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Recently Stocchino & Brocchini (J. Fluid Mech., vol. 643, 2010, p. 425 have studied
the dynamics of two-dimensional (2D) large-scale vortices with vertical axis evolving
in a straight compound channel under quasi-uniform flow conditions. The mixing
processes associated with such vortical structures are here analysed through the
results of a dedicated experimental campaign. Time-resolved Eulerian surface velocity
fields, measured using a 2D particle-image velocimetry system, form the basis for
a Lagrangian analysis of the dispersive processes that occur in compound channels
when the controlling physical parameters, i.e. the flow depth ratio (rh) and the
Froude number (Fr) are changed. Lagrangian mixing is studied by means of various
approaches based either on single-particle or multiple-particle statistics (relative and
absolute statistics, probability density functions (p.d.f.s) of relative displacements
and finite-scale Lyapunov exponents). Absolute statistics reveal that transitional
macrovortices, typical of shallow flow conditions, strongly influence the growth in
time of the total absolute dispersion, after the initial ballistic regime, leading to a non-
monotonic behaviour. In deep flow conditions, on the contrary, the absolute dispersion
displays a monotonic growth because the generation of transitional macrovortices does
not take place. In all cases an asymptotic diffusive regime is reached.

Multiple-particle dynamics is controlled by rh and Fr . Different growth regimes
of the relative diffusivity have been found depending on the flow conditions. This
behaviour can be associated with different energy transfer processes and it is further
confirmed by the p.d.f.s of relative displacements, which show a different asymptotical
shape depending on the separation scales and the Froude number. Finally, an
equilibrium regime is observed for all the experiments by analysing the decay of
the finite-scale Lyapunov exponents with the particle separations.
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1. Introduction
Natural rivers commonly exhibit cross-stream sections composed of a deep main

channel and shallow floodplains; hence, they are called ‘compound channels’. The
compound channel geometry is often artificially created in many applications of
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Lagrangian mixing in compound channels 169

Figure 1. Graphical illustration of the compound channel flow showing macrovortices in the
transition regions and mean flow velocity distribution along the transversal coordinate.

river engineering (Shiono & Knight 1991; van Prooijen, Battjes & Uijttewaal 2005),
trying to restore a natural shape. In the last two decades, a major effort has been
dedicated to understand the dynamics of uniform and non-uniform flows evolving in
compound channels with the aim to better model the fundamental processes. Uniform
compound channel flows are often studied using the conceptual scheme of Shiono &
Knight (1991); see figure 1 for a graphical illustration of the flow. The overall
flow is, in general, a complicated three-dimensional (3D) turbulent flow. However,
the main agents of transport of momentum and mass between the main channel
and the floodplains are found to be the quasi-two-dimensional (2D) macrovortices
(with vertical axes) generated at the transition region, where there is an intense
generation of vorticity owing to the flow depth jump (Soldini et al. 2004). Secondary
flows are, usually, disregarded since they have a major effect in a confined region,
close to the bottom, of the main channel. For this reason, many authors have
chosen to apply a 2D analysis based on the shallow-water approximation (Sellin
1964; Shiono & Knight 1991; Nezu, Onitsuka & Iketani 1999; van Prooijen &
Uijttewaal 2002, among others). The ‘shallow flow’ assumption is applied not only
to compound channel flows but also to a variety of other flows which are globally
shallow (e.g. jet and wakes) but still retain local vertical gradients (e.g. flows around
groin fields), as described in Jirka (2001); Socolofksy & Jirka (2004) and Nikora et al.
(2007).

Recently, Stocchino & Brocchini (2010) have presented a statistical analysis of
the properties of quasi-2D macrovortices that are formed at the transition region
of a compound channel, showing that the typical size of these structures, after their
initial growth, remains constant in the streamwise direction. This was related to the
fact that the topographic forcing, i.e. the depth jump between the main channel
and the floodplains, being the main production mechanism of large-scale vorticity,
was constant in the same direction. The possible consequences on mass transport
processes were only outlined. However, the understanding of the role of coherent
vortices on mass transport is of particular interest: floodplains of natural rivers are
often wetlands with abundant wild life and the knowledge of the mass transport
processes is vital to preserve the environmental conditions. In this respect, the above-
mentioned macrovortices play a fundamental role in the transverse exchange of
mass (e.g. pollutants and nutrients) between the main channel and the floodplains
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(van Prooijen & Uijttewaal 2002). In general, coherent structures are commonly
recognized as major agents of mass transport, also owing to their ability to trap
mass and to inhibit exchanges among different flow regions. Interesting reviews
on this subject are those of Provenzale (1999), Boffetta et al. (2001) and LaCasce
(2008).

The present contribution focuses on the mixing processes that occur in a uniform
compound channel, assuming a shallow-water conceptual model. In this sense, the
following Lagrangian analysis can be regarded as a natural extension of the study
by Stocchino & Brocchini (2010), who restricted their attention only to the Eulerian
characteristics of the flow. As in many other applications concerned with geophysical
flows (Morel & Bandeen 1973; Er-El & Peskin 1981; Orre, Gjevik & LaCasce 2006;
Garcia-Olivares, Isern-Fontanet & Garcia-Ladona 2007; LaCasce 2008), the turbulent
flows of interest can be regarded as quasi-2D, considering secondary flows in the cross-
sections of minor importance. Hence, we interpret the experimental measurements
relying on results valid for pure 2D turbulence, making, whenever possible, a close
analogy with such results.

From the measurements of time-dependent, two-dimensional surface Eulerian
velocity fields, we first analyse the flow by means of a dynamical partitioning based
on the Hua & Kline (1998) criterion, which defines flow regions with different mixing
properties. We then perform a numerical integration of sets of particle trajectories
starting from the Eulerian velocity fields obtained from the particle-image velocimetry
(PIV) technique, for each experiment. The particle trajectories form the basis for the
Lagrangian analysis of the mixing processes described in § 4. The resulting absolute
and relative dispersion and diffusivity are discussed in detail to describe the mixing
processes and the analysis is classified by means of finite-scale Lyapunov exponents
(FSLEs). Section 5 closes the paper.

2. The experiments
The present experiments have been carried out using the same apparatus as

described in Stocchino & Brocchini (2010), suitably modified to enable changes
in the bed longitudinal slope (S).

Here, we briefly recall the main characteristics of the apparatus and the measuring
system. The flume is 20 m long, 56 cm wide with a trapezoidal cross-section composed
of a central main channel (W ∗

mc = 20 cm), two lateral flat floodplains (W ∗
fp = 18 cm) and

a transition region (W ∗
tr =2.5 cm). A sketch of the cross-section of the experimental

flume is shown in figure 2. Asterisks identify dimensional quantities. A Cartesian
coordinate system is used in which the x∗- and y∗-axes are aligned with the streamwise
and spanwise directions of the flow, respectively. In the following, horizontal distances
are normalized by the main channel half-width (W ∗

mc/2 = 10 cm). More appropriate
scales are used to make dimensionless the results of the mixing analysis. This is further
detailed in § 4.2. As discussed in Stocchino & Brocchini (2010), the turbulent flow is
completely developed after a distance downstream of the inlet of about 6.5 m. In
the present study, we have focussed our attention only on fully developed turbulent
conditions, choosing the measuring area at a distance of 10 m downstream of the
flume inlet.

In table 1, we summarize the main experimental parameters, providing the values
of the ratio between the main channel water depth and that of the floodplains,
rh = h∗

mc/h∗
fp , the Froude number, Fr = U ∗

m/
√

gR∗, where R∗ is the hydraulic radius, g

is gravity and U ∗
m is the peak velocity in the main channel, the liquid discharge (Q∗)
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Figure 2. Sketch of the cross-section of the flume.

and the Reynolds number Re = 4U ∗
mR∗/ν, where ν is the kinematic viscosity. About

50 experiments have been performed changing the main parameters (Fr and rh) that
are grouped in table 1 depending on the flow regimes as suggested by Nezu et al.
(1999). Moreover, the experiments belonging to each class are listed according to the
decreasing value of the longitudinal bed slope (S).

Two-dimensional surface velocity measurements have been obtained using the same
PIV system as that of Stocchino & Brocchini (2010), which consists of a high-speed
digital camera (IDT model Xs3) and an illumination system composed of three
white light incandescent lamps of 1000 W. The seeding tracers were white plastic
particles with a mean diameter of 150 µm and a specific gravity of about 1.05.
Anti-clustering treatments have been preventatively applied to the particles. The
approximate area density of the particle tracers was estimated at 10 particles cm−2.
For the present purposes, the area of interest of the velocity measurements has been
increased with respect to the experimental results already presented by the authors.
In fact, as described below, the Eulerian velocity fields are used as the basis for the
computation of trajectories and, for this task, a longer domain is needed to ensure an
acceptable accuracy of the Lagrangian statistics. Therefore, the area of interest was a
rectangle with dimensions up to (1.2 × 0.6) m2. The image-repetition rate was chosen
between 100 and 250 Hz, depending on the flow velocity and a single acquisition was
made of a number of frames between 2000 and 4000, resulting in different temporal
intervals from 10 to 45 s. To test the repeatability of the measurements, we have
performed several acquisitions for a fixed set of experimental parameters (rh, Fr).
Finally, probability density functions (p.d.f.s) of the measured displacements have
been calculated to test whether the PIV set-up in use was adequate to avoid peak-
locking effects, which may deteriorate the quality of the measurements. The resulting
p.d.f.s, not being multimodal, suggest that the measured velocity is not affected by
such a systematic error.

