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The process leading to the formation of sand waves in tide dominated coastal areas
is investigated by means of the linear stability analysis of a flat sandy bottom subject
to oscillatory tidal currents. The conditions for the decay or amplification of small
bottom perturbations are determined for arbitrary values of the parameters of the
problem. According to field observations, the initial growth of sand waves requires a
minimum amplitude of the tidal current, even when the critical bed shear stress for
the initial motion of sediment is set equal to zero. Moreover the minimum amplitude
depends on sediment characteristics. In particular, the analysis shows that sand waves
appear only for a sandy bottom and their growth does not take place when a coarse
sediment covers the sea bed. The solution procedure extends the truncation method
which is often used to describe the flow generated by the interaction of bottom
perturbations with the oscillatory tidal current. The obtained results show that the
truncation method describes the mechanism inducing the growth of sand waves, but
values of the parameters exist for which its results are not quantitatively accurate.
Finally, the asymptotic approach for large values of both r , which is the ratio between
the amplitude of the horizontal tidal excursion and the wavelength of the bottom
perturbations, and of the stress parameter s is modified in the bottom boundary layer
to describe cases characterized by values of s of order one, which is the order of
magnitude suggested by an analysis of field data.

1. Introduction
Field surveys in tide dominated coastal areas often indicate that the sea bottom is

characterized by the presence of bedforms (often called sand waves) with wavelengths
of the order of hundreds of metres and amplitudes of the order of a few metres, the
crests being almost perpendicular to the direction of the main tidal current.

Finite-amplitude sand waves were investigated by Fredsøe & Deigaard (1992)
with an approach similar to that proposed by Fredsøe (1982) for dunes in fluvial
environments. The approach describes the form of sand waves, but it is unable to
explain the mechanism causing these bedforms and to predict the conditions which
lead to their appearance.

As pointed out in other studies of the phenomenon (Hulscher 1996a; Gerkema
2000), the process which gives rise to the formation of sand waves, is similar to
that causing sea ripples under gravity waves (Sleath 1976; Blondeaux 1990, 2001;
Blondeaux & Vittori 1999). In fact, the interaction of the oscillatory tidal flow with
bottom perturbations gives rise to a steady streaming in the form of recirculating
cells. When the net displacement of the sediment dragged by this steady streaming is
directed toward the crests of the bottom waviness, the amplitude of the perturbation
grows and bedforms are generated. On the other hand, the flat bottom configuration
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turns out to be stable when the net motion of the sediment is directed toward the
troughs of the bottom waviness.

First attempts to describe sand wave appearance were made by Hulscher,
de Swart & de Vriend (1993) and de Swart & Hulscher (1995) using depth average
models with parameterizations of secondary currents in the vertical plane. The first
contribution aimed at investigating sand wave formation by means of a fully three-
dimensional model is due to Hulscher (1996a), who formulated a model based on the
three-dimensional shallow-water equations. In Hulscher (1996a), turbulent stresses are
handled by means of the Boussinesq hypothesis and the eddy viscosity is assumed to
be constant in time and over the water depth. A constant eddy viscosity gives rise to an
acceptable velocity profile, except in a negligible thin layer close to the wall, only when
the no-slip condition at the bottom is replaced by a partial slip condition. Finally, the
bottom time development is determined using the sediment continuity equation and a
simple sediment transport predictor. The analysis predicts the temporal development
of bottom perturbations of small amplitude (strictly infinitesimal) and determines the
range of parameters for which the bottom perturbations amplify or decay.

The hydrodynamics of the problem are characterized by the presence of the
parameter r , which is the ratio between the amplitude of the horizontal tidal excursion
and the wavelength of the bottom perturbations. Under field conditions, r is typically
large and, as discussed by Gerkema (2000), the truncation method used by Hulscher
(1996a) to work out the solution provides a good qualitative description of the
phenomenon but the quantitative results are not accurate. By exploiting the fact that
the problem gives rise to an equation similar to Orr–Sommerfeld equation where the
parameter r replaces the Reynolds number and by taking advantage of the large
values assumed by r , Gerkema (2000) solved the problem by using an asymptotic
approach similar to that developed for the Orr–Sommerfeld equation for large values
of the Reynolds number Re (Lin 1967; Drazin & Reid 1981). In this approach,
the fluid perturbation is split into two parts: an inviscid outer solution and viscous
boundary layers, located at the wall and possibly at ‘critical’ levels. Moreover, an
analysis of the order of magnitude of the terms of the Orr–Sommerfeld equation
shows that the wall layer has a thickness of order Re−1/3. In following closely such
an approach, Gerkema (2000) assumed that the viscous wall layer has a thickness of
order r−1/3. However, the latter estimate is suitable when the no-slip condition applies
at the wall. Since use is made of the partial slip condition, the turbulent basic velocity
distribution is approximated by a profile which does not vanish at the bottom unless
the parameter s appearing in the model is much larger than one and the turbulent
velocity profile is almost coincident with that characterizing the laminar regime. An
analysis of field data and previous works on the subject (Hulscher 1996a, b) suggest
that, in the field, s is of order one. In this case, it can be shown (see § 3.3) that the
viscous wall layer turns out to be of order r−1/2 rather than r−1/3 and critical layers do
not exist. Gerkema (2000) solved the problem also with two alternative approaches.
The former is an extension of Hulscher’s (1996a) approach and it is strictly valid
only for small values of the parameter r . The latter uses a double series expansion
and considers values of r much larger than one, even though it fails when r is very
large.

