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Navier-Stokes Equations

Navier-Stokes Equations

oU*
ot*

1
HUT VU= VP yVRUT (1)
V. U* =0 (2)

Hypotesis:
@ incompressible flow

@ dynamic pression = P* = p* — pg — pgx

In order to make dimensionless the equations, two scales are chosen:
U* for the velocity and L* for the length
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Navier-Stokes Equations

Dimensionless Variables

X U P* t*U*
— — P = V = [*V* —

Plugging (3) in (1) and (2) we obtain

ou U’ U (UFE U*
= : - VP 2 4
9 I+ + (U V)UL* \Y4 T + vV UL*2 (4)
V-U=0 (5)
. U*z . U*
Inertial terms O <?> Viscous terms O (VL—2)
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Navier-Stokes Equations

The ratio between inertial terms and viscous terms reads

u*’ U UrL*
( [ ) / <VF> = = Re  Reynolds Number (6)

14

Dimensionless form of eqs (4)-(5) read

B) B 1,
(E+U.v>u_—vp+ﬁvu (7)

V-U=0 (8)

The system of eqs (7)-(8) is nonlinear and exact solutions are rare in any
branch of fluid mechanics. Solution existence and unicity has not been
demonstrated for the full problem, while it is possible to obtain exact so-
lution when one or more of the parameter or variables in the problem is
small (or large)
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Navier-Stokes Equations

Assuming the Reynolds number Re as the parameter, we can define two
different cases

@ Re > 1 = Boundary Layer Theory
@ Re <« 1 = Creeping Flows, Sedimentation

Low Reynolds Number Re <« 1 J

@ Re is small because velocity is small. It seems licit to neglect nonlinear
terms of the velocity in Navier-Stokes equations = Stokes Flow

@ Re is small because the length scale is small. Body dimensions could
not influence the surrounding flow: it seems licit to express inertial

terms employing as convection velocity that of undisturbed flow =
Oseen Flow
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Flow at low Reynolds number

Applying the curl (Vx) to (8) we obtain

ow 1,
E+(U~V)w—(w-V)U—%VW 9)
Assuming plane or axialsymmetric flows (0/0z =0; 90/0¢ = 0) it is possible to
say that

@ vorticity has just one component along the z or ¢ direction

@ continuity equation implies the existence of a stream function such that
w=—[g5]Y
1

2 2
Cartesian coord.  [£3] = V2 = % + 88_)/2 (10)

1 ”® 190 1 cos(¥) 0

27 - |12 - vy = v
[£1] = rsin(v) {8r2 2992 r2 sin(v) 819] (11)
o ? 19 198
27 2 _ | Y - -
Cylindrical coord. [£7] =V~ = [8r2 + oy + pE 8192]

Spherical coord.

(12)
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Flow at low Reynolds number

@ (w-V)U=0 Three-dimensional term (stretching)

V= { wza% 1 Ca(ratesian, C}./Iindrical 13)
W rsin(p) g Spherical
o Viw = [€flw
\% Cartesian
[Q, 1= % Cylindrical (14)
V2 - ﬁz(ﬂ) Spherical
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Flow at low Reynolds number

@ Taking into account steady flows, i.e. % =0 eq (9) becomes

(U-V) g1y = o [2Bedly (15)
(U V)w= o [ (16)

Remember that w = —[£2]y
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Flow at low Reynolds number

Problem could be solved as a power series of Re (Direct Perturbation)

¥ = gRe® 4+ 1 Re™ + 1 Re®*™ + ... (17)

If Re < 1 then viscous effects are dominant = m > 0 )

Solution at the first order for a cylinder and a sphere (Stokes)
Paradoxes

@ Stokes: cylinder at the first order

@ Whitehead: sphere at second order
The presence of paradoxes shows that inertial effects are not negligible EV-

ERYWHERE with respect to viscous effects
Direct solution is not valid far from the body
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Stokes solution for sphere