The present experimental approach, based on the free-surface velocity measurement,
is often used in many experimental works with primary focus on quasi-2D vortical
structures (see Jirka 2001; Socolofksy & Jirka 2004; Nikora et al. 2007, among others).
This approach is valid as long as secondary flows, which develop over vertical cross-
sections of the flow, can be considered negligible in the formation of the quasi-2D
macrovortices at hand.

In the following, results are analysed with reference to the classification introduced
by Nezu et al. (1999). ‘Shallow flows’ (rh > 3) are characterized by monotonic velocity
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Experiment rh (−) Fr (−) S (−) Q∗ (l s−1) U ∗
m (m s−1) Re × 104 (−)

Shallow flows
EXP101 3.70 0.88 0.0064 4.88 0.34 28.2
EXP102 3.23 0.91 0.0064 5.79 0.35 32.5
EXP04 3.69 0.87 0.0064 4.88 0.34 28.2
EXP06.1 3.10 0.92 0.0064 6.14 0.36 33.8
EXP010 4.42 0.73 0.0048 3.55 0.18 12.8
EXP011 3.50 0.77 0.0048 4.62 0.20 17.3
EXP012 3.40 0.80 0.0048 5.25 0.22 19.5
EXP201 4.16 0.60 0.0032 2.99 0.27 20.1
EXP202 3.60 0.62 0.0032 3.55 0.29 24.5
EXP203 3.36 0.64 0.0032 3.9 0.31 27.8
EXP204 3.08 0.65 0.0032 4.37 0.32 30.6
EXP001 3.69 0.44 0.0016 2.39 0.17 13.7
EXP002 3.43 0.46 0.0016 3.03 0.19 16.3
EXP003 3.05 0.47 0.0016 3.49 0.20 19.8

Intermediate flows
EXP103 2.62 0.97 0.0064 8.01 0.42 48.5
EXP104 2.29 1.03 0.0064 10.35 0.51 69.6
EXP105 2.15 1.05 0.0064 11.85 0.56 84.9
EXP106 2.07 1.07 0.0064 12.81 0.58 93.1
EXP107 2.03 1.07 0.0064 13.84 0.60 99.8
EXP06.6 2.92 0.94 0.0064 6.68 0.36 36.9
EXP07 2.71 0.96 0.0064 7.56 0.37 41.1
EXP10 2.32 1.02 0.0064 10.01 0.49 66.2
EXP12 2.11 1.06 0.0064 12.36 0.53 82.9
EXP13 2.02 1.07 0.0064 13.54 0.57 95.2
EXP013 2.36 0.84 0.0048 6.54 0.25 33.1
EXP014 2.30 0.87 0.0048 8.09 0.26 35.6
EXP015 2.10 0.92 0.0048 10.75 0.38 59.7
EXP205 2.57 0.69 0.0032 5.85 0.35 41.4
EXP206 2.40 0.71 0.0032 6.68 0.36 46.6
EXP207 2.26 0.73 0.0032 7.47 0.37 51.8
EXP208 2.16 0.74 0.0032 8.26 0.38 57.2
EXP209 2.04 0.76 0.0032 9.44 0.42 69.4
EXP004 2.61 0.50 0.0016 4.32 0.21 23.8
EXP005 2.40 0.51 0.0016 5.01 0.23 29.8
EXP006 2.20 0.53 0.0016 5.89 0.27 39.6

Deep flows
EXP108 1.95 1.09 0.0064 14.76 0.64 11.4
EXP109 1.86 1.11 0.0064 16.82 0.69 13.5
EXP110 1.82 1.12 0.0064 17.82 0.70 14.3
EXP112 1.28 0.14 0.0064 7.28 0.20 14.2
EXP14 1.96 1.09 0.0064 14.67 0.59 104.2
EXP16 1.85 1.12 0.0064 16.99 0.63 124.1
EXP17 1.82 1.13 0.0064 17.94 0.64 131.3
EXP017 1.85 0.96 0.0048 14.29 0.44 86.9
EXP018 1.82 0.99 0.0048 16.66 0.49 99.8
EXP210 1.90 0.78 0.0032 11.31 0.45 85.0
EXP211 1.82 0.79 0.0032 12.48 0.48 97.6
EXP212 1.73 0.81 0.0032 14.53 0.51 116.1
EXP213 1.68 0.82 0.0032 16.07 0.53 130.1
EXP007 1.97 0.55 0.0016 7.74 0.28 48.2
EXP008 1.83 0.56 0.0016 8.99 0.30 60.0
EXP009 1.77 0.57 0.0016 9.87 0.24 52.1

Table 1. Main experimental parameters.
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profiles and strong velocity gradients at the transition between the main channel and
the floodplains, leading to a strong shearing in the transition, associated with intense
macrovortices. At the wall boundary layers, only a weak shear occurs and almost
no macrovortices are generated. ‘Intermediate flows’ (2 < rh < 3) are characterized by
non-monotonic velocity profiles with a dip over the transition. According to Nezu
et al. (1999), such an effect is the signature of counter-rotating macrovortices at the
transition. The depth increase leads to a growth of the wall boundary-layer thickness,
and macrovortices are also generated, by wall-adherence-induced shearing, over the
floodplain close to the walls. ‘Deep flows’ (rh < 2) are characterized by a very weak
shear in the transition region. The wall boundary layer increases in size and more
and stronger macrovortices are generated over the floodplains, while the influence of
the topography is much weaker.

3. Fundamentals of mixing
The most natural framework for analysing mixing processes is the Lagrangian (or

material) viewpoint, which studies what happens to material particles during the flow
motion. Given an Eulerian velocity field, it is possible to obtain trajectories of material
particles by integrating the following equation:

dx∗(t∗)

dt∗ = u∗(x∗, t∗), (3.1)

where x∗(t∗) is the particle position at time t∗ and u∗(x∗, t∗) is the Eulerian velocity
at point x∗ and time t∗. We calculated particle trajectories using a fourth-order
Runge–Kutta algorithm with adaptive step size, which has a local accuracy of order
(�t∗)4, where �t∗ is the integration time step. In more detail, for each flow field, we
inseminated the experimental flow with approximately O(104) ‘numerical particles’
(massless) on a regular grid (of constant size �x∗ and �y∗) and, subsequently,
evaluated the tracers’ trajectories by integrating (3.1) in time with the above
Runge–Kutta algorithm employing a bi-cubic spatial interpolation and a polynomial
time interpolation of the experimental Eulerian fields. This approach, namely to
calculate numerically the particle trajectories starting from measured Eulerian fields,
is commonly adopted in mixing studies (Lekien et al. 2005).

To test whether the particle trajectories reach quasi-stationary condi-
tions, we have computed the mean Lagrangian kinetic energy E∗

L(t∗) =
(1/2)〈u∗′

L (x∗, y∗, t∗)2 + v∗′
L (x∗, y∗, t∗)2〉, where u∗′

L and v∗′
L are the Lagrangian velocity

fluctuations and the angle brackets indicate average over the total number of
particles. The Lagrangian kinetic energy together with its Eulerian (E∗

E) counterpart is
illustrated for sample shallow and deep flow conditions in figure 3. From an inspection
of figure 3 it is clear that E∗

L and E∗
E attain very close values, which are also almost

constant over the entire duration of the experiments, and residual fluctuations are
due to low-frequency turbulent events.

Of the different Eulerian techniques used to characterize dispersion phenomena,
we have tested the Okubo–Weiss criterion (Okubo 1970; Weiss 1991) and its
generalization to time-dependent flows (Hua & Kline 1998). These criteria enable
both the partitioning of the flow into regions with different dynamical properties
and the characterization of flows with a complex topology. By quantifying the local
rate of separation of initially close trajectories, an attempt is also made to relate
the nature of the stirring processes to the local topology of the flow. For steady
flows, characterized by velocity gradients which are also slowly varying in space, the
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Figure 3. Eulerian and Lagrangian kinetic energy (respectively E∗
E and E∗

L) for (a, c) shallow
flows (EXP101 and EXP201, respectively) and (b, d ) deep flows (EXP213 and EXP112,
respectively).

Okubo–Weiss criterion makes use of the eigenvalue of the local velocity gradient

tensor D∗. The tensor D∗ is such that, for incompressible fluid, D∗2
= λ∗

0I, where
λ∗

0 = −det(D∗) is the product of the eigenvalue of the velocity gradient tensor. The
Okubo–Weiss criterion consists of the evaluation of λ∗

0, which can also be written as
(Weiss 1991)

λ∗
0 = 1

4
(S∗2 − ω∗2), (3.2)

where S∗2 = S∗2
n + S∗2

s is the total square strain, sum of the normal (S∗
n) and shear (S∗

s )
components, and ω∗2 is the square vorticity, which in an (x∗, y∗), 2D flow has only the
out-of-plane component ω∗2

z . Depending on the sign of λ∗
0, the flow has different local

properties. The largest dispersion occurs in flow regions where λ∗
0 > 0, where the flow

can be taken as locally hyperbolic (strain overcomes rotation); on the other hand,
where λ∗

0 < 0, the flow is dominated by rotation, and it is assumed as locally elliptical.
Hyperbolic regions, which act as fluid jets, are characterized by a local exponential
divergence of nearby particles; on the contrary, elliptical regions are characterized by
an approximately constant distance between adjacent particles.