In the present work, the problem has been solved for arbitrary values of r and s

using a procedure similar to that employed by Vittori (1989) and Vittori & Blondeaux
(1990) in a different context. A Fourier series in time is used to compute the stream-
function associated with the flow perturbations and the results show that the number
of harmonics necessary to obtain an accurate description of the perturbed flow is
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relatively small for moderate values of r , but it increases as the parameter r is
increased.

The proposed approach is supported by a comparison of the results with those
obtained by means of two perturbation approaches based on the assumptions of small
and large values of r . In the latter case, we follow closely Gerkema’s (2000) analysis,
but we modify it taking into account that, for values of the parameter s of order one,
a viscous wall layer of thickness proportional to r−1/2 exists.

The rest of the paper is organized as follows. In the following section the problem
is formulated and the basic flow generated by tide propagation over a flat bottom is
described. In § 3, bottom perturbations are introduced and their time development is
determined. The results are presented in § 4 and a comparison with field data is made.
In § 5, a discussion of the main merits of the analysis and of its limitations is made.
The final section is devoted to the conclusions.

2. Formulation of the problem and the basic flow
The formulation of the problem does not differ from that of previous authors. We

consider the flow generated by a tidal wave propagating over a cohesionless bed and
investigate the time development of the bottom configuration it induces. To allow an
easy comparison between the results of the present analysis and those of previous
authors, we use, when possible, the same notation as employed by Gerkema (2000).
We consider a two-dimensional turbulent flow and we employ a Boussineq type closure
and the ‘slip velocity’ approach of Engelund (1964). Hence, the hydrodynamics of the
problem is described by momentum and continuity equations which read

∂u
∂t

+ (u · ∇)u = − 1

ρ
∇p + A∇2u, ∇ · u = 0, (2.1)

where x denotes the horizontal coordinate in the direction of tide propagation, z is
the vertical coordinate, u = (u, w) are the horizontal and vertical velocity components
averaged over turbulence, respectively, and ∇ is the operator defined by (∂/∂x, ∂/∂z).
Moreover, the density ρ and the eddy kinematic viscosity A, which is introduced to
model Reynolds stresses, are assumed to be constant in space and time.

A constant eddy-viscosity model provides an approximate but still acceptable
description of the flow induced by tide propagation provided the no-slip condition at
the bottom is replaced by a partial slip condition

∂u||

∂n
= s̃u|| at z = η(x, t), (2.2)

where ∂/∂n denotes the derivative in the direction normal to the bottom, u|| indicates
the alongslope velocity component and z = η(x, t) describes the bottom profile
(Engelund 1970). In (2.2), s̃ is a stress parameter, the value of which should be
properly chosen. Moreover, at the bed, the normal velocity component should vanish
and at the free surface (z = H ) the rigid-lid approximation is used.

The morphodynamics of the problem is governed by the sediment continuity
equation which simply states that convergence (or divergence) of the sediment flux
must be accompanied by a rise (or fall) of the bed profile

∂η

∂t
+

∂Q

∂x
= 0, (2.3)

where Q denotes the sediment flux per unit width divided by a porosity factor. The
problem is closed by a sediment transport predictor. Since the tide period is much
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larger than the turn-over time of turbulent eddies, the sediment transport rate can be
predicted by formulae proposed for steady currents specified with the actual values
of the parameters. Here, the relationship proposed by Meyer-Peter & Müller (1948)
has been used

Q = 8

√
(ρs/ρ − 1) gd3

(1 − p)

(∣∣∣∣θ − γ
∂η

∂x

∣∣∣∣ − θc

)3/2 (
θ − γ

∂η

∂x

) ∣∣∣∣θ − γ
∂η

∂x

∣∣∣∣
−1

, (2.4)

where ρs , p and d are the density, the porosity and the size of the sediment, respectively,
and θ is the dimensionless Shields parameter defined by

θ =
τ

(ρs − ρ) gd
. (2.5)

Moreover, τ is the bed shear stress, which can be evaluated easily using the constitutive
law and the knowledge of the kinematic eddy viscosity, and θc is the critical value
of θ for the initial motion of sediment. The term γ ∂η/∂x has been added in (2.4),
as suggested by Fredsøe (1974), to take into account the bed slope effects. Of course
(2.4) is used when |θ − γ ∂η/∂x| is larger than θc; otherwise Q vanishes.

In order to model the flow locally induced by the propagation of the tidal wave,
we consider the flow over a flat bottom forced by an oscillatory horizontal pressure
gradient of angular frequency σ and amplitude P0x which can be related to the
amplitude Um of the depth average velocity oscillations induced by the tidal wave.