The problem, in Cartesian Coordinates, is posed by

1
Vewlcart = [E3lw =0 where  [£5] =V — ——— 18
|C3I’t [ 2] w [ 2] r2 S|n2(’l9) ( )
with the following boundary conditions
vi—-U" x*— o0 ; P*— Py x*— o0 (19)
We solve the problem in dimensionless form using the following
dimensionless quantities
_ *U* _ * _ U*
Re = r=5% U= J
o Axial symmetry = % =0,; Uy,=0 = w=(0,0,w,)
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Stokes solution for sphere

@ We define the stream function ¢ = v (r, ) such that
1 oY U 1 o

_0. U -=_ L 9. L . 2
Up=0: U r?sin(¥) 00 v rsin(9) or (20)
Stream function 1) verifies directly continuity equation:
10 2 1 9
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Stokes solution for sphere

@ Link between vorticity and stream function

o, =L 2] -

o [ sm1(19) 88r () = 712% <si1r<}&f9)>] =
= —rsiiw) [D?]4 (22)
0= 5+ 5 (5 - Sy a0 @
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Stokes solution for sphere

o= |0~ s 0] v = s B0t -0 )0 e

Wi = |~ 2 [P+ b D% + b (D% — sy (D v =
— o [-2[07+ 207 S (25)
_ | cos(¥) 2y 1 _ cos(¥) 21 12
Y= [rsinz(ﬁ)[D ] rsin(ﬁ)[ 1 ]d) rsm(19) Lin(ﬁ) o ]’4 v (26)
_ [—sin®(¥) — cos®()2sin(4) cos(ﬂ) cos(¥) 2
Wi = { rsin(0) [D I+ 2(19)[ ]ﬁ + rsin2(19) (D70
1 2
o] v -
1 _1+c052(19) 2 cos(19) _
= ron) | sy P12y P — 0 ]M} (27)
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Stokes solution for sphere

Finally eq (18) reads

cos(9)

w

VZ—# w=w —|—gw +iw + w9 — =
r2sin?(9)) T T T EET T R TG @) Y T rsin?(9)

After some manipulation we obtain

[[Dzl," + r1—2 ([DZ],M - Z’:((g)) [DZ],ﬂ)} =0

Equation for stream function 1

= [D[P*lv=0

0

(29)

(30)J
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Stokes solution for sphere
Boundary Conditions for stream function 1

@ Far from the body: U — 1if r — o0

U, = cos(9) = #nw)wﬂg
U19 = —Sln(’l9) = —m’lp’r

.9 = r?sin(9) cos(¥) = 5 sin(20)
V., = rsin?(v)

P = —zr4 cos(29) + F(r) = ; sin?(9) + F*(r)
Y = Ssin’(9) + G(v)

F*(r)=G(W¥) =cost=0 = ¢ =r?sin®(¥9)/2 r—o0

(32)

(33)
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Stokes solution for sphere

Boundary Conditions for stream function 1

@ On the surface of the body: U —0ifr — 1

= U,=ty=0 r=1

@ Separation of variables
Y = sin?(9)f(r) (34)
Finally

(D2 = sin®(9)f,r + % (sin*(9)) 4y — :):((g)) (sin*(9)) 4| f (35)

)
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Stokes solution for sphere

Knowing that
(sinz(ﬁ‘))ﬂ9 = 2sin(¥) cos(V) = sin(29) ; (sin2(19))7m9 = 2cos(29)
Equation (35) can be written as
[D?]) = sin®(9)f  + r_12 [2 cos(29) — 2 cos?(V)] f =
=sin®(9)f. + 712 [2 — 4sin®() — 2 cos? (V)] f =

= sin?(¥) L,?—:z - %} f = sin?(V)[R?]f (36)
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Stokes solution for sphere

Assuming
g =[Rf  A=[D]y A=sin*(9)g(r) (37)
we obtain
[D?][D?]¢ = [D?]A = sin®(9)[R?]g = sin*(V)[R?][R?]f =0 (38)
[RA[R?)f = [R?g = 0 (39) |
@ Boundary conditions for f1
2
f— > r— oo (40)
f=f=0 r=1 (41)
Ly = r?sin®(9)/2
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Stokes solution for sphere

@ Solution procedure for [R?][R?]f = [R?]g = 0

92 2 2
[R’lg = [W_ﬁ]g:g,”_ﬁg:o

1 1

General solution for g can be written as’ g = c;r2 + cr™

S [Rf=g=car*+cort
Finally the general solution for f is

f=cr*+or’+ c3r + car !

