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Navier-Stokes EquationsNavier-Stokes Equations
∂U∗

∂t∗ + (U∗ · ∇∗)U∗ = −
1
ρ
∇∗P∗ + ν∇∗2U∗ (1)

∇∗ ·U∗ = 0 (2)Hypotesis:inompressible �owdynami pression ⇒ P∗ = p∗ − p0 − ρgxIn order to make dimensionless the equations, two sales are hosen:U∗ for the veloity and L∗ for the lengthPhD Course on Fluid Mehanis - Genoa, 23 June 2009 ()Flow at Low Reynolds Number Genoa, 23 June 2009 2 / 44



Navier-Stokes EquationsDimensionless Variablesx =
x∗L∗ U =

U∗U∗
P =

P∗

ρU∗
2 ∇ = L∗∇∗ t =

t∗U∗L∗ (3)Plugging (3) in (1) and (2) we obtain
∂U
∂t U∗

2L∗ + (U · ∇)UU∗
2L∗ = −∇P U∗

2L∗ + ν∇2UU∗L∗2 (4)
∇ · U = 0 (5)Inertial terms O (U∗

2L∗ ) Visous terms O (ν U∗L∗2 )PhD Course on Fluid Mehanis - Genoa, 23 June 2009 ()Flow at Low Reynolds Number Genoa, 23 June 2009 3 / 44



Navier-Stokes EquationsThe ratio between inertial terms and visous terms reads
(U∗

2L∗ ) /(ν U∗L∗2) =
U∗L∗
ν

= Re Reynolds Number (6)Dimensionless form of eqs (4)-(5) read
(

∂

∂t +U · ∇

)U = −∇P +
1Re∇2U (7)

∇ ·U = 0 (8)The system of eqs (7)-(8) is nonlinear and exat solutions are rare in anybranh of �uid mehanis. Solution existene and uniity has not beendemonstrated for the full problem, while it is possible to obtain exat so-lution when one or more of the parameter or variables in the problem issmall (or large)PhD Course on Fluid Mehanis - Genoa, 23 June 2009 ()Flow at Low Reynolds Number Genoa, 23 June 2009 4 / 44



Navier-Stokes EquationsAssuming the Reynolds number Re as the parameter, we an de�ne twodi�erent asesRe ≫ 1 ⇒ Boundary Layer TheoryRe ≪ 1 ⇒ Creeping Flows, SedimentationLow Reynolds Number Re ≪ 1Re is small beause veloity is small. It seems liit to neglet nonlinearterms of the veloity in Navier-Stokes equations ⇒ Stokes FlowRe is small beause the length sale is small. Body dimensions ouldnot in�uene the surrounding �ow: it seems liit to express inertialterms employing as onvetion veloity that of undisturbed �ow ⇒Oseen FlowPhD Course on Fluid Mehanis - Genoa, 23 June 2009 ()Flow at Low Reynolds Number Genoa, 23 June 2009 5 / 44



Flow at low Reynolds numberApplying the url (∇×) to (8) we obtain
∂ω

∂t + (U · ∇)ω − (ω · ∇)U =
1Re∇2ω (9)Assuming plane or axialsymmetri �ows (∂/∂z = 0 ; ∂/∂ϕ = 0) it is possible tosay thatvortiity has just one omponent along the z or ϕ diretionontinuity equation implies the existene of a stream funtion suh that

ω = −[L21]ψ Cartesian oord. [L21] = ∇
2 =

∂2
∂x2 +

∂2
∂y2 (10)Spherial oord. [L21] =

1r sin(ϑ)

»

∂2
∂r2 +

1r2 ∂2
∂ϑ2 −

1r2 os(ϑ)sin(ϑ)

∂

∂ϑ

– (11)Cylindrial oord. [L21] = ∇
2 =

»

∂2
∂r2 +

1r ∂

∂r +
1r2 ∂2
∂ϑ2 – (12)PhD Course on Fluid Mehanis - Genoa, 23 June 2009 ()Flow at Low Reynolds Number Genoa, 23 June 2009 6 / 44



Flow at low Reynolds number
(ω · ∇)U = 0 Three-dimensional term (strething)

ω · ∇ =

{

ωz ∂
∂z Cartesian, Cylindrial

ωϕ
1r sin(ϕ)