The vertical velocity component of the basic flow vanishes identically, while the
horizontal component (ub) can be easily obtained:

ub =
P0x

2iρσ
[1 + c̃(E2 exp(−(1 + i)(z/�)) + exp((1 + i)(z/�)))] exp iσ t + c.c. (2.6)

where ∆ is a viscous length defined in terms of the kinematic eddy viscosity A and
of the angular frequency of the tide oscillations σ :

∆ =
√

2A/σ, (2.7)

and

E = exp((1 + i)(H/∆)), c̃ = − s̃∆

s̃∆(E2 + 1) + (1 + i)(E2 − 1)
. (2.8)

As discussed by Gerkema (2000), for moderate values of the parameter µ =
H 2/(A/σ ), which is the square of the ratio between the water depth and the viscous
length, the basic flow can also be approximated as follows:

ub = 1
2
U0

(
zc +

z

H

)(
2 + zc − z

H

)
exp(iϕ) exp(iσ t) + c.c., (2.9)

where zc is a dimensionless constant defined in the form

zc = −1 +
√

1 + 2/(s̃H ), (2.10)

and U0 and ϕ are fitting parameters which can be determined by comparing the
depth-averaged values of ub obtained from (2.9) and the exact solution (2.6). In
particular, it turns out that

U0 =
Um[

2
3

+ zc (2 + zc)
] , (2.11)

where Um is the amplitude of the depth-averaged velocity oscillations induced by the
tide.
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3. The time development of bottom perturbations
To investigate the stability of the flat bottom configuration, we consider bottom

perturbations of small amplitude (strictly infinitesimal) and linearize the problem. A
generic component of the bottom perturbation of the form

η(x, t) = Π(t) cos(kx) = 1
2
Π(t) exp(ikx) + c.c. (3.1)

can be considered.
In (3.1), Π is assumed to be much smaller than H and k is the perturbation

wavenumber.
In order to solve the mathematical problem, it is convenient to introduce

dimensionless variables denoted by an apex. The inverse of the wavenumber k−1

and the water depth H are used as horizontal and vertical length scales, respectively,

U0 and σ −1 are used as velocity and time scales and the quantity
√

(ρs/ρ − 1) gd3

scales the sediment transport rate. Finally the dimensionless morphodynamic time

scale T ′ is also introduced T ′ = t
√

(ρs/ρ − 1) gd3/[(1 − p)H 2].
For convenience, in the following, the apex is dropped.
Using the dimensionless variables and taking into account that the streamfunction

ψ , such that u = ∂ψ/∂z and w = −δ∂ψ/∂x, can be written in the form

ψ(x, z, t) = Π(T )Ψ (z, t) exp(ix) + c.c. (3.2)

the hydrodynamic problem is posed by the following Orr–Sommerfeld-like equation:

1

r

∂

∂t
(N2Ψ ) + iubN

2Ψ − iΨ
∂2ub

∂z2
=

1

µr
N4Ψ, (3.3)

with the following boundary conditions

Ψ + 1
2
iub = 0,

∂2Ψ

∂z2
+

1

2

∂2ub

∂z2
= s

(
∂Ψ

∂z
+

1

2

∂ub

∂z

)
at z = 0, (3.4)

Ψ = 0,
∂2Ψ

∂z2
= 0 at z = 1. (3.5)

Because the morphodynamic time scale turns out to be much larger than the
hydrodynamic scale, the time derivative of Π has consequently been neglected in
(3.3). Moreover, in (3.3), the operator N2 is defined by N2 = ∂2/∂z2 − δ2.

Finally, the time development of the bottom configuration is described by

dΠ

dT
+ 2δi〈Q〉Π = 0, (3.6)

Q = 12

[∣∣∣∣δΨd

µr

∂ub

∂z

∣∣∣∣
z=0

− θc

]1/2 [
δΨd

µr

(
1

2

∂2ub

∂z2
+

∂2Ψ

∂z2
+ δ2Ψ

)
z=0

− 1
2
iγ δ

]
, (3.7)

where the 〈〉 brackets denote the time average over the tide cycle and the small
oscillations of the bottom profile, which take place around its average value during
the tide cycle, have been neglected.

The problem is characterized by the following dimensionless parameters

δ = kH, r = kU0/σ, µ = H 2σ/A, s = s̃H, Ψd = U 2
0

/
[(ρs/ρ − 1) gd] , γ .

(3.8)
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At this stage, it may be useful to discuss the typical values of the parameters δ, r ,
µ, s, Ψd and γ for field conditions. The parameter δ is the dimensionless wavenumber
of the bottom perturbation. Since sand waves are characterized by wavelengths of
the order of hundreds of metres and the water depth is tens of metres, δ assumes values
of order one. Typical values of Um range about 1 ms−1 and σ is equal to 1.5×10−4 s−1

for a semi-diurnal tide and to 7 10−5 s−1 for a diurnal tide. Therefore, r attains values
ranging from 10 to 102. Since, as already pointed out, tidal currents are characterized
by a time scale much larger than that of the turbulent eddies, an estimate of the eddy
viscosity A and of the stress parameter s̃ can be obtained from our knowledge
of turbulence structure and eddy viscosity in steady currents and by following
the procedure suggested by Hulscher & van den Brink (2001), i.e. by equating A to the
depth-averaged value of empirical relationships proposed to describe the kinematic
eddy viscosity and forcing the shear stress acting on the bed to be equal to ρ (Um/C)2

where C is a conductance coefficient which depends on the bottom roughness. Using
a parabolic profile to describe the z-variations of the kinematic eddy viscosity and
the values of C suggested in the literature (see Fredsøe & Deigaard 1992), it turns
out that

A =
κUmH

6C
, s̃ =

6

H (κC − 2)
with C = 2.5 ln

(
H

ε

)
+ 6, (3.9a, b)

where κ = 0.41 is the von Kármán’s constant, Um is the depth-averaged velocity and
ε is the bottom roughness. Similar relationships are obtained using different eddy
viscosity profiles even if significant quantitative differences are present. On the basis
of these results, it can be concluded that A ranges around 10−2–10−1 m2 s−1 and s̃

around 10−2–10−1 m−1. It follows that typical values of µ and s are of order 1. Indeed,
figures 5 and 6 of Hulscher (1996b) show that average conditions of the North Sea
are characterized by values of s (s = Ŝ/Ev) smaller than 1 while in the Middelkerke
bank, s can be larger than 1 but it is smaller than 2. The sediment mobility number
Ψd ranges between order 102 for fine sand and strong currents and order 1 for coarse
sand and weak currents. Finally, γ is the dimensionless bed-slope parameter which
typically assumes values of order one. In particular, Fredsøe (1974) used γ = 0.1.

