerkema (2000), Komarova & Hulscher (2000), Németh
et al. (2003), Besio et al. (2003), Besio et al. (2004). The present analy-
sis removes many of the assumptions and restrictions characterising previ-
ous approaches and allows for a quantitative description of the phenomenon
without the need of tuning any parameter. The presence of wind waves and
residual currents is also taken into account in the analysis and therefore the
model is also capable of predicting the migration of bottom forms and the
appearance of complex bottom topographies which arise from the simultane-
ous growth of different modes. Upon taking into account the effects of wind
waves and residual currents it has been shown that sea bed forms generation
is a more complex phenomenon than that described by previous simplified
models. A limitation of the present analysis is that perturbations of small
amplitude are considered and a linear approach is used. Therefore only the
initial stage of bedform growth can be simulated. In order to investigate the
long-term behaviour, when the amplitudes of sand banks and sand waves
have reached finite values, a nonlinear approach is required. This could be
based on a weakly nonlinear stability analysis by considering tidal current
strengths close to the critical value. This possible analysis should also allow
for both the investigation of the interaction between different modes and the
prediction of the final complex configuration of the sea bottom when differ-
ent types of sand waves coexist. The model formulated provides a simplified
description of the actual phenomenon, but considers all the main processes
affecting the growth of bottom forms (e.g. oscillating tidal currents, residual
currents, wind waves, bed load, suspended load, longitudinal and transverse
bottom slope effects on sediment transport). Of course, some aspects of the
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3.5 Conclusions

model could be improved: in particular it is hoped to be able to introduce a
better turbulence model capable of describing the time variation of the turbu-
lence structure during the tidal cycle. However, we also feel that only minor
changes of presently obtainable quantitative predictions would be induced at
the expense of a major effort in the analysis.
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