Werify it!
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Stokes solution for sphere

@ Boundary conditions define

1 .
a=0 o= 5 (stream function at o)

%+C3+c4=0 C3=—% f=0 for r—1
l1+c3—¢c =0 C4=% f,ZO for r—1

Finally
2 . 1 3, — 1 -
f=C-3r+2 =  ¢=rZsin’(W)[5 - 3r 1+ 179

1 is symmetric with respect to an orthogonal plane of U
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Stokes solution for sphere

Velocity Field
U, = cos(9) [1 - §r_1 + lr_g'] (47)
2 2
Uy = — sin(¥) [1 _ %r_l _ %r_‘?’] (48)

The perturbation of the flow field, given by the vector U — U, is dumped as
r~1 i.e. very slowly: the flow field is modified even far away from the body.
Basically the flow field is perturbed by viscous diffusion of the vorticity which

is generated at the wall of the rigid body
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Stokes solution for sphere

Vorticity

W=~ (DY = — 7 sin(V)[R?]f =
= - = 3] =

sm(ﬂ) [l_i_ﬁ_ r% (g B %r_’_%)} _ _%sin(ﬂ)

(49)

Vorticity is dumped as r=2. The only term of ¢ contributing to vorticity is
the term proportional to r, known as the Stokeslet. The other two terms

represent irrotational motion (uniform stream and dipole)
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Stokes solution for sphere

Pressure )

VP = Re

1
2 —_
VU = ReVXw

op 1 1 d(wsin(@) 1 1 [w,s sin(¥) 4 w cos(V)] =

dr  Resin(¥) 90 " Resin(v)
11 3 cos(¥) 3sin(¥)\] _ 1 1
" Rer| 2r cos(?) + sin(v) <_§ r ~ Re r33cos(19)
1 3 cos(¥)
= " Re2 r? )
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Stokes solution for sphere

LoP_ 110(n) 11
r99  Rer or  Rer T
11 3 . 1 2 1 3 .
o Pt 3 sw)+ 6(r) (54)
T Rer?2“®
Cuopling egs (52) and (54) we obtain
B 3 1 cos(?) B 3 1 cos(¥)

P,CP_ER—e 3 fromB.C. = P = 0" S Re 2 (55)

As for vorticity, just the rotational term in the solution gives a contribution for the
pressure. Pressure is not symmetric: there is a net contribution along the direction
of motion
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Stokes solution for sphere

Evaluation of drag of the sphere

We must evaluate T, and T,y acting on a plane of normal 7 (the sphere
surface)

2pi
D* = pU* a2 0 ’ {[Torl,—, cos(d) — [Trg],—, sin(¥)} sin(9)d (56)

where

2 2
Trr =—-P+ R_eDrr Tr19 = R_eDrﬂ (57)

31 1
Trlr=1 = —FPo t S Re cos(ﬁ) Trolr=1 = “Re? 5'“(”‘9) (58)
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Stokes solution for sphere

D* = pU** 221 f:" {(=Po+ 2 & cos(¥9)) cos(V) + A 2 sin®(9) } sin(9)d¥Y =
— pU*22*227r|: Po sin (19) + :Rle (_%(19)) + Rl : (_ COS(’lg)—k cos (19))]0 _

=pU”a"2r [ + &] =6muU*a* (59)
Drag Coefficient
D~ 12v 24 Ur2a*
= 1pU*a* U*a*  Re R v (60)J
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Stokes solution for sphere

@ A simple application: small particle fall velocity in a fluid

Applying force balance

4 1
Mass force §7ra*3 x(ps —p)xg" = 5pU"‘27ra”‘2 Cp Drag force (61)

2 ps — *?
N u>'<:§"5p’io,—>'<"’7 (62)

The corresponding value of the Reynolds number for a sphere falling with
its terminal velocity is