For time-dependent flows, Hua & Kline (1998) proposed an extension of the
Okubo–Weiss criterion that requires the computation of the eigenvalues of the local
acceleration tensor, which can be written as N∗ = λ∗

0I + dD∗/dt∗. The Hua–Kline
criterion is, then, based on the sign of the largest eigenvalue of N∗, namely λ∗

+ = λ∗
0+λ∗

1,
where

λ∗
1 =

√(
∂S∗

∂t∗

)2

−
(

∂ω∗

∂t∗

)2

. (3.3)
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Both the above criteria provide a description of the flow in terms of stable elliptical
regions and unstable hyperbolic regions, but the latter is closer to a pure Lagrangian
point of view (Boffetta et al. 2001). Note that neither the Okubo–Weiss eigenvalue
nor the Hua–Kline eigenvalue identifies Lagrangian material structures, since they
are strictly valid only locally. The identification of the Lagrangian coherent structures
(Wiggins 2005) is beyond the scope of the present work. We simply use λ∗

0 and
λ∗

+ to describe qualitatively the dynamics of different flow regions (e.g. vortices and
high-strain regions).

Lagrangian measures of mixing can be used as based on either single-particle or
multiple-particle statistics. In the following, a brief description of these statistics will
be provided.

3.1. Single-particle statistics

Once the particle trajectories are known, the absolute dispersion tensor, A∗(2), can be
found (see Provenzale 1999, among others)

A
∗(2)
ij (t∗, t∗

0 ) =
1

M

M∑
m=1

{[
x∗m

i (t∗) − x∗m
i (t∗

0 )
][

x∗m
j (t∗) − x∗m

j (t∗
0 )

]}
, (3.4)

where M is the total number of particles, x∗m(t∗) is the position of the mth particle
at time t∗ and x∗m(t∗

0 ) is its initial position (at time t∗
0 ). If the flow is isotropic, A∗(2) is

a multiple of the identity matrix. The mean-square displacement is given by the trace
of A∗(2), defined as total absolute dispersion, which reads

a∗2 = Tr
(
A∗(2)

)
. (3.5)

However, in the most general non-isotropic case, the average square displacements
along the x∗- and y∗-directions may be different owing to flow anisotropy. The
time derivatives of absolute dispersion, defined as absolute K∗(1) diffusivity, can be
written as

K∗(1) =
1

2

d

dt∗

[
Tr

(
A∗(2)

)]
. (3.6)

The absolute diffusivity coefficient measures the average rate of spreading of the
particles in the domain.

The time dependence of the diffusivity coefficients enables us to clearly identify
different dispersion regimes (Provenzale 1999; Boffetta et al. 2001): in a wide variety of
applications, the absolute dispersion obeys power laws of the type a∗2(t∗, t∗

0 ) ∼ t∗γ and,
therefore, the absolute diffusivity can be described as K∗(1) ∼ t∗γ −1. The fundamental
results obtained by Taylor (1921) in the case of homogeneous turbulence show that, for
short times after particles’ deployment, an exponent γ =2 can be expected, describing
the so-called ballistic regime. For times longer than an integral time scale T ∗

L , defined
as the decorrelation time, the exponent should be γ = 1, the so-called diffusive or
Brownian regime. The Lagrangian time scale T ∗

L is evaluated as the integral of the
normalized velocity autocorrelation R(τ ):

T ∗
L =

∫ ∞

0

R(τ ∗) dτ ∗. (3.7)

For intermediate times, a variety of scalings have been found, depending on the
specific flow under investigation. The asymptotic Taylor regimes have been extended
by Babiano et al. (1987), who showed that the exponent of the time power laws of the
absolute dispersion depends on the slope of the Lagrangian energy spectrum in the
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frequency domain (L∗(σ ∗)). In addition, they have proved that the Brownian regime is
independent of the restrictive hypothesis of flow homogeneity. This result is supported
by Lagrangian data derived from inhomogeneous oceanic and atmospheric velocity
fields; see Elhmäıdi, Provenzale & Babiano (1993) and references cited therein. It
is easy to show that the absolute diffusivity K∗(1) can be expressed in terms of the
normalized velocity autocorrelation R(τ ∗) (see LaCasce 2008, among others):

K∗(1) = ν∗2

∫ ∞

0

R(τ ∗) dτ ∗ = ν∗2T ∗
L . (3.8)

The diffusivity is, thus, the product of the velocity variance (ν∗2) and the Lagrangian
time scale. If we now write the Lagrangian frequency spectrum L∗(σ ∗) by using the
Fourier transform of the velocity autocorrelation as

L∗(σ ∗) = 2ν∗2

∫ ∞

0

R(τ ∗) cos(2πσ ∗τ ∗) dτ ∗, (3.9)

we find that for σ ∗ = 0, the spectrum is proportional to the absolute diffusivity:

L∗(0) = 2ν∗2

∫ ∞

0

R(τ ∗) dτ ∗ = 2ν∗2T ∗
L = 2K∗(1). (3.10)

The latter result implies that the absolute diffusivity is determined by the lowest-
frequency motion, e.g. by the mean flow (Davis 1982). Indeed, a constant mean causes
the absolute dispersion to increase quadratically in time, and thus the diffusivity to
increase linearly in time. In the case of compound channel flows, a mean motion
does exist in the streamwise direction and it is non-homogeneous over the cross-
section. The mean streamwise velocity assumes a bell-like distribution as shown in
Stocchino & Brocchini (2010) and its shape depends strongly on the flow depth ratio
rh. It is, therefore, necessary to remove the mean flow prior to evaluating the absolute
statistics. This issue has also been rigorously studied by Davis in connection with
ocean dynamics (Davis 1982, 1983). The general idea is to subtract the ensemble-
averaged Eulerian velocity from the actual velocity, while retaining where necessary,
the spatial dependence of the average. For a 2D flow evolving in the (x∗, y∗)-plane,
the residual velocity field reads as

u∗′
(x∗, y∗, t∗) = u∗(x∗, y∗, t∗) − U∗(x∗, y∗), (3.11)

where U∗(x∗, y∗) indicates the velocity averaged over the duration of the single
realization. This method is adequate to handle flows that are inhomogeneous, like in
the present case or in oceanographic applications, while the classical results of Taylor
were obtained assuming U∗(x∗, y∗) = 0, i.e. for homogeneous flows. The absolute
statistics are then derived from the residual velocities.

3.2. Multiple-particles statistics

The relative dispersion can be defined as the mean-square distance at time t∗ between
a pair of particles that at time t∗

0 have a distance equal to d∗
0 , and is formulated as

R
∗(2)
ij (t∗, t∗

0 , d
∗
0 ) =

1

M − 1

M−1∑
m=1

{[
x∗m

i (t∗) − x∗m+1
i (t∗)

][
x∗m

j (t∗) − x∗m+1
j (t∗)

]}
, (3.12)

where (M − 1) is the number of particle pairs. In analogy with the absolute statistics,
a total relative dispersion, mean-square relative displacement between pairs, can be
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defined as the trace of the matrix given by (3.12):

r∗2 = Tr
(
R∗(2)

)
. (3.13)

The time derivative of relative dispersion, defined as the relative diffusivity K∗(2),
can be written as

K∗(2) =
1

2

d

dt∗

[
Tr

(
R∗(2)

)]
. (3.14)

Classical studies on 2D turbulence (Kraichnan 1966; Lin 1972; Bennett 1984;
Babiano et al. 1990) demonstrate that the two distinct cascading regimes (inverse
energy cascade and direct enstrophy cascade) can be characterized in terms of relative
diffusivity: K (2) ∝ r4/3 in the energy cascade and K (2) ∝ r2 in the enstrophy cascade.
The former relationship (the ‘Richardson–Obukhov law’) derives from a cubic growth
with time of the mean-squared relative displacement r2, while the latter Kraichnan–
Lin law corresponds to an exponential growth in time of r2. Bennett (1984) showed
that the dependence of the diffusivity on separation directly reflects the slope of
the energy spectrum in the wavenumber space E(k) ∝ k−α , linking the inverse energy
cascade (α = 5/3) to a growth of relative diffusivity proportional to r4/3 and the
enstrophy cascade (α = 3) to a growth proportional to r2.

As pointed out by Er-El & Peskin (1981), the two-particle diffusion in 2D turbulence
can be controlled by two distinct dynamical mechanisms leading to two different
regimes known as ‘local dispersion’ and ‘non-local dispersion’. In local dynamics, the
relative dispersion is controlled by a local straining mechanism which is not really
effective in causing further separation of the particles, while in the case of non-local
dynamics particles are subjected to very strong shear produced by the large-scale
structures. Both dispersion regimes can be identified on the basis of the value of
the energy spectrum slope α (Bennett 1984). The local dynamics is characterized by
1 < α < 3 and the dispersion of pairs is dominated by eddies of the same scale of their
separation. Hence, the corresponding diffusivity scales as

K (2) ≡ 1

2

d

dt
r2 ∝ r (α+1)/2. (3.15)

Non-local dynamics, otherwise, is characterized by values of α larger than 3 (steeper
spectra).