Since the morphodynamic time scale is much larger than the hydrodynamic time
scale (the tide period), the problem posed by (3.3)–(3.6) has been split into two parts:
the hydrodynamics governed by equations (3.3)–(3.5), the solution of which provides
Ψ , and the morphodynamics governed by (3.6), the solution of which provides the
time behaviour of Π .

The hydrodynamics have been solved here following an approach which holds for
arbitrary values of r and is based on a procedure similar to that employed by Vittori
(1989) and Vittori & Blondeaux (1990) in a different context.

To test the present approach, results have been obtained for both small and large
values of r , the other parameters being fixed, and they have been compared with
those derived by means of perturbation approaches based on the assumptions r � 1
and r � 1, respectively.

3.1. The hydrodynamic problem for arbitrary values of r

Since the basic flow is time periodic, the function Ψ can be expanded as a Fourier
series in time

Ψ =

∞∑
n=−∞

Ψ̂n(z)e
int . (3.10)



A note on tidally generated sand waves 177

Then, substitution of (3.10) into (3.3) and (3.6) leads to the following system of
coupled linear ordinary differential equations

in

r
N2Ψ̂n+i

[
ÛN2Ψ̂n−1 + Û ∗N2Ψ̂n+1

]
− i

[
d2Û

dz2
Ψ̂n−1 +

d2Û ∗

dz2
Ψ̂n+1

]
=

1

µr
N4Ψ̂n, (3.11)

along with the following boundary conditions

Ψ̂n = 0,
d2Ψ̂n

dz2
= 0 at z = 1, (3.12)

(Ψ̂n, Ψ̂1, Ψ̂−1) =

(
0, − Û

2
, − Û ∗

2

)
at z = 0, (3.13)

(
d2

dz2
− s

d

dz

)
(Ψ̂n, Ψ̂1, Ψ̂−1) =

(
−1

2

d2

dz2
+ s

d

dz

)
(0, Û , Û ∗) at z = 0. (3.14)

In (3.11)–(3.14), the basic flow ub has been written in the form

ub = Û (z)eit + Û ∗(z)e−it . (3.15)

Neglecting harmonics higher than the Nth in the Fourier series (3.10), the functions
Ψ̂n can be determined numerically using a second-order Runge–Kutta scheme and a
shooting procedure. More precisely, starting from z = 1, a set of 2N + 1 linearly
independent solutions Ψ̂ (j )

n are obtained assuming linearly independent values for

the first and third derivatives of Ψ̂n. Then, the solution is determined as a linear
combination of Ψ̂ (j )

n which satisfies the boundary conditions at the bottom. The
number N of harmonics retained in (3.10) has been chosen on the basis of numerical
experiments. More details on the procedure can be found in Vittori (1989).

3.2. The hydrodynamic problem for r � 1

Although unrealistic in practical situations, the case r � 1 is the easiest to analyse
and provides results which can be used to test the procedure outlined in the previous
section.

When r � 1, the stream function Ψ can be expanded in the form

Ψ = Ψ
(0)
0 + rΨ

(0)
1 + h.o.t. (3.16)

where the index (0) indicates contributions determined in the limit r → 0.
Then, the problems obtained at order r0 and r1, by substitution of (3.16) into

(3.3)–(3.4), can be solved assuming

Ψ
(0)
0 = Ψ̂

(0)
0,1e

it + c.c., Ψ
(0)
1 = Ψ̂

(0)
1,0 + Ψ̂

(0)
1,2e

2it − c.c. (3.17)

The determination of Ψ̂i,j is straightforward. For example, it can be easily verified

that Ψ̂
(0)
0,1 reads

Ψ̂
(0)
0,1 = c

(0)
1 exp(δz) + c

(0)
2 exp(−δz) + c

(0)
3 exp (z

√
δ2 + iµ) + c

(0)
4 exp (−z

√
δ2 + iµ).

(3.18)

Further details are omitted and the results are directly presented in the following.
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3.3. The hydrodynamic problem for r � 1

Since in (3.3) the small parameter r−1 multiplies the highest derivative, for large values
of r , the flow domain can be split into an inviscid core region, where z is of order
one, and a viscous boundary layer close to the bottom.

For the purpose of finding Ψ (∞), hereinafter the index (∞) indicates contributions
determined assuming values of r much larger than one, the basic velocity can be
approximated by the much simpler profile (2.9), which provides a good approximation
when µ is of order 1. Then the solution can be written in the form

Ψ (∞) = c
(∞)
1 φ1 + c

(∞)
2 φ2, (3.19)

where the functions φ1 and φ2 are given in Gerkema (2000). The forcing of the boun-
dary conditions at the free surface allow us to find a relationship between the constants
c

(∞)
1 and c

(∞)
2 , but not to determine both of them. In fact, it can be verified that the

two boundary conditions at the free surface are equivalent because of the momentum
equation.