∂
∂ϕ

Spherial (13)
∇2ω = [L22]ω

[L22] =











∇2 Cartesian
∇2 Cylindrial
∇2 − 1r2 sin2(ϑ)

Spherial (14)
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Flow at low Reynolds number
Taking into aount steady �ows, i.e. ∂

∂t = 0 eq (9) beomes
(U · ∇) [L21]ψ =

1Re [L22][L21]ψ (15)or
(U · ∇)ω =

1Re [L22]ω (16)Remember that ω = −[L21]ψ
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Flow at low Reynolds numberProblem ould be solved as a power series of Re (Diret Perturbation)
ψ = ψ0Re0 + ψ1Rem + ψ2Re2m + ... (17)If Re ≪ 1 then visous e�ets are dominant ⇒ m > 0Solution at the �rst order for a ylinder and a sphere (Stokes)ParadoxesStokes: ylinder at the �rst orderWhitehead: sphere at seond orderThe presene of paradoxes shows that inertial e�ets are not negligible EV-ERYWHERE with respet to visous e�etsDiret solution is not valid far from the bodyPhD Course on Fluid Mehanis - Genoa, 23 June 2009 ()Flow at Low Reynolds Number Genoa, 23 June 2009 9 / 44



Stokes solution for sphereThe problem, in Cartesian Coordinates, is posed by
∇2ω|Cart = [L22]ω = 0 where [L22] = ∇2 − 1r2 sin2(ϑ)

(18)with the following boundary onditionsv∗ → U∗ x∗ → ∞ ; P∗ → P∗0 x∗ → ∞ (19)We solve the problem in dimensionless form using the followingdimensionless quantitiesRe = a∗U∗

ν
r = r∗a∗ U = U∗U∗Axial symmetry ⇒ ∂

∂ϕ
= 0 ; Uϕ = 0 ⇒ ω = (0, 0, ωϕ)PhD Course on Fluid Mehanis - Genoa, 23 June 2009 ()Flow at Low Reynolds Number Genoa, 23 June 2009 10 / 44



Stokes solution for sphere
We de�ne the stream funtion ψ = ψ (r , ϑ) suh thatUϕ = 0 ; Ur =

1r2 sin(ϑ)

∂ψ

∂ϑ
; Uϑ = −

1r sin(ϑ)

∂ψ

∂r (20)Stream funtion ψ veri�es diretly ontinuity equation:
∇ · U =

1r2 ∂∂r (r2Ur)+
1r sin(ϑ)

∂

∂ϑ
(sin(ϑ)Uϑ) = ... = 0 (21)
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Stokes solution for sphereLink between vortiity and stream funtion
ω = (∇×U)ϕ =

1r [ ∂∂r (rUϑ) −
∂

∂ϑ
(Ur )] =

=
1r [− 1sin(ϑ)

∂

∂r (ψ,r ) − 1r2 ∂

∂ϑ

(

ψ,ϑsin(ϑ)

)]

=

=
1r sin(ϑ)

[

∂2
∂r2 +

1r2 ( ∂2
∂ϑ2 −

os(ϑ)sin(ϑ)

∂

∂ϑ

)]

ψ =

= −
1r sin(ϑ)

[D2]ψ (22)where
[D2] =

[

∂2
∂r2 +

1r2 ( ∂2
∂ϑ2 −

os(ϑ)sin(ϑ)

∂

∂ϑ

)] (23)PhD Course on Fluid Mehanis - Genoa, 23 June 2009 ()Flow at Low Reynolds Number Genoa, 23 June 2009 12 / 44



Stokes solution for sphere
ω,r =

» 1r2 sin(ϑ)
[D2] − 1r sin(ϑ)

[D2],r–ψ =
1r sin(ϑ)

»1r [D2] − [D2],r–ψ (24)
ω,rr =

h

−
2r3 sin(ϑ)

[D2] + 1r2 sin(ϑ)
[D2],r + 1r2 sin(ϑ)

[D2],r − 1r sin(ϑ)
[D2],rriψ =

= 1r sin(ϑ)

ˆ

−
2r2 [D2] + 2r [D2],r − [D2],rr ˜ψ (25)

ω,ϑ =

» os(ϑ)r sin2(ϑ)
[D2] − 1r sin(ϑ)