Valuable additional information on the dispersion regimes can be obtained from the
analysis of the p.d.f.s of the separations of pairs of particles. The p.d.f., a normalized
histogram, of displacements is crucial for the estimate of the flow and mixing regimes
because all moments are derived from it: the spread about the centre of mass
can be measured by the variance of the displacements, i.e. using the second-order
moment (LaCasce 2008). Usually, the dispersion measures the width of the p.d.f. but
it does not give any information on the shape of the distribution. To get a more
detailed description of the p.d.f.s, it is necessary to evaluate higher-order moments; in
particular the fourth-order moment, the kurtosis ku, provides important insight into
the shape of the distribution. Particles undergoing a random walk lead to a Gaussian
p.d.f., characterized by a kurtosis ku of 3. More often, a coherent advection produces
p.d.f.s which are not Gaussian and characterized by larger values of the kurtosis. As
suggested by Er-El & Peskin (1981), Bennett (1984) and LaCasce (2008), under local
dispersion the separation kurtosis is constant in time, while for non-local dynamics it
grows exponentially.

Finally, a potential difficulty in the use of the relative dispersion as a suitable
measure concerns the methods of averaging distances at fixed times. If the dispersion
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is dominated by flow structures with size comparable with the particles’ separation,
averaging pairs with different separations may blur the dependences. The FSLEs,
consisting of averages of times at fixed distances, provide a useful alternative approach.
In comparison with the relative diffusivity, the FSLE has the additional advantage
of being an integral quantity rather than a derivative, and generally, it tends to be
smoother than the diffusivity and less sensitive to random errors, which always affect
experimental measurements. To calculate the FSLE, it is necessary to first choose a
set of distances that increase recursively,

r∗
n = αr∗

n−1 = αnr∗
0 , (3.16)

where α is an arbitrary constant larger than unity, and then calculate the times required
(known as ‘exit time’ T ∗

n ) for each pair displacement to grow to the successive r∗
n . The

estimate for the maximum Lyapunov exponent varies with distance and reads as

λ∗
s (n) =

1

log(α)

〈
1

T ∗
n

〉
. (3.17)

If the dispersion has a power-law dependence with time, like for local dispersion,
the FSLEs exhibit a power-law dependence on the separation. In particular, as the
dispersion is proportional to a power of time as (r2 ∝ tγ ), the FSLEs, being mean
inverse times, scale like λS ∝ r−2/γ . Generally, results obtained by means of the FSLE
should recall those obtained by means of the relative diffusivity.

4. Results of the mixing processes
4.1. Experimental observations of Eulerian flow fields

We first analyse the measured two-dimensional Eulerian velocity fields with the aim
of distinguishing regions with different dynamical properties, using the value and,
more importantly, the sign of the eigenvalue λ∗

+, as suggested by Hua & Kline (1998).
An example of the computed values of λ∗

+ is shown in figure 4(a–c) in the case of
shallow flow, intermediate flow and deep flow conditions, respectively. Similar results
have been obtained using the Okubo–Weiss criterion based on the evaluation of the
eigenvalue λ∗

0: the unsteady eigenvalue λ∗
1 has been found to be always at least one

order of magnitude smaller than λ∗
0. This suggests, as expected, that the flow under

investigation is slowly varying in time.
In the case of shallow conditions, the flow fields are dominated by large-

scale 2D coherent structures identified by large patches of negative λ∗
+, with

a surrounding turbulent field characterized mainly by a low-intensity, positive
eigenvalue. Among nearby vortical structures, intense hyperbolic regions are clearly
visible. The macrovortices are observed at the transition region (indicated by the
dash-dotted white lines in figure 4) where the flow depth jump is localized. The vortex
generation mechanism was discussed in detail by Soldini et al. (2004). Fundamental
results of the study are that the size of the macrovortices scales with the downstream
distance over which velocity fronts cross the depth jump and that the intensity of the
macrovortices depends on the depth jump itself. In their recent experimental work,
Stocchino & Brocchini (2010) observed that the size of the macrovortices scales well
with that of the transition region and that these coherent structures remain confined
within the transition regions while they are convected downstream by the mean flow.
The quasi-2D macrovortices behave as organized domains with a distinct dynamical
role. On the contrary, for lower values of the flow depth ratio rh, corresponding to
intermediate flow conditions, the Hua–Kline eigenvalue is more randomly distributed
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Figure 4. Examples of 2D maps of the positive Hua–Kline eigenvalue λ∗
+: (a) shallow flow

conditions (EXP201, rh =4.16, Fr = 0.60), (b) intermediate flow conditions (EXP205, rh = 2.04,
Fr = 0.76) and (c) deep flow conditions (EXP112, rh = 1.28, Fr = 0.142). The dotted white lines
indicate the transition regions of the compound channel. For the deep flow, the contour range
has been reduced.

in the domain and fewer macrovortices can be recognized, located either in the
transition regions or in the floodplains. The background turbulent field is, in this
case, characterized by a distribution of λ∗

+ oscillating between moderate positive and
negative values. Decreasing further rh, i.e. moving to deeper flow conditions, the
distribution of the Hua–Kline eigenvalue is even more uniform and less intense than
in the previous case (the range of the contour levels has been reduced to improve the



180 A. Stocchino, G. Besio, S. Angiolani and M. Brocchini

–0.2

 0

 0.2

 0.4

 0.6

 0.8

1.0

 1.2

0 5  10  15  20  25  30

A
ut

oc
or

re
la

ti
on

Time (s) Time (s)

(a)

–0.2

 0

 0.2

 0.4

 0.6

 0.8

1.0

 1.2(b)
Ruu
Rvv

Ruu
Rvv

 0  5  10  15  20  25  30  35  40  45

Figure 5. Autocorrelation for (a) shallow flows (EXP201) and (b) deep flows (EXP112).

plot quality). The non-organized background turbulence occupies most of the flow
domain and dominates the dynamics.

4.2. Absolute statistics

We start the study of the Lagrangian mixing with the analysis of single-particle
or absolute statistics evaluated from the numerical trajectories, see (3.4) and (3.6),
respectively.

We have first evaluated the Lagrangian integral time scales T ∗
uL and T ∗

vL, using
the procedures described in Guala et al. (2007) and Luo et al. (2007), for each
experiment and for both the Lagrangian residual components u∗′

L and v∗′
L . Therefore,

the normalized Lagrangian autocorrelation of the ith velocity component has been
computed using the following estimator:

Rii(τ
∗) =

1

M

∑
M

ρ∗
Lii

(τ ∗)

[Var(u∗′
Li)Var(u∗′

Li)]
1/2

, (4.1)

where ρ∗
Lii

(τ ∗) is the covariance of the velocity component along the ith direction,
which is defined as

ρ∗
Lii

(τ ∗) = 〈u∗′
Li(t

∗)u∗′
Li(t

∗ + τ ∗)〉. (4.2)

Here, the angle brackets indicate an average over the entire duration of each trajectory,
whereas the covariance is averaged over the set of the N trajectories appearing in
(4.1). The covariance is then normalized with the variance of the velocity component
Var(u∗′

Li).
Typical examples of the normalized Lagrangian autocorrelation function for the

streamwise Ruu(τ
∗) and spanwise Rvv(τ

∗) directions are shown in figure 5 for one
sample shallow flow and one sample deep flow. Clearly, the spanwise autocorrelation
decays more rapidly than the streamwise autocorrelation, leading to a much smaller
Lagrangian integral scale, thus highlighting the fact that quasi-uniform flows in
compound channels are fundamentally unidirectional. Moreover, the results of the
cross-stream correlation for the shallow flow show a clear initial dip, indicating the
presence of trapping vortices, while the results for the deep flow condition display
a correlation with a lower energy and a noisy shape. Such a result suggests that
shallow flows are dominated by macrovortices, while deep flows are mainly shear-
dominated flows. Starting from the Lagrangian time integral scales, the corresponding
spatial integral scales (L∗

uL, L∗
vL) can be easily computed. The computed values of

the Lagrangian time scales for all the experiments are listed in table 2, together
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Figure 6. (a) Absolute dispersion and (b) absolute diffusivity. EXP201: Fr = 0.6, rh = 4.16;
EXP205: Fr = 0.69, rh = 5.57; EXP112: Fr =0.14, rh = 1.28.

with values of the Eulerian integral scales (T ∗
uE , T ∗

vE), which have been calculated as
the time integrals of the normalized Eulerian autocorrelation functions (the Eulerian
integral scales are always greater than the Lagrangian scales).

In the following, the results are given in dimensionless form (unstarred variables)
using the quantities defined above (T ∗

uL, L∗
uL) together with the time-averaged

Lagrangian kinetic energy E∗
L to make dimensionless the absolute dispersion and

diffusivity.
The dimensionless absolute dispersion a2 is a function of time as shown by the

sample cases (shallow flow of EXP201, intermediate flow of EXP205 and deep
flow of EXP112) illustrated in figure 6(a). The first significant difference between
the flow regimes is that a2 shows a non-monotonic behaviour in the shallow flow
conditions (see range 0.2 � t∗/T ∗

uL � 2), whereas it monotonically increases with time
in the deep flow experiment. A similar behaviour has been described in Elhmäıdi
et al. (1993), where the single-particle dispersion has been studied by purely 2D
numerical simulations characterized by few long-lived, large-scale vortices immersed
in an almost homogeneous turbulent background. In that case, the authors justified
the non-monotonic trend of a2 by the influence of the macrovortices on the flow
mixing. In particular, they analysed two different initial conditions: (i) a uniform
seeding over the entire domain and (ii) a seeding localized in the vicinity of an
isolated vortex. The latter initial condition led to the non-monotonic behaviour,
whereas the dispersion observed in the case of uniform seeding was mainly forced by
the background turbulence rather than by the macrovortices, which occupied a small
portion of the entire domain.