The inviscid balance should be corrected near the bottom, where a boundary layer
develops and viscous effects turn out to be relevant. In the classical Orr–Sommerfeld
equation, the thickness of this viscous layer is proportional to the (−1/3)-power of the
Reynolds number (if Re � 1), because the basic velocity profile vanishes at the wall.
However, in the present case, the basic flow described by (2.9) remains finite at the
bottom and an analysis of the order of magnitude of the different terms appearing
in (3.3) suggests that the thickness of the bottom boundary layer is of O(r−1/2).

Hence the analysis requires the introduction of the variable ξ defined as follows

ξ = r1/2z. (3.20)

Then the basic flow and the streamfunction associated with the perturbation should
be expanded in the form

ub = ub0 + r−1/2ub1 + r−1ub2 + h.o.t. (3.21)

Ψ = Ψ
(∞)
0 + r−1/2Ψ

(∞)
1 + r−1Ψ

(∞)
2 + h.o.t. (3.22)

By substituting (3.21) and (3.22) into (3.3) and (3.6) and equating likewise powers
of r−1/2, the functions Ψ

(∞)
i can be determined. It turns out that

Ψ
(∞)
0 = − 1

2
zc(2 + zc) cos(t + ϕ), Ψ

(∞)
1 = c

(∞)
3 ξ, (3.23)

Ψ
(∞)
2 = − c

(∞)
4

iµub(t)
exp (−

√
iµub(t)ξ ) + c

(∞)
5 ξ + c

(∞)
6 ,

where c
(∞)
3 , c

(∞)
4 , c

(∞)
5 and c

(∞)
6 are constants to be determined. Matching Ψ

(∞)
0 with

the inviscid solution determines the value of c
(∞)
2 while matching Ψ

(∞)
1 determines the

value of c
(∞)
3 . The constants c

(∞)
j (j = 4, 5, 6) are determined by the matching at

the next order of approximation which requires the evaluation of further terms of the
streamfunction in the inviscid region. The first two terms of (3.22) correspond to
the largest terms of the outer solution written using the inner variable and strong
gradients of Ψ appear only considering Ψ

(∞)
2 .

As already discussed by Gerkema (2000), the whole procedure breaks down when
the flow reverses, i.e. when the basic velocity profile ub vanishes in the whole water
column. The problem can be easily circumvented. Indeed during the time intervals for
which ub is close to zero, the sediment flow rate vanishes and there are no significant
morphodynamic implications.
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3.4. The morphodynamic problem

Once the streamfunction associated with the bottom perturbation is computed,
the temporal development of the amplitude Π of the generic component of the
perturbation can be evaluated from (3.6)

Π = Π0 exp {Γ T } = Π0 exp

{〈
−24

[∣∣∣∣δΨd

µr

∂ub

∂z

∣∣∣∣
z=0

− θc

]1/2

×
[
i
δ2Ψd

µr

(
1

2

∂2ub

∂z2
+

∂2Ψ

∂z2
+ δ2Ψ

)
z=0

+ 1
2
γ δ2

] 〉
T

}
. (3.24)

4. The results
Before discussing the results on the morphodynamic stability, obtained on the basis

of the procedure outlined in §§ 3.1 and 3.4, we compare the streamfunction and other
relevant quantities valid for arbitrary values of r with the results of the asymptotic
analyses for values of r much smaller or much larger than one. This has been done
to test the implementation of the numerical algorithm and to ascertain the reliability
of the results. Because the asymptotic solution for large values of r is based on the
approximate basic velocity profile, use is made of (2.9). In figure 1 the function Ψ (z)
computed by means of (3.10) is compared with that found for r tending to zero,
when the values of δ, µ and s are fixed and r is decreased (r = 10, 1, 0.1). As r

tends to become small, the expansion (3.10) provides results close to those obtained
on the basis of the asymptotic analysis described in § 3.2 and for r equal to 0.1 the
two solutions are practically indistinguishable. Of course, for small values of r

the streamfunction is dominated by the first term in (3.16) and by the harmonics eit

and e−it in (3.10). For an exhaustive comparison, we have not only compared Ψ̂1 with
Ψ

(0)
0,1 , but also Ψ̂0 and Ψ̂2 divided by r with Ψ

(0)
1,0 and Ψ

(0)
1,2 , respectively.

A comparison is also made between (3.10) and the asymptotic solution for large
values of r . In figure 2 the streamfunction is plotted for fixed values of δ, µ and s and
increasing values of r at particular phases of the cycle. As expected, for increasing
values of r , the agreement between (3.19) and (3.10) improves and for large values
of r the two approaches provide coincident results and in particular the function Ψ

becomes real as predicted by the asymptotic analysis for large values of r . Hence
(3.24) shows that the real part Γr of Γ is always negative since it turns out to be
equal to 〈

−12

[∣∣∣∣δΨd

µr

∂ub

∂z

∣∣∣∣
z=0

− θc

]1/2

γ δ2

〉
,

i.e. the stabilizing part related to the bed slope. Therefore for large values of r , the
other parameters being fixed, no growth of the bottom perturbations takes place and
the flat bottom configuration turns out always to be stable.