[D2],ϑ–

ψ =
1r sin(ϑ)

» os(ϑ)sin(ϑ)
[D2] − [D2],ϑ–

ψ (26)
ω,ϑϑ =

»

− sin3(ϑ) − os2(ϑ)2 sin(ϑ)r sin4(ϑ)
[D2] +

os(ϑ)r sin2(ϑ)
[D2],ϑ +

os(ϑ)r sin2(ϑ)
[D2],ϑ

−
1r sin(ϑ)

[D2],ϑϑ

–

ψ =

=
1r sin(ϑ)

»

−
1 + os2(ϑ)sin2(ϑ)

[D2] + 2os(ϑ)sin(ϑ)
[D2],ϑ − [D2],ϑϑ

–

ψ (27)PhD Course on Fluid Mehanis - Genoa, 23 June 2009 ()Flow at Low Reynolds Number Genoa, 23 June 2009 13 / 44



Stokes solution for sphereFinally eq (18) reads
„

∇
2
−

1r2 sin2(ϑ)

«

ω = ω,rr +
2r ω,r +

1r2 ω,ϑϑ +
os(ϑ)r2 sin(ϑ)

ω,ϑ −
ωr2 sin2(ϑ)

= 0 (28)After some manipulation we obtain
»

[D2],rr +
1r2 „

[D2],ϑϑ −
os(ϑ)sin(ϑ)

[D2],ϑ«–

ψ = 0 (29)Equation for stream funtion ψ
=⇒ [D2][D2]ψ = 0 (30)

PhD Course on Fluid Mehanis - Genoa, 23 June 2009 ()Flow at Low Reynolds Number Genoa, 23 June 2009 14 / 44



Stokes solution for sphereBoundary Conditions for stream funtion ψFar from the body: U → 1 if r → ∞

{ Ur = os(ϑ) = 1r2 sin(ϑ)ψ,ϑUϑ = − sin(ϑ) = − 1r sin(ϑ)ψ,r (31)
{

ψ,ϑ = r2 sin(ϑ) os(ϑ) = r22 sin(2ϑ)

ψ,r = r sin2(ϑ)
(32)

{

ψ = −r4 os(2ϑ) + F (r) = r22 sin2(ϑ) + F ∗(r)
ψ = r22 sin2(ϑ) + G (ϑ)

(33)F ∗(r) = G (ϑ) = ost = 0 ⇒ ψ = r2 sin2(ϑ)/2 r → ∞PhD Course on Fluid Mehanis - Genoa, 23 June 2009 ()Flow at Low Reynolds Number Genoa, 23 June 2009 15 / 44



Stokes solution for sphereBoundary Conditions for stream funtion ψOn the surfae of the body: U→ 0 if r → 1
⇒ ψ,r = ψ,ϑ = 0 r = 1Separation of variables

ψ = sin2(ϑ)f (r) (34)Finally
[D2]ψ = sin2(ϑ)f,rr +

1r2 [(sin2(ϑ)
)

,ϑϑ
−

os(ϑ)sin(ϑ)

(sin2(ϑ)
)

,ϑ

] f (35)PhD Course on Fluid Mehanis - Genoa, 23 June 2009 ()Flow at Low Reynolds Number Genoa, 23 June 2009 16 / 44



Stokes solution for sphereKnowing that
(sin2(ϑ)

)

,ϑ
= 2 sin(ϑ) os(ϑ) = sin(2ϑ) ; (sin2(ϑ)

)

,ϑϑ
= 2 os(2ϑ)Equation (35) an be written as

[D2]ψ = sin2(ϑ)f,rr +
1r2 [2 os(2ϑ) − 2 os2(ϑ)

] f =

= sin2(ϑ)f,rr +
1r2 [2− 4 sin2(ϑ) − 2 os2(ϑ)

] f =

= sin2(ϑ)

[

∂2
∂r2 −

2r2 ] f = sin2(ϑ)[R2]f (36)
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Stokes solution for sphereAssuming g(r) = [R2]f A = [D2]ψ A = sin2(ϑ)g(r) (37)we obtain
[D2][D2]ψ = [D2]A = sin2(ϑ)[R2]g = sin2(ϑ)[R2][R2]f = 0 (38)