It is interesting to note that for the shallow flows, the absolute dispersion is
a non-monotonic function of time even if we seeded the domain with an initial
homogeneous distribution of particles. This suggests that for the present class of
flows, the dominant dynamical features are the transitional macrovortices, which
control the overall dispersive process. On the contrary, such vortical structures are
almost absent in the case of deep flows with a consequent smoother dispersive process.
If we now analyse in detail the results shown in figure 6, the single-particle dispersion
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Experiment rh Fr E∗
L T ∗

uL T ∗
vL L∗

uL L∗
vL E∗

E T ∗
uE T ∗

vE TT

(−) (−) (m2 s−2) (s) (s) (m) (m) (m2 s−2) (s) (s) (−)

Shallow flows
EXP101 3.69 0.88 0.001126 4.0206 0.4421 0.1349 0.0148 0.001427 4.1507 0.4904 0.0950
EXP102 3.23 0.91 0.001364 3.8013 0.3188 0.1404 0.0118 0.001699 3.9274 0.4190 0.1090
EXP04 3.69 0.87 0.001316 1.2488 0.1684 0.0453 0.0061 0.001414 4.1766 0.2690 0.2908
EXP06.1 3.10 0.92 0.001241 1.2396 0.1465 0.0437 0.0052 0.001401 4.0331 0.1585 0.3257
EXP010 4.42 0.73 0.000943 1.2340 0.2160 0.0379 0.0066 0.001019 4.3962 0.6238 0.2767
EXP011 3.50 0.77 0.001438 0.8759 0.1901 0.0332 0.0072 0.001656 4.0856 0.3379 0.3910
EXP012 3.40 0.80 0.001264 1.3119 0.1995 0.0466 0.0071 0.002280 4.0648 0.4022 0.2113
EXP201 4.16 0.60 0.000399 3.4787 0.3684 0.0694 0.0074 0.000504 11.0929 1.4211 0.1737
EXP202 3.60 0.62 0.000409 3.1638 0.3600 0.0640 0.0073 0.000549 10.8788 1.3098 0.2005
EXP203 3.36 0.64 0.000440 3.3460 0.4185 0.0702 0.0088 0.000529 10.8231 1.1654 0.1948
EXP204 3.08 0.65 0.000458 3.1524 0.4492 0.0675 0.0096 0.000584 10.5168 1.2757 0.2163
EXP001 3.69 0.44 0.000202 1.5931 0.7407 0.0226 0.0105 0.000241 8.2112 0.9079 0.6346
EXP002 3.43 0.46 0.000091 2.0198 0.9157 0.0192 0.0087 0.000079 9.1400 1.8571 0.4587
EXP003 3.05 0.47 0.000090 2.8517 0.7300 0.0271 0.0069 0.000076 9.0556 1.3710 0.3272

Intermediate flows
EXP103 2.62 0.97 0.000505 4.3555 0.5117 0.0979 0.0115 0.000598 4.4370 0.5327 0.0944
EXP104 2.29 1.03 0.000435 4.2171 0.8945 0.0880 0.0187 0.000533 4.2865 0.7623 0.1082
EXP105 2.15 1.05 0.000504 4.0335 0.8769 0.0906 0.0197 0.000621 4.1102 0.5530 0.1186
EXP106 2.07 1.07 0.000631 3.0521 0.6168 0.0767 0.0155 0.000757 3.1571 0.4383 0.1418
EXP107 2.03 1.07 0.000624 2.9748 0.6405 0.0743 0.0160 0.000761 3.1010 0.4217 0.1487
EXP06.6 2.92 0.94 0.000975 1.4206 0.1014 0.0444 0.0032 0.001045 4.1898 0.1399 0.2883
EXP07 2.71 0.96 0.000627 1.8842 0.1332 0.0472 0.0033 0.000639 4.4087 0.1899 0.2146
EXP10 2.32 1.02 0.000481 1.7625 0.3171 0.0386 0.0070 0.000968 4.3356 0.5746 0.2590
EXP12 2.11 1.06 0.000496 1.6093 0.4772 0.0358 0.0106 0.000619 3.2908 0.3588 0.2628
EXP13 2.02 1.07 0.000668 1.5634 0.5063 0.0404 0.0131 0.001302 3.0648 0.3298 0.2606
EXP013 2.36 0.84 0.000347 2.4633 0.2385 0.0459 0.0044 0.000436 4.5913 1.0029 0.1506
EXP014 2.30 0.87 0.000409 1.6821 0.2518 0.0340 0.0051 0.000417 3.0060 0.6953 0.2161
EXP015 2.10 0.92 0.000727 1.3271 0.2075 0.0358 0.0056 0.000738 2.6511 0.6265 0.2850

Table 2. Relevant Lagrangian and Eulerian integral quantities of the whole set of experiments.
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Experiment rh Fr E∗
L T ∗

uL T ∗
vL L∗

uL L∗
vL E∗

E T ∗
uE T ∗

vE TT

(−) (−) (m2 s−2) (s) (s) (m) (m) (m2 s−2) (s) (s) (−)

EXP205 2.57 0.69 0.000367 3.6030 0.3118 0.0691 0.0060 0.000417 10.8472 1.3190 0.1949
EXP206 2.40 0.71 0.000321 3.0163 0.2016 0.0541 0.0036 0.000377 5.6998 0.9195 0.2230
EXP207 2.26 0.73 0.000326 2.6958 0.2093 0.0487 0.0038 0.000392 4.2514 0.6814 0.2433
EXP208 2.16 0.74 0.000340 2.6557 0.2684 0.0489 0.0049 0.000399 4.1548 0.5984 0.2496
EXP209 2.04 0.76 0.000361 2.5942 0.1990 0.0493 0.0038 0.000437 4.1062 0.6083 0.2552
EXP004 2.61 0.50 0.000112 2.4703 0.3950 0.0261 0.0042 0.000099 4.3513 0.2518 0.3325
EXP005 2.40 0.51 0.000106 2.3586 0.2538 0.0242 0.0026 0.000091 4.1502 0.3021 0.3387
EXP006 2.20 0.53 0.000119 2.0601 0.2515 0.0225 0.0027 0.000117 3.7111 0.2777 0.3995

Deep flows
EXP108 1.95 1.09 0.000742 2.8216 0.5657 0.0769 0.0154 0.000900 2.9520 0.3239 0.1591
EXP109 1.86 1.11 0.000764 2.5225 0.5872 0.0697 0.0162 0.000957 2.7497 0.2755 0.1759
EXP110 1.82 1.12 0.000818 2.4143 0.4879 0.0691 0.0140 0.001028 2.6479 0.2394 0.1848
EXP112 1.28 0.14 0.000128 8.0753 0.3181 0.0913 0.0036 0.000179 12.5836 0.7280 0.1220
EXP14 1.96 1.09 0.000695 1.4211 0.4231 0.0375 0.0112 0.000793 3.0008 0.2512 0.3005
EXP16 1.85 1.15 0.000912 1.4239 0.4231 0.0430 0.0128 0.002154 2.6424 0.2549 0.2644
EXP17 1.82 1.13 0.000783 1.2175 0.5089 0.0341 0.0142 0.000931 2.6143 0.2634 0.3558
EXP017 1.85 0.96 0.001136 1.0174 0.1556 0.0343 0.0052 0.001226 2.4007 0.3511 0.3331
EXP018 1.82 0.99 0.001548 1.0888 0.1254 0.0428 0.0049 0.001954 2.2659 0.3117 0.3155
EXP210 1.89 0.78 0.000471 2.5864 0.2111 0.0561 0.0046 0.000568 3.8975 0.5730 0.2534
EXP211 1.83 0.79 0.000510 2.6535 0.1903 0.0599 0.0043 0.000606 3.8099 0.3809 0.2451
EXP212 1.73 0.81 0.000599 2.5977 0.2091 0.0636 0.0051 0.000716 3.6902 0.4447 0.2454
EXP213 1.68 0.82 0.000679 2.4911 0.2051 0.0649 0.0053 0.000828 3.5203 0.2990 0.2555
EXP007 1.97 0.55 0.000172 1.9276 0.1437 0.0253 0.0019 0.000172 3.6659 0.2271 0.3799
EXP008 1.83 0.56 0.000263 1.5502 0.0985 0.0251 0.0016 0.000406 3.0661 0.1658 0.4369
EXP009 1.77 0.57 0.000319 1.7301 0.1325 0.0309 0.0024 0.000801 2.6982 0.1471 0.2556

Table 2. Continued.
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of EXP201 is seen to be characterized by different regimes. An initial ballistic regime
is observed until a2 reaches a local maximum at a value that is related to the typical
size of the macrovortices: for the specific case shown, a2 � 0.2 corresponds to a length
of about

√
a2 = 0.45. This compares fairly well with the dimensionless transition

region (Li = W ∗
tr/L

∗
uL = 0.36) which, recalling the studies of Soldini et al. (2004) and

Stocchino & Brocchini (2010) summarized at the beginning of § 4, provides a suitable
scale for the macrovortices. In view of this and of some results which follow, we
regard this scale as the ‘injection scale’ Li = Wtr for the turbulence energy. Moreover,
the time for which the local maximum of the absolute dispersion occurs is of the
same order of magnitude as the vortex turnover time (∼3TT ), defined as TT = 1/

√
2Z2,

where Z2 is the total enstrophy (calculated as the ensemble-averaged square vorticity,
Z2 = 〈||ω||2〉/2). In table 2, the values of the dimensionless turnover time are reported
for all the experiments, where the turnover time has been made dimensionless with
the Lagrangian integral time scale. It is possible to evaluate a dimensionless turnover
length scale (LT ) associated with TT . A simple inspection of the available data shows
that 1.5 � Li/LT � 3.5. The absolute dispersion attains such a local maximum as
soon as the particles trapped in coherent vortical structures undergo almost regular
oscillation on a length scale comparable with the vortex diameter.