Once the reliability of the procedure is ascertained, the stability of the flat bottom
configuration can be investigated by evaluating the growth rate Γ for different
values of the parameters. Since the approach described in § 3.1 does not require
approximation of the basic flow by (2.9), in the following the results have been
obtained making use of the full solution. Both the real Γr and the imaginary Γi parts
of Γ are computed. While the real part of Γ is related to the growth or decay of the
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Figure 1. Harmonic components of the streamfunction perturbation induced by a bottom
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amplitude of the bottom perturbations, their migration speed is controlled by
the imaginary part of Γ . Because of the symmetry of the problem, no migration
of the bottom forms is expected to take place after a tide cycle and indeed Γi vanishes
for whatever set of the parameters is considered.

In order to allow predictions of the most unstable component of the bed perturba-
tion, it is convenient to replace r by the new parameter r̂

r̂ =
U0

σH
, (4.1)
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which does not depend on the characteristics of the bottom perturbations. Notice
also that r = r̂δ. Moreover, in the literature (see Belderson, Johnson & Kenyon
1982) the presence of sand waves in a particular site, where the water depth and the
bottom roughness are fixed, is related to the strength of the tidal current. To discuss
the appearance of sand waves in terms of just one parameter containing U0, it is
convenient to introduce the new viscous parameter

µ̂ =
U0H

A
. (4.2)
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Figure 3. Dimensionless growth rate Γr vs. the dimensionless wavenumber δ of the bottom
perturbation. Model parameters are: µ̂ = 112.5, s = 1.02, r̂ = 79, Ψ̂d = 0.0045, γ = 0.05 and
θc = 0.047.

In fact, (3.9a, b) show that A is proportional to U0. Then, µ̂ is independent of U0

and depends only on the relative roughness size. Similarly, it is convenient to define
the new sediment parameter

Ψ̂d =
(Hσ )2

(ρs/ρ − 1) gd
. (4.3)

It turns out that µ̂ = µr̂ and Ψ̂d = Ψd/r̂
2.

The performances of the model can be evaluated by looking at figures 3 and 4.
Figure 3 shows the amplification rate Γr for µ̂ = 112.5, s = 1.02, r̂ = 79, Ψ̂d = 0.0045
and γ = 0.05, values of the parameters which are chosen to reproduce the site
SW1 located in the North Sea at 51◦35′N and 3◦2′E where sand waves have been
observed (see figure 4 where the bottom topography is plotted) and tidal currents
were measured. The bottom roughness has been evaluated assuming that wave ripples
were present, characterized by a wavelength l of about 20 cm. Their height ∆r

is assumed to be 0.17l (Sleath 1984) and the bottom roughness is fixed equal to 3∆r

as suggested by Van Rijn (1981). If it is assumed that actual sand waves are generated
by the growth of the bottom perturbations characterized by the largest amplification
rate and it is taken into account that Γr is maximum for δ = δmax = 0.4 and the
local water depth is about 21 m, the model predicts the formation of sand waves
characterized by a wavelength equal to about 315 m, a value close to the observed
wavelengths ranging between 165 m and 255 m (see figure 4).

The data of figure 4 and the relationships (3.9a, b) show that field cases are
characterized by a value of µ̂ of order 100 while s depends on the relative bottom
roughness and falls in a small range around 1. Fixing µ̂ = 112.5 and s = 1.02, it is
interesting to look at model predictions for a fine sandy bottom (Ψd = 0.0045) and
varying the parameter r̂ which, in a particular site, is proportional to the current
strength U0. The results are shown in figure 5 where Γr is plotted versus δ. For small
values of r̂ , sediment transport does not take place and the bottom configuration does
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Figure 4. Sand waves data. Contour map of the seabed at 51◦ 35′ N and 3◦ 2′ E measured
in 1988 (grid size = 500m).
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Figure 5. Dimensionless growth rate Γr vs. the dimensionless wavenumber δ of the bottom
perturbation for different values of r̂ . Model parameters are: µ̂ = 112.5, s = 1.02, Ψ̂d = 0.0045,
γ = 0.05 and θc = 0.047.

not change (Γr ≡ 0). When r̂ is increased, a critical value r̂c is found such that the
sediment starts to be transported. For r̂ slightly larger than r̂c, bottom perturbations,
characterized by values of δ falling within a range centred around δc,max , experience
an average amplification within a cycle. An analysis of the results (see figure 5) shows
that r̂c is about 24 and δc,max is about 0.07. These values, for a semi-diurnal tide
and a water depth equal to 21 m, which is the value measured at SW1, give rise to
a critical value of Um equal to about 0.2ms−1. A quantitative comparison of present
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Figure 6. As figure 5 except for θc = 0.