[R2][R2]f = [R2]g = 0 (39)Boundary onditions for f 1f →
r22 r → ∞ (40)f = f,r = 0 r = 1 (41)1ψ = r2 sin2(ϑ)/2PhD Course on Fluid Mehanis - Genoa, 23 June 2009 ()Flow at Low Reynolds Number Genoa, 23 June 2009 18 / 44



Stokes solution for sphereSolution proedure for [R2][R2]f = [R2]g = 0
[R2]g =

[

∂2
∂r2 −

2r2] g = g,rr − 2r2 g = 0 (42)General solution for g an be written as1 g = 1r2 + 2r−1
⇒ [R2]f = g = 1r2 + 2r−1 (43)Finally the general solution for f isf = 1r4 + 2r2 + 3r + 4r−1 (44)1Verify it!PhD Course on Fluid Mehanis - Genoa, 23 June 2009 ()Flow at Low Reynolds Number Genoa, 23 June 2009 19 / 44



Stokes solution for sphereBoundary onditions de�ne1 = 0 2 =
12 (stream funtion at ∞) (45)

{ 12 + 3 + 4 = 0 3 = − 34 f = 0 for r → 11 + 3 − 4 = 0 4 = 14 f,r = 0 for r → 1 (46)Finally f = r22 − 34 r + 14r ⇒ ψ = r2 sin2(ϑ)
[12 − 34 r−1 + 14 r−3]

ψ is symmetri with respet to an orthogonal plane of UPhD Course on Fluid Mehanis - Genoa, 23 June 2009 ()Flow at Low Reynolds Number Genoa, 23 June 2009 20 / 44



Stokes solution for sphereVeloity Field Ur = os(ϑ)

[1− 32 r−1 +
12 r−3] (47)Uϑ = − sin(ϑ)

[1− 34 r−1 − 14 r−3] (48)The perturbation of the �ow �eld, given by the vetor U−U, is dumped asr−1, i.e. very slowly: the �ow �eld is modi�ed even far away from the body.Basially the �ow �eld is perturbed by visous di�usion of the vortiity whihis generated at the wall of the rigid body
PhD Course on Fluid Mehanis - Genoa, 23 June 2009 ()Flow at Low Reynolds Number Genoa, 23 June 2009 21 / 44



Stokes solution for sphereVortiity
ω = − 1r sin(ϑ) [D2]ψ = −1r sin(ϑ)[R2]f =

= − sin(ϑ)r [f,rr − 2r2 f ] =

− sin(ϑ)r [1 + 12r3 − 2r2 ( r22 − 34 r + 14r )] = −32 sin(ϑ)r2 (49)Vortiity is dumped as r−2. The only term of ψ ontributing to vortiity isthe term proportional to r , known as the Stokeslet. The other two termsrepresent irrotational motion (uniform stream and dipole)
PhD Course on Fluid Mehanis - Genoa, 23 June 2009 ()Flow at Low Reynolds Number Genoa, 23 June 2009 22 / 44



Stokes solution for spherePressure
∇P =

1Re∇2U = −
1Re∇× ω (50)

∂P
∂r = −

1Re 1sin(ϑ)

∂ (ω sin(ϑ))

∂ϑ
= −

1Re 1sin(ϑ)
[ω,ϑ sin(ϑ) + ω os(ϑ)] =

= −
1Re 1r [− 32r2 os(ϑ) +

os(ϑ)sin(ϑ)

(

−
32 sin(ϑ)r2 )]

=
1Re 1r3 3 os(ϑ) (51)

⇒ P = −
1Re 32 os(ϑ)r2 + F (ϑ) (52)
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Stokes solution for sphere1r ∂P∂ϑ =
1Re 1r ∂ (ωr)

∂r =
1Re 1r [ω + rω,r ] =

=
1Re 1r (−32 sin(ϑ)

)[ 1r2 −
2r2 ] =

1Re 32r3 sin(ϑ) (53)
⇒ P = −

1Rer2 32 os(ϑ) + G (r) (54)Cuopling eqs (52) and (54) we obtainP = P −
32 1Re os(ϑ)r2 from B.C. =⇒ P = P0 − 32 1Re os(ϑ)r2 (55)As for vortiity, just the rotational term in the solution gives a ontribution for thepressure. Pressure is not symmetri: there is a net ontribution along the diretionof motionPhD Course on Fluid Mehanis - Genoa, 23 June 2009 ()Flow at Low Reynolds Number Genoa, 23 June 2009 24 / 44