For longer times, particles are influenced by the straining regions that surround
the large-scale structures and the absolute dispersion increases with time following a
power law with an exponent closer to 5/4, as also described in Elhmäıdi et al. (1993).
Finally, after such an intermediate regime, a2 grows with t following a dependence
which resembles that of a Brownian regime (a2 ∝ t). At this stage, the influence of the
macrovortices is less vigorous and the background turbulence dominates the mixing.

Decreasing the flow depth ratio rh, as shown by Stocchino & Brocchini (2010), the
intermediate flows are characterized by the simultaneous generation of macrovortices
both at the transition region and at the sidewalls. In this case, transitional
macrovortices still strongly influence the growth of the absolute dispersion a2, leading
to a close similarity with the shallow flows as shown in figure 6 (EXP205).

Decreasing further rh, we reach the deep flows. In this case, the behaviour of the
single-particle dispersion is mainly monotonic with no evidence of oscillations in
the intermediate regime, as observed for the shallow and intermediate flows. The
Brownian regime is clearly attained after a time of about (1.3–1.5)T ∗

uL, especially in
the case of EXP112, characterized by very deep conditions (rh = 1.2). The absence of
transitional coherent vortices in deep flows leads to a more regular transition from
the initial ballistic regime towards a fully developed Brownian regime.

Given the behaviour of the absolute dispersion shown in figure 6(a), the
corresponding absolute diffusivity K (1), i.e. the time derivative of a2, shown in
figure 6(b) is, not surprisingly, rather irregular except for the initial ballistic regimes.
This is a direct consequence of the non-monotonic behaviour of a2. However, for
large times the absolute diffusivity seems to oscillate with an almost-constant upper
bound, resembling what would occur in the case of an equilibrium regime.

Finally, we have evaluated the anisotropy of the absolute statistics by computing
separately A(2)

x , A(2)
y , K (1)

x and K (1)
y , which are respectively the contributions to the

total absolute dispersion and diffusivity in the x- and y-directions (see figure 7). In
the case of shallow flows (EXP201, figure 7a,b), the dispersions in the streamwise
and spanwise directions are fairly close, indicating a weak anisotropy. In this class of
flows, dominated by large-scale vortices, the contribution of the coherent structures
produces an intense dispersion in both directions, especially for long times. On the
contrary, the few macrovortices that characterize the deep flows (EXP112, figure 7c, d )
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Figure 7. Plots of A
(2)
x , A

(2)
y ,K

(1)
x and K

(1)
y for the shallow flow of EXP201

(a, b) and the deep flow EXP112 (c, d ).

are unable to trigger significant mixing processes in the transverse direction (y), leading
to a stronger anisotropy with a difference of approximately one order of magnitude.

4.3. Multiple-particle statistics

Further information on the mixing processes can be gained by analysing multiple-
particles statistics in terms of relative quantities, p.d.f.s of the particles separations
and FSLEs. In the following, we discuss these quantities for the three flow classes
separately. From such an analysis, different scenarios, depending on the value of rh

and Fr , arise.

4.3.1. Shallow flows

The behaviour of the relative diffusivity K (2) versus the initial separation r = r∗/L∗
uL

is shown in figure 8; as postulated by Bennett (1984), relative diffusivity follows
a power law of the type K (2) ∝ rβ . Note that the computation of the relative
diffusivity is performed by time differentiating the squared separation r2(t), which has
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Figure 8. Relative diffusivity as a function of the dimensionless separation r for shallow
flow conditions (rh > 3): (a) EXP101 and (b) EXP201.

small-amplitude high-frequency oscillations. Therefore, the time derivative becomes a
rather noisy signal. However, the trend of the envelope of the relative diffusivities for
different initial separations allows an identification of power law in r(t).

In the case of shallow flow conditions, the results suggest that the growth of the
relative diffusivity follows two distinct power laws depending on the scale of the
separation, namely for small separation K (2) ∝ r1.8–2.0 and large separation K (2) ∝ r1.5.
The change of the growth regime seems to occur for distances smaller than the
spatial integral scale (L∗

uL, i.e. r = 1), suggesting the existence of another length scale
that plays a significant role in the mixing dynamics. More precisely, the regime with
exponent 1.8–2.0, which we regard as the first indication of a direct enstrophy cascade,
persists as long as the particle separations remain below the values of 0.2 for EXP101
and 0.4 for EXP201 (see figure 8). These approximately correspond to the turbulence
‘injection length scale’ Li that has already been highlighted to be the typical scale of
generation of vorticity (hence turbulence) in a compound channel flow (Stocchino &
Brocchini 2010). Note that, typically, it is 0.2L∗

uL � L∗
i � L∗

uL. We postulate that for
r < Li , K (2) increases as would occur for a direct enstrophy cascade regime while for
Li < r < 1, K (2) increases at a lower rate (1.5) which we postulate to be compatible
with an inverse energy cascade process (classical rate of 4/3).

In more detail, particle pairs initially separated by a distance smaller than Li will
experience both growth regimes, i.e. exponential in time (K (2) ∝ r2) for r <Li and
cubic in time (K (2) ∝ r1.5) for r >Li , whereas particle pairs with initial separation
greater than Li will grow cubically in time up to the largest scales of the flow.

An inverse energy cascade is the result of a specific dynamics of coherent vortical
structures that undergo vortex merging, transferring in this way energy from the
smaller to the larger scale. Indeed, vortex merging has been observed during the
experiments run with shallow flow conditions, as shown in figure 9, where contours of
the Okubo–Weiss eigenvalue of consecutive flow fields are displayed. Being aware that
the detailed merging mechanism is still an open issue, which is beyond the scope of the
present study, λ0 has been used only for the purpose of helping the identification of the
merging of the vortices. For convenience, we have plotted only the negative contours of
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Figure 9. Contours of the Okubo–Weiss eigenvalue λ0 showing vortex merging in the case
of a shallow flow (EXP201, rh =4.16, Fr = 0.60). Merging events are highlighted by ellipses
and occur around (x, y) = (1, −1) and (x, y) = (9, 1) at two subsequent times (a, c) and around
(x, y) = (3, 1) and (x, y) = (13, 1) at two subsequent times (b, d ). The dotted black lines indicate
the transition regions of the compound channel. Note that only negative values of λ0 have
been displayed.

λ0 that correspond to elliptical regions (vortices). It can be seen that vortices residing
in the transition regions merge together, leading to larger flow structures. Further evid-
ence of the presence of an inverse energy cascade occurring in shallow flow conditions
can be found by means of the dimensionless Eulerian power spectral density (PSD)
function Su(k

∗L∗
i ) of the streamwise (u) velocity component, where the wavenumber k∗

has been made dimensionless using W ∗
tr = L∗

i . The PSD functions have been normalized

with the friction velocity u∗ defined as u∗ =
√

gh∗
mcS. Owing to the limited size of the

velocity series in space, the computation of the PSD has been carried out in terms of
frequency Su(f

∗) and, subsequently, evaluated in terms of wavenumbers by dividing
each frequency by the time and space-averaged surface velocity U ∗

s , k∗ = f ∗/U ∗
s ,

under the assumption of ‘frozen turbulence’, as suggested by Nikora et al. (2007) in
a similar context of free-surface flows. Examples of dimensionless PSDs are reported
in figure 10 for the shallow flow cases (EXP101 and EXP201). The figure illustrates
the coexistence of two different regimes, separated at around k∗L∗

i = k∗W ∗
tr = 1, i.e. at

an injection scale comparable with the transition region width W ∗
tr .