results with field data is difficult because of the lack of data concerning field cri-
tical conditions. Looking at figure 3.2 of Belderson et al. (1982), it appears that
the critical value of Um is not too far from the values observed in the field which
range around 0.5 ms−1. Incidentally, sand waves have been observed also in sites
characterized by weaker tidal currents (at SW1 the semi-diurnal constituent gives rise
to a tidal current equal to about 0.4 ms−1). Moreover, close to the critical conditions,
the wavelength of the most unstable perturbation (1900 m) is of the same order of
magnitude as those observed in the field, even though it turns out to be somewhat
larger. The results of figure 5 have been obtained setting θc = 0.047. To compare
present findings with those obtained by means of sediment transport predictors which
neglect the existence of a critical bed shear stress for the erosion of sand, figure 6
shows Γr versus δ for different values of r̂ , the other parameters being equal to those
of figure 5 but for θc = 0. Even for a vanishing value of θc, the model shows the
existence of a critical value r̂c of r̂ below which sand waves do not appear. For
θc = 0, r̂c turns out to be about 15. For a semi-diurnal tide and a water depth
equal to 21 m, this value of r̂c gives rise to a critical value of Um equal to about
0.11 ms−1, a value still not far from field observations. On the other hand for θc = 0,
the wavelength of the most unstable perturbation around the critical conditions tends
to infinity. This finding is not better than the results of previous analyses which
show that, when the tidal current is strong enough to cause the instability of the
flat bottom configuration, ultra-long waves tend to grow (see Komarova & Hulscher
2000 for a detailed discussion). However, realistic values of the parameters lead to
values of r̂ significantly larger than r̂c and in this case the most unstable perturbation
has a wavelength similar to those observed in the field. Indeed, figure 7, where the
dimensionless ratio between the wavelength Lmax of the most unstable perturbation
and the water depth H is plotted versus r̂ , shows that Lmax/H rapidly decreases
as soon as r̂ becomes larger than r̂c and the wavelength of the most unstable sand
waves agrees well with field observations. In figure 7 the results obtained with both
θc = 0.047 and θc = 0.0 are shown.



A note on tidally generated sand waves 185

20 40 60 80 100
0

40

80

120

160

200

r̂

�c = 0

0.047

Lmax

H

Figure 7. Dimensionless ratio between the wavelength Lmax of the most unstable perturbation
and the water depth H vs. the parameter r̂ . Model parameters are: µ̂ = 112.5, s = 1.02,
Ψ̂d = 0.0045 and γ = 0.05.

0 0.2 0.4 0.6 0.8 1.0

d

Cr

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Figure 8. Dimensionless growth rate Γr vs. the dimensionless wavenumber δ of the bottom
perturbation. Model parameters are: µ̂ = 112.5, s = 1.50, r̂ = 79, Ψ̂d = 0.0045, γ = 0.05 and
θc = 0.047.

The results described so far have been obtained assuming that the bottom roughness
is due to the presence of medium-size ripples. Sometimes field surveys show that
megaripples cover the sea bottom. In this case the bottom roughness is higher and
relationships (3.9a, b) show that the parameter s increases while µ̂ does not change.
It is then interesting to look at the amplification rate Γr for the same values of the
parameters as those of figure 3 but for s = 1.5 which is the value of the stress parameter
associated to megaripples (see figure 8). The value of δmax turns out to be about 0.8.
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Figure 9. As figure 8 except for µ̂ = 78.1 and s = 0.83.

In this case, at SW1 where H = 21 m, the model predicts the appearance of sand
waves characterized by a wavelength equal to 160 m. Therefore, considering roughness
size ranging from medium-size ripples to megaripples, the predicted wavelength of
sand waves falls between 160 m and 315 m, a range which agrees well with field
observations.

Looking at the critical conditions, it appears that the value of r̂c is only slightly
affected by s whereas the wavelength of the most unstable perturbation for r̂ close
to r̂c significantly decreases if s is increased. For example for µ̂ = 112.5, s = 1.5,
Ψ̂d = 0.0045, γ = 0.05 and θc = 0.047, it turns out that r̂c is about 24 and δmax is
about 0.11.

Similar results have been obtained for different values of the parameters. For
example, using a different eddy-viscosity profile (Van Rijn 1991) and assuming the
roughness to be induced by medium-size ripples, relationships (3.9a, b) give µ̂ = 78.12
and s = 0.83. With these values of µ̂ and s and fixing r̂ = 79, Ψ̂d = 0.0045, γ = 0.05
and θc = 0.047, figure 9 shows that δmax is about 0.55. For H = 21 m, this value of
δmax gives rise to a wavelength of sand waves equal to about 240 m.

In a particular site, i.e. for a fixed value of H , the conditions leading to the
appearance of sand waves have been analysed also keeping fixed the value of r̂ , i.e.
the strength of the tidal current, and considering different values of Ψ̂d , i.e. of the
grain size. From the results of figure 10, where Γr is plotted versus δ, it appears that
decreasing values of Ψ̂d lead to smaller values of Γr until for Ψ̂d below a critical value
Ψ̂dc, Γr is always negative and sand waves do not appear. Since Ψ̂dc is equal to about
0.0006, for a semi-diurnal tide of amplitude equal to 0.43 ms−1 and a water depth
equal to 21 m, the critical grain size above which sand waves do not appear is about
1mm. This finding qualitatively agrees with field observations which show that sand
waves develop only in sandy sea beds and they do not appear when a coarse sediment
covers the sea bottom. Finally figure 11, where Lmax/H is plotted versus Ψ̂d , shows
that a finer sediment causes the appearance of shorter sand waves. A quantitative
comparison between these theoretical findings and field observations is not possible
because of the lack of the latter.



A note on tidally generated sand waves 187

0 0.2 0.4 0.6 0.8 1.0

d

Cr

–0.10

–0.05

0

0.05

0.10

Wd = 0.0006
0.0015
0.0025
0.0035
0.0045
0.0055

Figure 10. Dimensionless growth rate Γr plotted versus the dimensionless wavenumber δ of
the bottom perturbation for different values of Ψ̂d . Model parameters are: µ̂ = 112.5, s = 1.02,
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Figure 11. Dimensionless ratio between the wavelength of the most unstable perturbation
and the water depth H vs. the parameter Ψ̂d . Model parameters are: µ̂ = 112.5, s = 1.02,
r̂ = 79 and γ = 0.05.