_ U2 4a%g ps—p

R 63
¢ v 9 v p (63)
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Stokes solution for cylinder

The problem is posed by
V2w =0

We solve the problem in dimensionless form using the following
dimensionless quantities

(64)

@ Axial symmetry = % =0

o Vorticity w,

=1 [(ruﬁ) Uro| = L (=t = 1t — 2 9] =
[7/) T Q;[) lz?,/) 19] = —V2Q,[)
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Stokes solution for cylinder

Equation for stream function v

VAV =0 (66)
Boundary conditions for v
Y —rsin(¥) if r—oo ; Yr=1y=0 if r=1 (67)
Separation of variables = W = sin(9)f(r)
V20 = sin(@)fe ++Fr — 5 sin(9)F = sin(9)[R]" (68)
where [R?] = g—; + %% — riz
Finally
V4% =sin(N[R?][R}]f =0 = [R?[R?]f =0 (69)
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Stokes solution for cylinder

@ Boundary conditions for f
f—r if r—oo; f=f=0if r=1 (70)
The solution for the cylinder for f can be written as
f=cr®+crlog(r)+cr+crt (71)

Boundary condition at infinity imposes ¢; = 0 and ¢z = 1. Let assign just
c; and let proceed with b.c. on the surface of the cylinder

ag+c=0 =2 f=0 for r—1
(72)
CG+c3—¢c=0 C =% fr=0 for r—1
Finally
Y = csin(V) [rlog(r) — 3r+ 4r71] J
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Stokes solution for cylinder

¥ = cpsin(9) |rlog(r) — %r + %r_l (73)

Second and third terms are irrotational (uniform stream and dipole). First
term represents rotational contribution, known as Stokeslet

Stokes’ Paradox (1851)

The boundary condition at infinity can not be complied for any value of .

The velocity is not limited at infinity. No steady slow flow exists past a
cylinder

In contrast with the solution for the sphere, the stokeslest is now more singu-

lar at infinity than uniform stream and predicts velocities that are unbounded
far from the body
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Whitehead Paradox

Analogous difficulties arise with three-dimensional bodies, though they are
deferred to the second approximation for finite shapes: usually flow distur-
bances are weaker in three dimensions than two

Whitehead's Paradox (1889)

The solution for the second order approximation to Stokes’ solution for un-
bounded uniform flow past three-dimensional body does not exist

The full Navier-Stokes equations give

4,  Re 0 0 cos(19) 2 5
[D°]y = Tn(ﬁ) <¢,195 - ?ﬁ,r% + 2W¢,r - 7¢,z9> (D7) (74)

where on the right handside convective terms are present
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Whitehead Paradox

Introducing a direct perturbation 1) = pRe + 11 Re + O(Re?) of Re and
plugging it in (74) we obtain the solutions at different orders
O (Re®) [D*po =0 o =sin’*(0) (3r> — 3r+3r7t) (75)
O (Re') [D*|yhr = —2 (2r72 —3r* + r=5) sin?(¥) cos(d)) (76)

A particular integral of (76) satisfying surface condition is found to be
3
-3 (2r* —=3r+1—r~' + r?)sin?(¥) cos(¥) (77)

However velocity does not behave properly at infinity and no complementary func-
tion can be added to correct it. Whitehead postulated the rise of discontinuities
associated with the formation of a dead-water wake. This explanation is known to
be incorrect
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Oseen Approximation

Oseen (1910) showed how Stokes and Whitehead paradoxes arise from the
singular nature of the flow at low Reynolds number. He showed that con-
vective effects can not be neglected everywhere in the domain

Convective terms o< U, U, , Viscous Terms o< %U,,,, J

o Cylinder

_1,. 21 -1 1 _
Ur = ri/w = rccos(ﬁ) <2r 2r—FrIog(r)) =

= ccos(¥) (%r_2 - % + log(r)

N———

(78)

PhD Course on Fluid Mechanics - Genoa), Flow at Low Reynolds Number Genoa, 23 June 2009 34 / 44