Additional information on dispersion dynamics can be gathered from the analysis
of the p.d.f.s of the particles’ displacements. The main advantage of using the time
dependence of the p.d.f.s is the possibility of distinguishing different dispersion
regimes characterized by the same dependence of K (2) ∝ rγ on the basis of the
Gaussianity/non-Gaussianity of the p.d.f.s. Generally, the analysis of time dependence
of the kurtosis should agree with the results obtained in terms of relative diffusivities,
beyond providing additional information on the characteristics of the dispersion
regimes (LaCasce 2008). For shallow flows, the kurtosis as a function of time, and the
p.d.f.s at a dimensionless time equal to t = t∗/T ∗

uL = 2 are shown in figure 11. The two
regimes found on the basis of the results of relative diffusivity are characterized by
two different behaviours of the kurtosis. Separations smaller than the injection scale
(Li = 0.36), namely r0 = 0.14 and r0 = 0.21, are characterized by a large values of ku,
which is almost constant for times longer than the integral time scale (t = 1) and far
from the Gaussian conditions, see p.d.f. distributions (figure 11b). On the contrary,
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Figure 11. (a) Kurtosis of different initial relative separations (r0) as a function of time. The
dash-dotted line indicates the value of the kurtosis for a Gaussian distribution, i.e. ku = 3.
(b) P.d.f. of relative displacements for dimensionless time (t = 2). Shallow flow (EXP201).

larger separations (r0 = 0.72 and r0 = 1.44), after an initial rapid decrease of ku,
become quasi-Gaussian with a value of ku slightly larger than 3. The corresponding
p.d.f. distributions possess, in this case, rounder peaks and shorter, thinner tails.
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The analysis of the relative statistics suggests that an equilibrium (Brownian)
regime, where K (2) ∝ 2K (1), is attained for any value of rh and Froude number once
dimensionless separations are larger than 2. However, the results in terms of relative
statistics are affected by strong oscillations. As already mentioned in § 3, this may
be due to the accuracy in computing relative quantities at large scales. An alternative
approach is to use the distance as the independent variable and average the times of
mixing. In other words, the FSLEs are obtained by recording the times required for
individual pair separations to increase from one distance to the next, as explained
in § 3. Also, the results obtained by means of the FSLE should agree with those
obtained by means of the relative diffusivity. In the specific case, they also highlight
the presence of two distinct stages of growth: at the smaller scales the value of
λ∗

s typically attains an almost constant value, while, once larger scales are reached,
it decreases, following an approximate power-law dependence with the distance. In
figure 12, the values of the FSLEs have been reported for shallow flow conditions.
If the FSLEs attain a constant value over different separation scales, an exponential
growth is implied. Indeed, the regime for separation smaller than the injection scale
results in an exponential time growth of r2, leading to an almost constant value of
the FSLEs. For scales larger than r = r∗/L∗

uL > 1, the FSLEs suggest another phase
of growth, and their values decrease with an approximate power law close to r−2/3

as for the Richardson regime. Finally, for larger separations, the decay of λs follows
a power law proportional to r−2, suggesting the presence of an equilibrium regime
(linear growth in the relative dispersion, i.e. the asymptotic regime characterized by
standard diffusion, see LaCasce 2008 for more details).

Moreover, for separations larger than the equilibrium regime, the decay of the
FSLEs becomes steeper, corresponding to a growth in time of the separations with
an exponent less than unity (γ < 1). The latter result, indicating the existence of
a subdiffusive regime, implies that particles remain trapped by the large-scale flow
structures and, as a consequence, the dispersive process is inhibited by them. In
the present case, however, this happens at scales comparable with the width of
the channel, which represent a constraint on the particle separations. Therefore, the
observed diffusive regime is only controlled by the geometrical characteristics of the
experimental flume.
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Figure 13. Relative diffusivity as a function of the dimensionless separation r for intermediate
conditions (2 < rh < 3) in different regimes: (a) subcritical flows, Fr < 1 (EXP205), and
(b) supercritical flows, Fr > 1 (EXP12).

4.3.2. Intermediate flows

By decreasing rh and entering the intermediate flow conditions, the dynamics of
particle pairs is further complicated by the role of the Froude number. Intermediate
flows behave quite differently from shallow flows although the influence of the
macrovortices is still evident because of the simultaneous presence of transitional
vortices and floodplains vortices, as already discussed in Stocchino & Brocchini
(2010).

To highlight the role of the Froude number, the behaviour of K (2) as a function
of the particle pair separation r is shown in figure 13, both for the subcritical
regime (Fr < 1) and the supercritical regime (Fr > 1). In the former case, a strong
similarity exists with the shallow flows, characterized by two distinct growth regimes
(direct enstrophy cascade for r <Li and inverse energy cascade for Li < r < 1, with
Li ∼ 0.36). However, as the Froude number exceeds unity, our results indicate a
change in the dynamics of the relative diffusivity with a single intermediate regime
such that K (2) ∝ r2, which is usually related to a non-local dynamics of particle
pairs in the enstrophy inertial range associated with an energy spectrum of the kind
E(k) ∝ k−3. Therefore, it seems that only for subcritical conditions, does an inverse
energy cascade survive (the injection scale always related to the flow depth jump as in
the shallow flow conditions), whereas only an enstrophy cascading process occurs for
Fr > 1.

These behaviours are clearly evident by inspecting figure 14, where the results for
the PSD functions are reported for the intermediate flow conditions. In particular,
the subcritical case (figure 14a) is similar to that characterizing the shallow flows (see
figure 10), whereas the supercritical case (figure 14b) shows an enstrophy cascade.
In the latter case, it is reasonable to state that the flow is mainly dominated by
the large-scale shear structure, rather than by the transitional macrovortices, so the
dispersion is controlled by non-local processes.

A similar behaviour is observed in the p.d.f.s for subcritical intermediate flows, as
shown in figure 15, where the inverse energy cascade is still the dominant process
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Figure 14. Normalized Eulerian PSD function Su corresponding to the intermediate flow
experiments of figure 13.

that controls the relative separation. Again, the smaller separations are clearly
distinguished from the larger ones because the former are characterized by larger
kurtoses, although in both cases ku attains almost constant values. However, if the
flow regime is supercritical, the growth of the relative diffusivity K (2) follows one
single power law (r2) for any given initial value of the separations. The corresponding
ku, after an initial decay stage lasting for 0 < t < 1.5, rapidly tends to a constant value,
approximately equal to 10, as observed for the large separations in the subcritical flows.

Similar to the shallow flow case, we have analysed the behaviour of the values of
the FSLEs for different separations. In figure 16(a,b), the results obtained for the
intermediate flows for subcritical and supercritical conditions are reported. In the
case of subcritical conditions, results similar to those shown for shallow flows are
recovered: for small separations, it is possible to identify a first regime corresponding
to an almost constant slope, while for larger separations a Richardson-like regime
(r−2/3) and an equilibrium regime (r−2) are found. For supercritical flow conditions,
when an enstrophy cascade sets in and K (2) follows a single trend proportional to
r2 (which implies an exponential growth in time of r2), the plateau of λs extends up
to r � 2. For larger separations, an equilibrium is again reached. Also, in this case a
subdiffusive regime is visible for separations larger than r > 5.

4.3.3. Deep flows

The relative diffusivity always follows one single growth power law which, however,
depends on the flow regime, i.e. K (2) ∝ r1.5 in the subcritical regime and K (2) ∝ r2 in
the supercritical one (see figure 17).

Even in this case, the equilibrium phase is not easily detectable from K (2). A
single growth regime is also evident from the FSLEs, see figure 18. Indeed, the
exponential growth is almost absent in the case of subcritical flows, where a single
trend proportional to r−1/3 covers separations up to about 3, before changing to a
clear equilibrium slope (r−2). On the contrary, supercritical flows are characterized by
a long exponential growth, related to K (2) ∝ r2, again followed by a diffusive regime.

An explanation for the behaviour of the deep flows is based on the observation
that the topographic forcing only weakly affects such a flow, since rh → 1 and, as
a consequence, no transitional vortices are observed. The results suggest that for
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Figure 15. (a, b) Subcritical (case EXP205) and (c, d ) supercritical (case EXP12) intermediate
flows. (a, c) Kurtoses of different initial relative separations (r0) as a function of time. The
dash-dotted line indicates the value of the kurtosis for a Gaussian distribution, i.e. ku = 3.
(b, d ) P.d.f.s of relative displacements for dimensionless time (t = 2).
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Figure 16. FSLEs for intermediate flow conditions. (a) Subcritical flow (Fr < 1)
and (b) supercritical flow (Fr > 1).
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Figure 17. Relative diffusivity as a function of the dimensionless separation r for
deep conditions (rh < 2) in different regimes: (a) subcritical flows (Fr < 1) EXP112 and
(b) supercritical flows (Fr > 1) EXP17.

subcritical flows, the energy transfer occurs through a direct energy cascading (see
figure 19a) where for the PSD an exponent −2 is recovered (close to the value of
−5/3 typical of a Richardson regime), whereas in the supercritical regime a direct
enstrophy cascade dominates the dynamics (see figure 19b).

The present results are in good agreement with the findings of Nikora et al.
(2007), who investigated the influence of large-scale flow structures on the energy
processes characterizing free-surface uniform flows, in a case of rectangular cross-
section. The analysis of the surface velocity measurements presented in Nikora et al.
(2007) suggests that for Fr > 1, the energy spectrum follows a power law with an
exponent −3 (enstrophy cascade) while, for subcritical conditions (Fr < 1), a direct
energy cascade was observed. Note that the same exponent of the Richardson regime
can also be recovered in the case of shear dispersion.
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Figure 18. FSLEs for deep flow conditions. (a) Subcritical flow (Fr < 1) and (b) supercritical
flow (Fr > 1).
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Figure 19. Normalized Eulerian PSD function Su corresponding to deep flow experiments
of figure 17.

For the present case, shear dispersion is likely to occur in the case of deep flows. A
way to distinguish the Richardson dispersion from shear dispersion is to investigate
the p.d.f.s of the separations, since in the case of shear dispersion p.d.f.s of separation
should be Gaussian (LaCasce 2008). Subcritical deep flows are characterized by a
Richardson-like exponent; however, the time dependence of the kurtosis, after an
initial decay stage for 0 < t < 1.5, attains an almost constant value close to pure
Gaussian distributions (ku = 3), suggesting that in these conditions a shear dispersion
takes place (Bennett 1987) (see figure 20a, b). Finally, in supercritical flows the results
are in agreement with those found for the supercritical intermediate flows, i.e. ku

decays from its initial value to a constant value approximately equal to 10 (see
figure 20c, d ).