5. Discussion of the model findings
The present analysis supports the idea that sand waves in tide dominated coastal

areas arise because of an inherent instability of the flat bottom configuration subject
to tidal currents. The mechanism which leads to the growth of sand waves is that
suggested by Hulscher (1996a): the interaction of an oscillatory tidal current with a
bottom waviness gives rise to steady recirculating cells. When the steady streaming
close to the bed is directed from the troughs toward the crests of the bottom
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Figure 12. Dimensionless growth rate Γr vs. the dimensionless wavenumber δ of the bottom
perturbation for µ̂ = 112.5, s = 1.02, r̂ = 25, Ψ̂d = 0.0045, γ = 0.05, θc = 0.047 and N =1,
50. Larger values of N provide results coincident with those obtained setting N = 50.

perturbation and is strong enough to overcome gravity effects which tend to carry the
sediment from the crests toward the troughs, the perturbation grows and gives rise to
bottom patterns.

Present results provides a more accurate description of the phenomenon.
First, the use of a sediment transport formula which takes into account the size of

the sediment and the introduction of a critical bed shear stress for sediment motion
allows us to predict some aspects of the phenomenon which were not considered by
previous models. In fact, according to field observations, the analysis shows that a
coarse sediment, even when transported by the tidal current, does not give rise to
the appearance of sand waves. Moreover the introduction of a critical shear stress
for sediment movement allows a more realistic evaluation of the conditions leading
to sand waves appearance and gives rise to a finite value of the wavelength of the
most unstable perturbations when the parameters are close to their critical values.
However, perturbations characterized by vanishing values of δ are also unstable and
ultra-long bed forms grow too. A height- and flow-dependent model for the eddy
viscosity has been adopted by Komarova & Hulscher (2000) to resolve the problem
of the excitation of these very long sand waves. In the model used by Komarova
& Hulscher (2000) and Komarova & Newell (2000), the eddy viscosity changes in
time only for a term proportional to the amplitude of the bottom perturbation
and becomes time-independent for a flat bottom configuration and the changes of
turbulence structure taking place during the tidal cycle are not taken into account.
This first attempt of accounting for time variations of the eddy viscosity opens the
way to further investigations on the effects of the temporal and spatial structure of
turbulence on sand wave formation.

Secondly, the solution procedure holds for arbitrary values of the parameters of
the problem. In figure 12, the real part Γr of the amplification rate obtained with a
large values of N, such that larger values of N provide results coincident with those
displayed in the figure, is plotted versus δ along with its value computed with N =1,
i.e. considering just one harmonic component, for values of the parameters close to
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the critical conditions. By looking at the results of figure 12, it appears that values
of the parameters exist such that the method of harmonic truncation used by Hulscher
(1996a) provides a qualitative description of the phenomenon, but it is not accurate
from a quantitative point of view. The evaluation of Ψ by means of (3.10) requires
large values of N because the interaction between the oscillatory flow induced by tide
propagation and the bottom waviness gives rise to a cascade process which generates
many time harmonic components.

For all the results described in the paper, tests have been made to ensure that the
results do not depend on the value of N and cases characterized by realistic values
of the parameters can be handled without any problem.

Some aspects of the model can be improved. The actual value of the eddy viscosity,
which is introduced to model turbulent stresses, vanishes at the bottom and increases
moving far from it, before decreasing near the free surface. Since the model uses a
constant eddy viscosity, the well-established no-slip condition at the bottom should
be replaced by a partial slip condition. It follows that the model provides a fair
description of the flow far from the bottom but it fails to describes the velocity profile
close to the sea bed. Moreover, as already pointed out, a time-independent eddy-
viscosity model is not accurate at flow reversal. Therefore to have a more accurate
description of turbulence, spatial and temporal variations of the eddy viscosity should
be taken into account as well as the influence of bottom perturbations on turbulent
structure. The sediment transport predictor assumes that sediment moves only as
bed load. Rough estimates of the suspended load show that the latter can give a
significant contribution to the total load. Moreover the effects of wind waves are
not taken into account in the model, although it is known that in shallow seas the
oscillatory motion induced by wind waves close to the bottom can pick up sediment
which is then transported by the steady currents. Finally, quite often, the local flow
induced by tide propagation is not unidirectional and many tide constituents give rise
to a complex time development of the actual tidal current.

6. Conclusions
A simple mathematical model capable of reproducing the major features of sand

wave inception and growth is described. The present analysis reinforces the idea that
sand waves in tide dominated coastal areas arise because of an inherent instability of
the flat bottom configuration subject to tidal currents.

Notwithstanding the simplified description of turbulence and sediment transport,
the critical conditions for sand wave appearance are fairly estimated and, for realistic
values of the parameters, the present results allow the prediction of morphological
patterns characterized by wavelengths comparable with those observed in the field.

The present analysis removes some of the limitations of previous works on the
subject, even though there is room for further improvements. Moreover being based
on a linear approach, the model can predict only the initial stage of bed form growth.
In order to investigate the long-term behaviour, when the amplitude of sand waves
reach finite values, a nonlinear approach is required.
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