Stokes solution for sphereEvaluation of drag of the sphereWe must evaluate Trr and Trϑ ating on a plane of normal r̂ (the spheresurfae)D∗ = ρU∗
2a∗22π ∫ 2pi0 {[Trr ]r=a os(ϑ) − [Trϑ]r=a sin(ϑ)} sin(ϑ)dϑ (56)where Trr = −P +

2ReDrr Trϑ =
2ReDrϑ (57)Trr |r=1 = −P0 +

32 1Re os(ϑ) Trϑ|r=1 = −
1Re 32 sin(ϑ) (58)
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Stokes solution for sphere
D∗ = ρU∗

2a∗22π R 2π0 ˘`

−P0 + 32 1Re os(ϑ)
´ os(ϑ) + 1Re 32 sin2(ϑ)

¯ sin(ϑ)dϑ =

= ρU∗
2a∗22π h

−P0 sin2(ϑ)2 + 32 1Re “

−
os3(ϑ)3 ”

+ 1Re 32 “

− os(ϑ) + os3(ϑ)3 ”iπ0 =

= ρU∗
2a∗22π ˆ 1Re + 2Re ˜

= 6πµU∗a∗ (59)Drag Coe�ientCD =
D∗12ρU∗
2a∗2π =

12νU∗a∗ =
24Re if Re =

U∗2a∗
ν

(60)
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Stokes solution for sphereA simple appliation: small partile fall veloity in a �uidApplying fore balaneMass fore 43πa∗3 ∗ (ρs − ρ) ∗ g∗ =
12ρU∗

2
πa∗2CD Drag fore (61)

⇒ U∗ =
29 ρs − ρ

ρ
g∗

a∗2
ν

(62)The orresponding value of the Reynolds number for a sphere falling withits terminal veloity isRe =
U∗2a∗
ν

=
49 a∗3g∗

ν

ρs − ρ

ρ
(63)PhD Course on Fluid Mehanis - Genoa, 23 June 2009 ()Flow at Low Reynolds Number Genoa, 23 June 2009 27 / 44



Stokes solution for ylinderThe problem is posed by
∇2ω = 0 (64)We solve the problem in dimensionless form using the followingdimensionless quantitiesRe = a∗U∗

ν
r = r∗a∗ U = U∗U∗Axial symmetry ⇒ ∂

∂z = 0 ; Uz = 0 ⇒ ω = (0, 0, ωz)Vortiity ωz
ωz = 1r [(rUϑ),r − Ur ,ϑ] = 1r [−ψ,r − rψ,rr − 1r ψ,ϑϑ

]

=

= −
[

ψ,rr + 1r ψ,r + 1r2ψ,ϑϑ

]

= −∇2ψ (65)PhD Course on Fluid Mehanis - Genoa, 23 June 2009 ()Flow at Low Reynolds Number Genoa, 23 June 2009 28 / 44



Stokes solution for ylinderEquation for stream funtion ψ
∇2∇2ψ = 0 (66)Boundary onditions for ψ

ψ → r sin(ϑ) if r → ∞ ; ψ,r = ψ,ϑ = 0 if r = 1 (67)Separation of variables ⇒ ψ = sin(ϑ)f (r)
∇2ψ = sin(ϑ)f,rr +

1r f,r − 1r2 sin(ϑ)f = sin(ϑ)[R2]f (68)where [R2] = ∂2
∂r2 + 1r ∂

∂r − 1r2Finally
∇4ψ = sin(ϑ)[R2][R2]f = 0 ⇒ [R2][R2]f = 0 (69)PhD Course on Fluid Mehanis - Genoa, 23 June 2009 ()Flow at Low Reynolds Number Genoa, 23 June 2009 29 / 44



Stokes solution for ylinderBoundary onditions for ff → r if r → ∞ ; f = f,r = 0 if r = 1 (70)The solution for the ylinder for f an be written asf = 1r3 + 2r log(r) + 3r + 4r−1 (71)Boundary ondition at in�nity imposes 1 = 0 and 3 = 1. Let assign just1 and let proeed with b.. on the surfae of the ylinder