5. Conclusions
An extensive laboratory campaign has been dedicated to the analysis of the

Lagrangian mixing of straight compound channels in quasi-uniform flow, for different
conditions described by the values of the main physical parameters (rh and Fr).
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Figure 20. (a, b) Subcritical (case EXP213) and (c, d ) supercritical (case EXP17) deep flows.
(a,c) Kurtoses of different initial relative separations (r0) as a function of time. The dash-dotted
line indicates the value of the kurtosis for a Gaussian distribution, i.e. ku = 3. (b, d ) P.d.f.s of
relative displacements for dimensionless time (t =2).
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The main conclusions of the study are the following.
(i) For large values of the flow depth ratio (rh > 3), the dominant flow features

are the quasi-two-dimensional vortical structures known as ‘macrovortices’, which
are mainly concentrated in the transition regions where the flow depth jump is
localized. These macrovortices strongly influence the total absolute dispersion (a2)
that is characterized by a non-monotonic growth with time in the regime intermediate
between a small-time ballistic regime and an asymptotic Brownian regime. In
particular, a local maximum is found, after the initial ballistic regime, for times
comparable with 2–3 times the mean turnover time. Decreasing rh leads to a smoother
growth of the total absolute dispersion with the classical asymptotic regimes predicted
by Taylor (1921).

(ii) The macrovortices are also responsible for an intense dispersion in the spanwise
direction, yielding comparable values of the absolute diffusivities (K (1)

x and K (1)
y ),

whereas the almost absence of long-lived coherent structures in the deep flows leads
to a stronger anisotropy.

(iii) As long as the transitional macrovortices are the dominant flow features, the
results obtained for the relative diffusivity K (2) reveal two distinct growth regimes
as a function of the particle separation: for scales smaller than the injection length
scale, here coinciding with the size of the transition region, K (2) increases as it would
for a direct enstrophy cascade process, whereas for scales larger than the injection
scale, K (2) increases at a rate compatible with an inverse energy cascade. The latter
finding is supported by observations of vortex merging events in the case of shallow
flows.

(iv) For relatively low values of rh, i.e. for intermediate flows, the dynamics of
particle pairs is strongly influenced by the flow intensity measured as a function of
a suitable Froude number. The dispersion regimes for subcritical intermediate flows
are in agreement with those obtained for shallow flows (enstrophy cascade for r <Li

and inverse energy cascade for r > Li), whereas, once the Froude number is increased
beyond the critical value of 1, the relative diffusivity is characterized by one single
regime compatible with enstrophy cascading, suggesting the dominance of large-scale
shearing rather than of transitional macrovortices.

(v) Decreasing further the value of rh, i.e. reaching the deep flow conditions,
since the topographic forcing is no longer effective in triggering the formation of
the macrovortices, one single regime is obtained for both subcritical and supercritical
flows. The values of the exponent of the growth laws suggest the presence of a direct
enstrophy cascade for Fr > 1, whereas for Fr < 1 a direct energy cascade dominates
the dynamics of mixing. For the latter case, the distinction between the Richardson-
type mixing and shear dispersion, characterized by the same exponent of the growth
of K (2), has been performed by analysing the high-order moments of the p.d.f.s of the
separations. A value of the kurtosis close to 3 is related to a Gaussian distribution of
the pair separation, indicating that the subcritical deep flows are characterized by a
shear dispersion.

(vi) The analysis of the FSLE reveals an equilibrium regime for the whole set of
experiments, regardless of the values of the physical parameters.

(vii) Larger separations show a subdiffusive regime that is induced by the
geometrical constraints of the experimental flume.
The present analysis has shown that, despite the apparent simplicity of the flow
investigated, i.e. regular geometry and uniform flow conditions, the associated
Lagrangian mixing processes are rather complex and fundamentally controlled by
two main parameters which are the flow depth ratio and Froude number.
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Further analyses are needed to clarify the possible generation of time-dependent
Lagrangian coherent structures (LCSs), which are recognized to be material elements
with a strong influence on the mass transport (Boffetta et al. 2001). LCSs cannot
be identified by using either single-particle or multiple-particle statistics, but only by
means of tools which are typically employed in the analysis of nonlinear dynamical
systems (see Wiggins 2005 for a complete review). This is the focus of an ongoing
analysis which will be summarized in a forthcoming, dedicated manuscript.
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Elhmäıdi, D., Provenzale, A. & Babiano, A. 1993 Elementary topology of two-dimensional
turbulence from a Lagrangian viewpoint and single-particle dispersion. J. Fluid Mech. 257,
533–558.

Er-El, J. & Peskin, R. L. 1981 Relative diffusion of constant-level balloons in the Southern
Hemisphere. J. Atmos. Sci. 38, 2264–2274.

Garcia-Olivares, A., Isern-Fontanet, J. & Garcia-Ladona, E. 2007 Dispersion of passive tracers
and finite-scale Lyapunov exponents in the Western Mediterranean Sea. Deep-Sea Res. 54,
253–268.

Guala, M., Liberzon, A., Tsinober, A. & Kinzelbach, W. 2007 An experimental investigation on
Lagrangian correlations of small-scale turbulence at low Reynolds number. J. Fluid Mech.
574, 405–427.

Hua, B. L. & Kline, P. 1998 An exact criterion for the stirring properties of nearly two-dimensional
turbulence. Physica D 113 (1), 98–110.

Jirka, G. H. 2001 Large-scale flow structures and mixing processes in shallow flows. J. Hydraul.
Res. 39, 567–573.

Kraichnan, H. 1966 Dispersion of particle pairs in homogeneous turbulence. Phys. Fluids 9,
1937–1943.

LaCasce, J. H. 2008 Statistics from Lagrangian observations. Prog. Oceanogr. 77, 1–29.

Lekien, F., Coulliette, C., Mariano, A. J., Ryan, E. H., Shay, L. K., Haller, G. & Marsden,

J. 2005 Pollution release tied to invariant manifolds: A case study for the coast of Florida.
Physica D 210, 1–20.

Lin, J. T. 1972 Relative dispersion in the enstrophy cascading inertial range of homogeneous
two-dimensional turbulence. J. Atmos. Sci. 29, 394–396.

Luo, J., Ushijima, T., Kitoh, O., Lu, Z. & Liu, Y. 2007 Lagrangian dispersion in turbulent channel
flow and its relationship to Eulerian statistics. Intl J. Heat Fluid Flow 28, 871–881.



198 A. Stocchino, G. Besio, S. Angiolani and M. Brocchini

Morel, P. & Bandeen, W. 1973 The EOLE experiment, early results and current objectives. Bull.
Am. Metereol. Soc. 54, 298–306.

Nezu, I., Onitsuka, K. & Iketani, K. 1999 Coherent horizontal vortices in compound open-channel
flows. In Hydraulic Modeling (ed. V. P. Singh, I. W. Seo & J. H. Sonu), pp. 17–32. Water
Resources Pub.

Nikora, V., Nokes, R., Veale, W., Davidson, M. & Jirka, G. H. 2007 Large-scale turbulent structure
of uniform shallow free-surface flows. Environ. Fluid Mech. 7, 159–172.

Okubo, A. 1970 Horizontal dispersion of floatable particles in the vicinity of velocity singularities
such as convergences. Deep-Sea Res. 17, 445–454.

Orre, S., Gjevik, B. & LaCasce, J. H. 2006 Characterizing chaotic dispersion in a coastal tidal
model. Contin. Shelf Res. 26, 1360–1374.

van Prooijen, B. C., Battjes, J. A. & Uijttewaal, W. S. J. 2005 Momentum exchange in straight
uniform compound channel flow. J. Hydraul. Engng 131 (3), 175–183.

van Prooijen, B. C. & Uijttewaal, W. S. J. 2002 A linear approach for the evolution of coherent
structures in shallow mixing layers. Phys. Fluids 14 (12), 4105–4114.

Provenzale, A. 1999 Transport by coherent barotropic vortices. Annu. Rev. Fluid Mech. 31, 55–93.

Sellin, R. H. J. 1964 A laboratory investigation into the interaction between the flow in the channel
of a river and that over its flood plain. La Houille Blanche 7, 793–802.

Shiono, K. & Knight, D. W. 1991 Turbulent open-channel flows with variable depth across the
channel. J. Fluid Mech. 222, 617–646.

Socolofksy, S. A. & Jirka, G. H. 2004 Large-scale flow structures and stability in shallow flows.
J. Environ. Engng Sci. 3, 451–462.

Soldini, L., Piattella, A., Brocchini, M., Mancinelli, A. & Bernetti, R. 2004 Macrovortices-
induced horizontal mixing in compound channels. Ocean Dyn. 54, 333–339.

Stocchino, A. & Brocchini, M. 2010 Horizontal mixing of quasi-uniform, straight, compound
channel flows. J. Fluid Mech. 643, 425–435.

Taylor, G. I. 1921 Diffusion by continuous movement. Proc. Lond. Math. Soc. 20, 196–212.

Weiss, J. 1991 The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Physica D
48, 272–294.

Wiggins, S. 2005 The dynamical system approach to Lagrangian transport in oceanic flows. Annu.
Rev. Fluid Mech. 37, 295–328.