Oseen Approximation

A, UrUre = Jim, <§2 -3+ Iog(r)) (~rP )=
= |im | =2
(Iog(r)) (79)

r—o0o r

lim Uy, = lim (3r_4—r_2) = lim (—r_z) (80)
r—oQ r—oo r—oo
Ratio of neglected terms to those retained
. | convective :
lim | ——————| = lim Re rlog(r) (81)
r—oo | viscous r—oo
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Oseen Approximation

@ Sphere

U, = cos(¥9) [1 - gr_l + %r‘ﬂ

1
fim Ut = i (13745 (3= 3 =
= lim <§r—2) (82)
r—oo \ 2

lim Urrr = lim (=3r2+6r°) = lim (=3r3) (83)

r—o0o — 00 r—oo

Ratio of neglected terms to those retained

ti 1
convective| . 1 o (84)

r—oo

lim

r—oo

viscous
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Oseen Approximation

Stokes approximation becomes invalid once Re r is of the order of unity. This

occurs at distances of the order of v/U*, meaning that the viscous length is
then the significant reference dimension

*

Rer~0() = =~V (85)J

a* ~ U*a*

In three dimensional flow the difficulty tends to be concealed because the
first approximation is sufficiently well behaved
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Oseen Solution

Oseen approximated the convective terms by their linearized forms valid far
from the body, where the difficulties arises. This constitutes an ad hoc
uniformization of a non uniform direct perturbation

0 Stokes

86
Uu Oseen (86)

Uux +vuy +wu, = {

The Oseen’s equations provide a unformly valid first approximation for either
plane or three-dimensinal flow at low Reynolds number
Assuming U =Ug +u

(U-V)U=(Up-V)(Up+u)+(u-V)(Ug+u) (87)

V32U = V2Up + Vu (88)
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Oseen Solution

Being Ug an uniform flow we obtain
V3Up =0 ; (Up-V)Ug=(u-V)Ug=0
The problem is as the previous one, with the following extra terms
(Up-V)u (u-V)u=0

The second term is still negligible with respect to viscous terms

3 1
1+_r_3 = Uor + uy

Uy = cos(V) |1 — Er_ 5
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Oseen Solution

lim
r—o0
. Uor Ur r
lim |
r—=oo | Relr,rr

9, -3
—2r
= lim 47
r—oo ( 3[‘_3)
A= (=3r34+6r5)

-Rexk'1

~ 4

=—Rer~O(1)

(92)

(93)

When r — 1, i.e. close to the body surface, both terms vanish and convective
In this case Oseen’s solution and Stokes’ solution are

terms are negigible.

coincident

PhD Course on Fluid Mechanics -

Genoa),

Flow at Low Reynolds Number

Genoa, 23 June 2009

40 / 44



Oseen Solution

Although Oseen’s equations are linear, their solution is sufficiently complex
that no second approximations are known. At the first order of
approximation for the sphere the stream function reads

o = <%r2 4 %ﬂ) sin?(9) — = (1 + cos(1))
- {1 ~ exp <—% (1— cos(ﬁ)))] (94)

if r— oo o — %rz sin%(¥9) (95)
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Oseen Solution

Re r Re r

if r—1 exp <— (1- cos(ﬁ))) —1- (1 —cos(9)) (96)

o= (724 3t )si0) = 2r (1 - cos(0)) (-4 os(0)  (97)

o — (%rz + %r‘l — %r) sin2(19) Stokes Solution (98)

As done by Oseen, Lamb (1911) obtained the solution for the cylinder

PhD Course on Fluid Mechanics - Genoa), Flow at Low Reynolds Number Genoa, 23 June 2009 42 / 44



Oseen Solution

Finally, once derived the solution for the sphere and the cylinder it is
possible to evaluate drag coefficients

@ Sphere

24 3
Co= % [1 + 15 Re] (99)

o Cylinder

_ 8w
~ Relog(7.4/Re)
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Oseen Solution

Second approximation far from sphere )

Improvement of Stokes’ solution applying the method of Matched

Asymptotic Expansion (Kaplun and Lagerstrom, 1957; Proudman and
Pearson, 1957)

More details in Perturbation Methods in Fluid Mechanics, Milton Van
Dyke, 1975
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