3 + 4 = 0 3 = − 22 f = 0 for r → 12 + 3 − 4 = 0 4 = 22 f,r = 0 for r → 1 (72)Finally
ψ = 2 sin(ϑ)

[r log(r) − 12 r + 12 r−1]PhD Course on Fluid Mehanis - Genoa, 23 June 2009 ()Flow at Low Reynolds Number Genoa, 23 June 2009 30 / 44



Stokes solution for ylinder
ψ = 2 sin(ϑ)

[r log(r) − 12 r +
12 r−1] (73)Seond and third terms are irrotational (uniform stream and dipole). Firstterm represents rotational ontribution, known as StokesletStokes' Paradox (1851)The boundary ondition at in�nity an not be omplied for any value of 2.The veloity is not limited at in�nity. No steady slow �ow exists past aylinderIn ontrast with the solution for the sphere, the stokeslest is now more singu-lar at in�nity than uniform stream and predits veloities that are unboundedfar from the bodyPhD Course on Fluid Mehanis - Genoa, 23 June 2009 ()Flow at Low Reynolds Number Genoa, 23 June 2009 31 / 44



Whitehead ParadoxAnalogous di�ulties arise with three-dimensional bodies, though they aredeferred to the seond approximation for �nite shapes: usually �ow distur-banes are weaker in three dimensions than twoWhitehead's Paradox (1889)The solution for the seond order approximation to Stokes' solution for un-bounded uniform �ow past three-dimensional body does not existThe full Navier-Stokes equations give
[D4]ψ =

Rer2 sin(ϑ)

(

ψ,ϑ
∂

∂r − ψ,r ∂
∂ϑ

+ 2os(ϑ)sin(ϑ)
ψ,r − 2r ψ,ϑ

)

[D2]ψ (74)where on the right handside onvetive terms are presentPhD Course on Fluid Mehanis - Genoa, 23 June 2009 ()Flow at Low Reynolds Number Genoa, 23 June 2009 32 / 44



Whitehead ParadoxIntroduing a diret perturbation ψ = ψ0Re + ψ1Re + O(Re2) of Re andplugging it in (74) we obtain the solutions at di�erent orders
O
(Re0) [D4]ψ0 = 0 ψ0 = sin2(ϑ)

( 12 r2 − 34 r + 14 r−1) (75)
O
(Re1) [D4]ψ1 = − 94 (2r−2 − 3r 3 + r−5) sin2(ϑ) os(ϑ) (76)A partiular integral of (76) satisfying surfae ondition is found to be

−
332 (2r2 − 3r + 1− r−1 + r−2) sin2(ϑ) os(ϑ) (77)However veloity does not behave properly at in�nity and no omplementary fun-tion an be added to orret it. Whitehead postulated the rise of disontinuitiesassoiated with the formation of a dead-water wake. This explanation is known tobe inorretPhD Course on Fluid Mehanis - Genoa, 23 June 2009 ()Flow at Low Reynolds Number Genoa, 23 June 2009 33 / 44



Oseen ApproximationOseen (1910) showed how Stokes and Whitehead paradoxes arise from thesingular nature of the �ow at low Reynolds number. He showed that on-vetive e�ets an not be negleted everywhere in the domainConvetive terms ∝ UrUr ,r Visous Terms ∝ 1ReUr ,rrCylinderUr =
1r ψ,ϑ =

1r  os(ϑ)

(12 r−1 − 12 r + r log(r)) =

=  os(ϑ)

(12 r−2 − 12 + log(r)) (78)PhD Course on Fluid Mehanis - Genoa, 23 June 2009 ()Flow at Low Reynolds Number Genoa, 23 June 2009 34 / 44



Oseen Approximation
limr→∞

UrUr ,r = limr→∞

(12 r−2 − 12 + log(r))(−r−3 + r−1) =

= limr→∞

( log(r)r ) (79)limr→∞

Ur ,rr = limr→∞

(3r−4 − r−2) = limr→∞

(

−r−2) (80)Ratio of negleted terms to those retainedlimr→∞

∣

∣

∣

∣

onvetivevisous ∣

∣

∣

∣

= limr→∞

Re r log(r) (81)
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Oseen ApproximationSphere Ur = os(ϑ)

[1− 32 r−1 +
12 r−3]limr→∞

UrUr ,r = limr→∞

(1− 32 r−1 +
12 r−3)(32 r−2 − 32 r−4) =

= limr→∞

(32 r−2) (82)limr→∞

Ur ,rr = limr→∞

(

−3r−3 + 6r−5) = limr→∞

(

−3r−3) (83)Ratio of negleted terms to those retainedlimr→∞

∣

∣

∣

∣

onvetivevisous ∣

∣

∣

∣

= limr→∞

12 r Re (84)PhD Course on Fluid Mehanis - Genoa, 23 June 2009 ()Flow at Low Reynolds Number Genoa, 23 June 2009 36 / 44



Oseen Approximation
Stokes approximation beomes invalid one Re r is of the order of unity. Thisours at distanes of the order of ν/U∗, meaning that the visous length isthen the signi�ant referene dimensionRe r ∼ O (1) ⇒

r∗a∗ ∼
νU∗a∗ (85)In three dimensional �ow the di�ulty tends to be onealed beause the�rst approximation is su�iently well behaved
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Oseen SolutionOseen approximated the onvetive terms by their linearized forms valid farfrom the body, where the di�ulties arises. This onstitutes an ad houniformization of a non uniform diret perturbationuu,x + vu,y + wu,z =

{ 0 StokesUu,x Oseen (86)The Oseen's equations provide a unformly valid �rst approximation for eitherplane or three-dimensinal �ow at low Reynolds numberAssuming U = U0 + u
(U · ∇)U = (U0 · ∇) (U0 + u) + (u · ∇) (U0 + u) (87)
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Oseen SolutionBeing U0 an uniform �ow we obtain
∇2U0 = 0 ; (U0 · ∇)U0 = (u · ∇)U0 = 0 (89)The problem is as the previous one, with the following extra terms

(U0 · ∇) u (u · ∇)u = 0 (90)The seond term is still negligible with respet to visous termsUr = os(ϑ)

[1− 32 r−1 +
12 r−3] = U0r + ur (91)
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Oseen Solution
limr→∞

∣

∣

∣

∣

∣

urur ,r1Re ur ,rr ∣∣∣∣∣ = limr→∞

∣

∣

∣

∣

∣

−94r−31Re (−3r−3) ∣∣∣∣∣ =
34Re ≪ 1 (92)limr→∞

∣

∣

∣

∣

∣

U0rur ,r1Re ur ,rr ∣∣∣∣∣ = limr→∞

∣

∣

∣

∣

∣

32 r−2 − 32 r−41Re (−3r−3 + 6r−5) ∣∣∣∣∣ = 12Re r ∼ O(1) (93)When r → 1, i.e. lose to the body surfae, both terms vanish and onvetiveterms are negigible. In this ase Oseen's solution and Stokes' solution areoinident
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Oseen SolutionAlthough Oseen's equations are linear, their solution is su�iently omplexthat no seond approximations are known. At the �rst order ofapproximation for the sphere the stream funtion reads
ψ0 =

(12 r2 +
14 r−1) sin2(ϑ) −

3Re (1 + os(ϑ))

·

[1− exp(−Re r4 (1− os(ϑ))

)] (94)if r → ∞ ψ0 →
12 r2 sin2(ϑ) (95)
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Oseen Solution
if r → 1 exp(−Re r4 (1− os(ϑ))

)

→ 1− Re r4 (1− os(ϑ)) (96)
ψ0 →

(12 r2 +
14 r−1) sin2(ϑ) −

34 r (1− os(ϑ)) (1 + os(ϑ)) (97)
ψ0 →

(12 r2 +
14 r−1 − 34 r) sin2(ϑ) Stokes Solution (98)As done by Oseen, Lamb (1911) obtained the solution for the ylinder
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Oseen SolutionFinally, one derived the solution for the sphere and the ylinder it ispossible to evaluate drag oe�ientsSphere CD =
24Re [1 +

316Re] (99)Cylinder CD =
8πRe log (7.4/Re) (100)
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Oseen Solution
Seond approximation far from sphereImprovement of Stokes' solution applying the method of MathedAsymptoti Expansion (Kaplun and Lagerstrom, 1957; Proudman andPearson, 1957)More details in Perturbation Methods in Fluid Mehanis, Milton VanDyke, 1975
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